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INADMISSIBILITY OF TWO ESTIMATORS OF RELIABILITY
IN THE EXPONENTIAL CASE

1. Introduction. Let N identical elements having the life-time dis-
tribution with probability density function

f(») = 13—131(0@)(‘”)7 Aed = (0, o),

where I,(u) denotes the indicator of a set A4, be placed simultaneously
on life test with replacement of the failed elements and with duration of
the observation until the fixed moment 7. Let D(t) denote the number
of failures until the moment ¢ and let »,, @,, ..., #pq) be the moments of
failures until the moment T. The problem of the unbiased estimation
of the reliability function R(f) = ¢~*, ¢ > 0, on the basis of the truncated
sample (X,, X,, ..., Xpm) has been studied by Bartoszewicz [1], Kli-
mov [3], and Belaev and Smirnov [2]. In [1] the distribution of the
minimal sufficient statistic (D(T), 8(T)), where
D(T)
8(T) = Y X+ (N—D(T)T,

=1

has been given. The joint probability density function of the statistic
(D, 8) = (D(T), 8(T)) is of the form

=T if d=0,
(1) fd,s) = (Z)zde—“vd (s—(N—a)T;T) i d=1,2,...,¥,
where
1 ! (d
Valwi T) = o 2 (1 ({) i

and o, = max(0, a). It easy to see that the distribution of (D, 8) is
concentrated on the set {(d,s): d =0,1,...,N, se[(N—a)T, NT]}.
Bartoszewicz [1] has also proved that the statistic (D, 8) is incomplete:-



10 J. Bartoszewicz

-except for the trivial case N = 1 and he has constructed, using the Rao-
Blackwell theorem, the unbiased estimator of R(t), ¢t € [0, NT], being
of the form

{2) R,(D,8;t) =E[R,|D, 8]
N-D
(%
==t
(3

D-1 _ 1 .
2 (Di 1)2(—1)’+1[S_j7—(N—D+i)T]2—1

j=0

V(8 —(N—D)T; T)

) D
T W—k@D-1! *

X ’

‘where k = [¢/T] (the integer part of the number ¢/T), v = t—kT, and

(%) [1- 2]

Bo N T N—_%
k

The estimator R, is better than the unbiased estimator R, which is
based on the empirical distribution function, using any strictly convex
-error loss.

Klimov [3] has given another estimator of R(?), t € [0, NT'], more
elegant than R,. Klimov’s estimator is of the form

Vp(8—Dt/N; T—t/N)
Vp(8—(N-D)T;T)’

(3)  RyD,8;t) =E[6(Xy,..., Xy) | D, 8] =

“where
5 ) 1 if min(#y, ..., 2y) > t/N,
LyyoeeyBy) =
@1y 2ees B 0 otherwise.

However, estimators R, and R, are not the uniformly minimum
variance unbiased (UMVU) estimators of R(¢), te [0, NT), if N> 2.
Belaev and Smirnov [2] have given a characterization of the class of all
unbiased estimators of zero based on the minimal sufficient statistic
(D, 8) and they have proved that if N >2 and ¢{e[0, NT), then the
UMVU estimator of R(t) does not exist. If ¢ = NT, then the statistic
I,(D) is the UMVU estimator of E(t). In the trivial case N =1 the
UMVU estimator of R(f) exists and is equal to the statistic Iy . (8),
t<T. If t> NT and N > 1, then the UMVTU estimator of R(¢) does not
exist.



Inadmissgibility of estimators 11

Applying the Belaev-Smirnov result we prove in this paper that
the estimators R, and R, based on the minimal sufficient statistic and
obtained in a very natural way are not even admissible on every compact
subset of the parameter space A = (0, o), using squared error loss.
Before this we give a theorem on inadmissibility of unbiased estimators
for incomplete exponential distribution families and we present the
Belaev-Smirnov characterization of the class of unbiased estimators of
zero based on the statistic (D, 8).

2. Inadmissibility of unbiased estimators. In the sequel we use the
following corollary to the well-known Lehmann-Scheffé theorem.

THEOREM 1. Let y = {Py, 0 € O}, O <= R", be the incomplete exponen-
tial family of distributions of the minimal sufficient statistic X, let A be
the nonempty set of all unbiased estimators of zero based on X with finite
variance for every 0 € O, and let g(X) be an unbiased estimator of the real
parametric function y(0), 0 € O, such that E,[g(X)]2 < oo for every 0 €O.
If there exists @, € M such that

Cove(®os 9) = Eo[@e(X)g(X)]> 0 (or <0) for every 0 €0,,

where O, is a compact subset of the set O, then the estimator g(X) is inad-
missible on @, using squared error loss.

The proof of this theorem may be found in [4], Chapter VII.
3. Unbiased estimators of zero. Belaev and Smirnov [2] and also

Torgersen [5] have characterized the class of all unbiased estimators
of zero with finite variance for the distribution family (1), 4 > 0, if N > 2.

THEOREM 2. A statistic ¢ (D, 8) ¢s an unbiased estimator of zero with
finite variance for every A > 0 if and only if

h(d’ 8)
)Vd(s—(N—d)T; 7)

N
d

ifd=0,1,..., N and s e [(N—a)T, NT],

{4) p(d,s) =
(

where h(d, ) are square-iniegrable functions on intervals [(N —d)T, NT],
d4=0,1,..., N, and satisfy the following conditions:

{5) h(0, NT) =0,

NT
g %h(d,x)de =0, m=1,2,...,N-1,
(N=a)T

o (—1)m?
e (m—d)!

(6)



12 J. Bartoszewicz

(7)
0 if se[0,T],

N—1 max(s,(N—-d)T) (8 m)N—d-—l
_ f h(d,$)(-N_Tl—)' dx ifSE(T7NT]'

d=1 (N-a)T

h(N,s) =

4. Inadmissibility of the estimator R,.

THEOREM 3. If N >2, then for every te[0, NT) the estimator R,
defined by (2) is imadmissible on every compact subset of the parameter
space A = (0,00), using squared error loss.

Proof. Theorem 1 implies that in order to prove this theorem it
is sufficient to find for every ¢ € [0, NT) an unbiased estimator of zero
¢(D, 8) such that

(8) Cov, (¢, R, = E,[¢/(D, S)RI(D, S;7)]1>0 for every 4> 0.

First we consider the case where ¢ is a fixed number from [0, T].
It is easy to notice from (2) that

1-1/N it _ _
(9) 1%1(1,3;t)=| IN it se((N-1)T,(N-1)T+1],

1 it se((N-1)T+t, NT],
and
(10)
2 2(T-v) :
Ry (2,s;1) = 1= F[l_ NT—s] if se((¥N-1)T, (N-1)T+1],
! it s e((¥N-1)T+t, NT].

We use these simple expressions to construct the estimator ¢,.
It follows from (5) that

(11) (0, NT) =0.
Let us assume that
(12) ?(3,8) =@(4,8) =... =¢(N,s) =0.

Therefore, we have to define functions ¢, (1, ) and ¢(2, ‘) which
are not identically equal to zero, take the form (4), and satisfy (6) and (7).
It is easy to prove that formulas (6) and (7) are of a simpler form in
this case, namely
NT
(13) f hy(1,8)ds =0
(N=1T
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and

max(s,(N—1)T)

4 @, =1 [ m@,odo it se[(N-1)T, NT],

(N=1)T
0 otherwise.
From (9)-(14) and (1) we obtain
R NT
Covi(g, Bo) =2 [ Wi(s)e™ds,
(N=1)T
where
W (s)

max(s,(N-1)T)

1 2(T —1) . -
-] (N_[,T W1, 0)dn i se[(N—1)T,(N —1)T+9),

| @euTat
-+ hy(1, ) dw if s e[(N—1)T+t, NT].
~N-1T
Notice that if s € [(N—1)T, NT) and te[0,T), then

L 2Ty | >0 if se[(N—1)T, max(NT-T, (N —2)T+21)),

NT—s|<0 if se(max(NT—T,(N—2)T+2t), NT—T+1).
Therefore, the function A (1, -), being, e.g., of the form

(15)  h(1,2)

1 it we|(N-1)T,(N-1)T+(2t—T),/2),
1+(2t—T),
=\ " s—@on), it xe|[(N-1)T+(2t—T),/2,(N—1)T+1%),
(T —1)/2 if e [(N—-1)T+t,NT],

makes W (s) > 0 for all s € [(N—1)T, NT) except for s = max[(N—1)T.
(N —2)T -+ 2t) only. Hence the estlmator @; defined by (4) and (11)-(15)
satisfies (8). This completes the proof in the case te [0, T].

Now let ¢ be a fixed number from [T, NT), k = [t/T'], and v =t —kT.
It is easy to see from (2) that

R,(d,s;t) =0 ifd=N—Fkand se(kT,t] and
ifd=N—-k+1,N—k+2,...,N and s is arbitrary

and X
B(N—Fk,s;t) >0 if se(t, NT].
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Therefore, for any unbiased estimator of zero ¢, we have
N—k-1 NT
Covalp, B)) = D) [ @@, 9)R.(@, s50)f(d, s)ds+
d=1 (N-@)T
NT

+ [ @(N—k,8)By(N —F, s; O)f (N —k, 8)ds.
t

We find an estimator ¢, such that (8) is also satisfied in this case.
It is obvious that ¢;(0, NT) = 0. We assume also that

(16) o1, 8) =¢(2,8) =... =g(N—k—1,8) =0.

The problem is to find a function ¢,(N — %, -) positive for s € [¢t, NT']
and satisfying (4), (6), and (7). The functions ¢,(¢, ), ¢ = N—k+1,..., N,
can be arbitrary, but they have to satisfy (4), (6), and (7). For convenience
we put

(17) N —k+1,8) =N —k+2,8) =... =q(N—1,s) =0,

and hence only ¢,(%, -), defined by ¢,(i, *), ¢ < N, and by (4), (6), and (7),
cannot be identically zero. Under the above assumptions we have

NT

(18) Cov; (¢, B,) =f h(N —k, 8) Ry(N—F, s; t) AN-Fe~2 ds,
t

where h,(N —k, ) satisfies k equalities

NT
(19) f o (N —k,x)de =0, j=1,2,...,k,
kKT
and also
max(s,kT) (8 . a;)k—l
(20)  Ry(N,s) = — f W —k,0) o do, s € (T, NT].
kT '

It is obvious that Cov, (¢, R,) > 0 for every 4> 0 if hy(N—k,8)>0
for s € [t, NT], and hence we may put

(21) h(N—k,8) =¢>0 if se[t, NT].
Such a function A (N —Fk, ), square-integrable, orthogonal to the
function set {1, #, ..., *"'} on [kT, NT], and constant on [{, NT'], exists

and may be easily constructed. From (19) and (21) we obtain the system
of equalities

t
[l 1N —k, @) dz = ¢,
kT
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where ¢; = —(¢/[))[(NTY —¢), j =1,2,..., k. Let
1 .
A; =[kT+ Lk—‘r,kT+ -‘%‘r), i=12,..,k,

and

ay; = fw"“lda;, ,j=12,...,k.
4;
k
Then [kT,t) =|J A4;. It is easy to see that we may put
j=1
n fsed;,j=1,2..,k

22 h(N—Fk,s) =
(22) ! ) =1, if se[t, NT1,

where 7,, 7,, ..., 1, satisfy the system of linear equations

k

j=1

The system (23) has a unique solution because the function set
{1, x, ..., #* '} is linearly independent. Hence for the estimator ¢,, defined

by (4), (16), (17), (22), and (21), inequality (8) holds for every 4> 0.
This completes the proof of Theorem 3.

5. Inadmissibility of the estimator R,.

THEOREM 4. If N > 2, then for every te [0, NT) the estimator R,
defined by (3) is inadmassible on every compact subset of the parameter-
space A, using squared error loss.

Proof. Similarly as in the proof of Theorem 3, we show that for

every t€[0, NT) there cxists an unbiased estimator of zero ¢,(D, S)
such that

(24) Cov, (¢, R,) >0 for every 1> 0.
Let ¢ be a fixed number from [0, NT). Notice that
(25) Bo(d, 550 =0

. t
if d=0,1,..., N and s¢((N—d)T+d = NT].

Consider an unbiased estimator of zero ¢, such that
(26) ¢(0, NT) = q,(1,8) =... =q(N—2,5) =0

and the functions ¢,(¥N —1, ) and ¢,(N, -) are not identically equal to
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zero. Then from (25) we obtain

NT
(27) Covy (g, R,) = f hy(N—1,8)Ry(N —1, 85 1) AN e s +

N-1
T+Tt

NT
+ [ (N, )RV, 851) 2 e ds,
max(¢,T)
where the funetions k(N —1, -) and k(XN -) satisfy (6) and (7). In order
to make the covariance (27) positive for every 1> 0 it is sufficient to
find a function A, (N —1, ), square-integrable on [T, NT], positive on
[T+ (N —1)t/N, NT], satisfying the condition
NT
f hy(N -1, 8)ds =0,
7
and such that
max(s,(N—a)T)
W(N,s)=— [ W(N-1,8)ds>0 if se[max(t,T), NT].

T

It is easy to verify that such a function takes, e.g., the form
28) Hm(N-1,s)

(0 if SGIO,mQJX(t, T))?
B N-1
_ - 11 if s e|max(t,T), T+ t),
1 B N-—-1
if T t, NT
2(N_1)(T_t/N) 1 SEL + ’ ]7
and the function h, (N, ) is of the form
(29) h(N,9)
0 if s e[0, max(¢, T)),
_ -1
§ —max(t, T) it s e[ma-x(t,T),T—l— NN t),
_ 2[T+ ¢ —max(t, T)]
N-1
T t—
+— 8 1 . po Y1, NT]
B 1) (T ) | 2 S i or

Hence the estimator ¢, defined by (4), (26), (28), and (29) satisfies
inequality (24) for every 4 > 0. This completes the proof of Theorem 4.
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