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On a version of Littlewood-Paley function

by P. Szerrvcki (Lawrence, Kansas)

Abstract. If [ is 2 locally integrable function on R", then the Friedrichs extension of f to
R"™ 1! is in the Sobolev space H' 2 if and only if fis in I*. Several analogues of this result are
considered in the [f~case, 1 < p < o0, as well as some partial resulis in the case when p < 1.

1. Introduction and notations. Various analogues of the classical function
g of Littlewood-Paley were considered by several authors, see for instance
[2]-[4]. The objective of this note is to introduce yet another analogue and
discuss some of its properties. The form of the function we consider does not
seem to fit into schemes considered by other authors and is motivated by the
compatibility conditions in the theory of Bessel Potentials [1] in the excep-
tional case.

Throughout this paper we shall use the following notations. R%"! is the
upper half-space in R"*!; R%*' = R*x R, = !(x. v): xeR", ye(0, x)|. For
a function u defined on R%!, reR%*!, 4,u(x, y) is the forward difference of u
at (x, y) with increment t; 4,u(x, y) = u(x+t, y+v)—u(x, y); t = (', 1.

Let ¢ L (R™ and for y > 0 denote ¢, = y "¢ (y~'x). Denote by T,
the m+1 dimensional cone in R%"!: T,, = I(t', 7); 'e R™, |t'| < xt], where
R™ is identified in some way (not necessarily canonical) with a subspace of R"
and x > 0. In the case when x = x, T,, = R"xR,.On R, x T, and T,, we
consider the measures du,(y, t) = |t| "™ 2dydt, dul(y,t) = |t|"™ 'dydl
which are clearly invariant under homotheties.

For any function or distribution f on R" for which ¢, * f(x) makes
sense, at least a.e. on R.*! we define

(L.1) (i x) = ([ ] 1400y % £ (X1 dit(y, D2,
T O

m

(1.1 hy(f: ) = ([ 14r@y* f (01 dpp (y, )12
T

The objective of the paper is to establish under some regularity conditions
on ¢ the inequality
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(12 Il < Collfll, L<p<o,j=1,2

where || ||, denotes the I? norm. We are also interested in the opposite
inequality, valid under suitable conditions on ¢,

(1.3) Al 2 el fll,-

It was shown in [1] that every measurable function on R" is a restriction
of a function in P'2(R%*') and that for f € I?, ¢ Lipschitzian and satisfying
[e(x)dx = 1, the function

(14) u(x, y) = @,* f(x)

is in PY?*(R%"!) and has restriction f to R" (1.3) for p = 2 shows that a
function ue P*/(Ry") with f = u|,, ¢ L* (R") cannot be given by (1.4).
Throughout this paper C, possibly with subscripts and superscripts, will

denote positive constants which may be different at different instances.
* denotes the Fourier transform and Vv its inverse.

2. The case p = 2. We consider inequalities (1.2), (1.3) for p = 2.
ProOPOSITION 2.1. Suppose that ¢ satisfies the following conditions:

(2.1) eeL(RY), [lp(I*(1+]x?)"*dx < co.

Then: (i) (1.2) holds for all f € I>(R"); (i) in order that (1.3) be valid for all
S €Z(R") it is necessary and sufficient that @* (£) be not identically 0 on any
ray through the origin & = Q.

Remarks. (2.1) implies that ¢*eP"?(R")n BC(R"), BC(R") denoting
the space of bounded continuous functions on R". The condition in (ii) is

satisfied, for example, in the case when | @(x)dx # 0.
R

Proof of the proposition. By the Plancherel identity we can write,
|| || denoting the norm in I?(R") and ¢-t' the scalar product in R":

(2.2) a2 =] aje, OIF*©&)2dE, j=1,2,
RN

where

8

a,(p, ¢) = Tf [ le7¢o* (r+11¢)— 0" WO dun(y, 1),

m

(2.3)

o

ay(@; &) = [ le™"*~1*|o" (YO dun(y, 1).

T

m

We observe that by the invariance property of the measures p,,, i, a;(¢)
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are homogeneous of degree 0. To verify (i) we have to show that a;(¢) are
bounded. We have a, (¢, & < C||§0('3)l|Lz(,,+,, 6 = |&]7 ¢ and

<2 j qu +1)8) =" 00| dm(y, 0+

+2 I =12 (01, 0,

m

In the first term we integrate first with respect to t', || < »1 to obtain the
estimate of the form

Cl [l (+08)=e" 08P duoly, 1)

O R
Q= R

= C [ [ lo* (v+16) =0 1) duo(, 7).

O ey R
Oty R

where 6 = || & Integrating in the second term with respect to t first and
aX

then with respect to ' we get an estimate of the form C () | " (v8)|*dy,
0

where C(6) is a bounded function of #. Hence
ay(@; O < CL[ [ le* (v+00)—0" 0 duo(y, D+ | lo” (y0)*dy].
00 0

The expression on the right is equivalent to the square of the norm in P! ? of
the restriction of ¢* to the ray yf, y > 0 and by the known restriction
theorem and the remark preceding the proof we get

(24) a)(@; &) < Cllo ™ = 1,2.
This proves (i). To prove (ii) it suffices to show that the condition
(2.5) " (&) # 0 on any ray through 0
is equivalent to the condition that
(2.6) a)(@;¢) = ¢ >0,

c is a constant. To show this we first notice that a,(¢; <) is continuous on
|€] = 1. This is immediate if .¢" is sufficiently regular and with compact
support. Also if ¢*, @ € P"*(R", then

lay(@; &)—al(ey; Ol < glo+oy, 82 a(0—04; )

which together with (2.4) shows that a(g, ¢) — a(e, &) uniformly if

I-x
" 2 ¢" in P"2(R". Since smooth functions with compact support are

dense in P"? it follows that a(¢; ) is continuous.
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For j = 1 (2.6) fails if and only if a(¢; 0} = O for some |6] = 1 and this
occurs if and only if @ {y0) = 0 for all y > 0. In fact, if a(f) = 0, then by
Q) e " (y+1)8)—p" (y8) = 0 for ae. (y, 1) and since ¢* € BC(R" the
identity is valid for all y, r. With t = 0 we conclude that either e~ " = | or
" (30) = 0 for all y > 0. In the first case ¢"((y+1)8) = 0" (y9) for all
y, 1 > 0 and since ¢"*(yf)e *(R,) (as a function of y) this also implies
" (v0) = 0. On the other hand, it is trivial that if ¢"(y0) = 0, then
ac(e; 0) = 0. For j = 2 the result is obvious.

We remark that by the argument leading to (2.2) we also get for any

flsf?.ELz(Rn)

x

@7 [ f Aoy LA 0y f2(X)dpm (y, 1)dx

RnT O

= [ a0, O L2 f5 O

Rn

(2.7) _f j (¢ @, * fi (x)(4, qoy*fz(x))d;l;n(y, ) dx
Rs T
= [ay(@, OO S35 O de.

3. «;() as multipliers of &IF. We consider here some sufficient con-
ditions on ¢ which guarantee that a;(¢; £) are multipliers of §L?, ie. the
mappings Y €Y —(a;(@; &)Y *(£)) " can be extended to a bounded linear
operators in 2. The Banach algebra of all multipliers of §If we denote by
m,.
! We use the following version of Marcinkiewicz-Mihlin-Lizorkin-
Hormander theorem (see [3]):

ProrosiTioN 3.1. If |&%|D*a(é) < M for all multi-indices a =
= (ay, ..., a&,), where a; = 0,1, of length |a| = a;+ ... +a, < k(n), k(n)
being the least integer > n/2, then m,eIM,, 1 < p < =, and ||ma||~m, < cM.

Since in our case a;(¢, &) given by (2.3) is homogeneous of degree 0, the
condition of the above theorem will obviously be satisfied if D*a;(¢, &) exist
for all multi-indices as in the theorem and are bounded for |£| = 1. Also if
a(?) satisfies the hypotheses of Proposition 3.1 and |a(¢)] = ¢ > 0 for all g,
then a(¢)”! also satisfies the hypotheses of the Proposition and therefore
m_yisin M, m_, = m; ! .

We give next an example of conditions one can impose on ¢ in order
that a;(¢; ¢) satisfy the hypotheses of Proposition 3.1. We still assume that ¢
satisfies (2.1), and for all f, [f| < k(n), B; = 0, 1,

6y O 1EIDPer@ep

i) [ I"DPo*(rONdr < C for all 0eR", |B]=1,0 < I < k(n).
o]



Littlewood—Paley function 121

To verify that (3.2) imply the hypotheses of Proposition 3.1, we compute
D%a;(p; &). We note that for any m index §' with f; = 0, 1 we have:

63 [PPSO, =0 [ ¥ [0, 9du0.0 =0

because (')’ is odd. Differentiating under the integral sign:

DPay(p, ) = Y [ Y [D¥(e™=1)D" o~ (y&)],

B+y=a T _f'+p'=§

Y DE =)D (p)dpn (v, 1) = Y Y X Ipgyye

Yy =y Bty=a p'+B =8 y+y'=y

We have the estimates: [Ig 5,0, < a2(0p; &)V?ay(0,; &', where @4(8)
|&|"|D’(o (&). (3.2) (i) implies that a;(¢,; &) are bounded for |a| < k. If
g,y # 0, then by (3.3) I 4, = 0 and for g’ # 0

”ﬁ'.ﬁ":o,yl

= | | e (=it) Y HDF o) (p8) (€ — 1) Y (D7 @) (yE) ditin (v, 1)
Tm ’
which can be estimated by Ca,(¢,, &)'/? ]'L yHO=1(DF” o) (yE)* dy.
o

The same argument remains valid for a,(@, &): D*a, (e, )

= X ) Y Iggyy, Where
Bry=a B'+p'=8 y+y'=y

600l = | g TI e (DPo" (y+1)E) =D 9 (yO)] [ D" 0" ((y+7) €) —

—D" 9(yE)] dum (v, )] < ay(@g; €)% az(@y; Y2,

I‘), gy =0 if B #0,y#0
and
Upol = 1] § e S(=it¥ (40| (D p(y+9) O[S DT 9™ (G408 -
0T

m

—DYQDA (yé)]d.u'm(y’ t)'l

< Cay (g, OY?[ g2lFi-2 f YHE LD 2) (yE) dy dc]V2.
0 4

3 ~ Annsles Polonici Mathematici XLI. 2
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The term in the square brackets is now estimated by
[ (L4227 WI200=2 [ (14 y2)#1 (D ) (pE)|* dy dr
0 0

which is bounded by (3.2), (ii).

4. The case 1 < p < oo. In this section we are going to discuss inequal-
ity (1.2) and its converse for | < p < <.

ProrosITION 4.1. Suppose that 1 > 0 is an integer and ¢ satisfies the
Jollowing conditions:

41) Voel*(R)ACRY and | |Po(r, 0] r™*2dre=(S,),
0

forj=11+1,8, = {6eR" |6] = 1}.

Then
(l) j IVIA,' (Py(x)lzll'l—m—ldt:dy < CIXI—Z(A+1)’
T
() [ 174,002~ 2dtdy < Clxj= 20+,
oT,

where C is a constant.

Proof. (i) We note that F'4, ¢,(x) = y"~'4, (P @)(x/y) for x # 0 and
decompose that integral in (i) into two parts: I, — the integral over T,
= {(t,»)eT,, It'| <2|x|} and I,-the integral over T,/ = {(t, y)eT,, It

= 2|x|}. In I, we use the estimate:
14 X+ st 1 t\[*, \'?
J' |7(+1 )( )rldsl <‘V|(I (VHI(p)(u) ds) R
Yo y y 0 y
2
dy ||t'|"™*1dt' ds

i x+st’
J‘ ( I y 2(n+i+1) (VH"(p)( >
[t’)<alx| \ x—1r| y

F(t, s)|t')"™*Vdt' ds.

'l <ol

14, (P o)(x/y) =

thus

42 I, <

1l

Oty b O ey

For x+st” # 0 we make the change of variables: [x+st'|/y = r which leads
to the following expression for the inner integral in (4.2)

xjt') = x+st']

, r X+ st’
4.3 F(t',s) = P o (rg))? = .
) ( ) g rx+stl|2"+2[+1 I CD(r )' dr’ 9 lx+S['|

We consider now two cases, (a) |t'] < }|x|, (b) || = }|x|.
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In the first case we replace the upper limit in (4.3) by oo and note that
Ix+st] = |x|—slt] = 1]x]

xX
F(r, S) s 22n+21+l|x|—2n-21—1 j‘ r2n+2IIVl+1 ¢(r9)|2dr.
]

In case (b) we have the estimate
F([’,S) < |fV’“(p|li(2h+21+ 1)-l|tll-2n—21—l < “VH! (D“i 2n+2!+1 le-ln-—Zl—l'

Substituting into (4.2) and integrating with respect to t' first we get

1
11 < C “xl—zn—u—l I It!|-m+1dtr ds=clo.|x|—2n—21
0 {t'| <o]x|
which is the desired estimate.
We consider now I,; we have [x+1| > |x| and we replace 4,.(F' ¢)(x/y)

by |(P' @)((x+1)/y)|+ V' @) (x/y)l. The integral corresponding to the second
term is

([ y 220 ) (x/y)2dy)|r|~™~dt' ds.

(1= 2]x] x=11¢)

O ey

Substituting again |x|/y = r we get the estimate for the inner integral

x[e|=1
le—2n—21+l j' r2n+21—2|(l71¢)(r6)lzdr < Clxl—zn-ZHI
0
and integration with respect to t' gives the desired inequality.

The same argument applies to the integral corresponding to the first
term, leading to the bound C|x+st’|"2"~2*1 g C,|x|” 2" 2+,

(i) In this case the procedure is quite similar to the proof of (i) except
that we have to account for the increment in the variable y.

We divide the integration over T,, in (ii) into two parts, the first over T,
= (t',1)eT,; || < 2|x}}, and the second over T, = (!, 1t)eT,; |t
> 2|x|}; denote the corresponding integrals by I,, I,. In the first integral we
1

. d
use as in (i) the mean value theorem to get ¥'d,¢,(x) = [ — V' ¢, (x+st')ds.

o ds
Now
d , e x+st'\ |
EV‘(p,.+,,(x+st) = (y+st) ! 1(V‘“go)(y+st)-t -

_ 11701 x+st’
(n+Nt(y+s7) (v cP)(y+sr>+

tl
+(y+s.r)—n-!—zt(;7l+1(P)(X+S )-(x+st),
y+st
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Thus I, can be estimated by the sum of three integrals, each correspond-
ing to one of the terms above, which we denote by I, I;;, I;5. We have

x+st’
< =2(ntl+ 1) i+l e ¢ t—m-zdtd dS,
L < €] osraeten 7t (SN iy
N\ |2
47) I, < tst)= 2o+ 0 |t o) (EESEN 2 w2 grgg
@7 I, 6%
Ton y+st

2

I3 £C |x+st|2 22|t 2,

Ote—r § Otem § O §
Gy

-
2

O tammy pt D Cmsmey o (O Sy

x+ st
+ - 2(n+l+2) Vl+1 ( )
(y St) ( (D) 4

In each of the above we integrate first with respect to y making a sub-
stitution r = |x+st|/(y+st), x+st' # 0 to obtain respectively expressions:
(st)~ i[s+st’|
j r2n+ 2'|(V’”qo)(r9)|2 dr|x+stll-2n—21-1’
0
(st)~ tx+st'|
j r2n+21l(l71¢)(r9)|2dr|x+stil—2n—21-1,
1]

(s)~ ¥x+st’]
j‘ r2n+21+2,(|71+1 qo)(r9)|2a'r|x+sr’]'2"'2"‘.
0

We consider separately cases (a) |x+st] > }|x| and (b) |[x+st'] < 1|x].
In case (a) we replace the upper limits in the integrals by oo and obtain
bounds of the form C|x+st|"2"~ "1 < C,|x|"?" 2~ In case (b) we have

1
I 2 41 2 4l = HUEP 4297 2 R4 22 = ()2,

. . l 1 .
in particular, s > E(1+x2)”2. Also 12 x> ﬂlxl. Replacing

Pip(ré) by || ¢ll., j = I,1+1, we get the bounds for the first two
integrals

C((s1)™ "o+ st|2n* 2+t x g sp| =27 21=1 = C(sp)~ 2721 g Ixi—zn—zz—'x
and for the third integral
C((Sr)-l |x+st’|)2"+2’+3]x+st’|’2"_2"1 _ C(sr)_z"'z"3'|x+sr’|2
S Cl |x|—2n—21—3,|x|2 < C1 IX|—2"—2’_1.
Substituting it into (4.4) and observing that
fle=mde = T (12 +72) ™2 de dt’
T )< 2| y-1py)

<C [ Jmtdr = C, A,

Il <2]x|
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we get the desired estimate
[lj < Clxl—Zn—Zl’ j= 1,2,3.

The integral I, is written as a sum of

Ly = [ [y 17 oyl =™ 2dedy

and

Iy = | T_fﬂy‘z"‘z‘lV'cp((x+t’)/y)|2ltl"""zdtdy.

In I,, we substitute [x|/y = r to get the bound for the integral with respect
to y, of the form |x|~ 2"~ 2'*1 | y2"* 2= 2|pl 5 (40)|? dr and the desired estimate
0

follows from the inequality

X
(1™ 2de= [ [ (t)P+c}) ™ 224y < Clx|™".
T 112 2|x] %-1)r'|

The substitution |x+t'|/y = r gives for the integral with respect to y in
I,, a bound of the form C|x+¢|"2"~2*! < C(2|x|)~2""2*! and the proof
is complete.

TueoreM 4.1. If ¢ satisfies (4.1) with 1 =1 and |E|Ve" (&),
[E[' /2 " (E)e I2(R™), then 1.2 holds, i.e. for every p, 1 < p < oo, there is a
constant A, such that ||h;(f; N, < A, fl, for every feL?(R").

In the proof we use Theorem 5, Chapter 2, § 5 of [4] in the following
setting: for j = 1: H, = C, H, = H = I2(R, x T,,, du,,) and the operator
valued kernel K'(x): C —» H is given by x - K'(x) = 4,9,(x), K(x): 1eC
— AK(x)eH. For j = 2, H = I}(T,, du,) and K*(x) = 4, ¢,(x). The objec-
tive is to show that f — K’/ « fis a bounded transformation form L?(R") into
IP(R", H. We will actually consider the families of operators K (x)
= 4,0,+,(x), K2 = 4, ¢,4.(x), and show that

(4.2) IK.* fll <€ Alifllp, 1 <p< o0,
with a constant A, independent of &.
Since it is easy to check that Kj f — K/« fin I?(R", H), provided f is

sufficiently smooth and with compact support, it will follow that

1K= fll, < 4111, feZ(R.
To prove (4.2) we have to verify, according to the theorem referred to

above, the following conditions:
@ K. (x)lel?

(4.3) () IK;QI < B, (ekR,
(i) (IPK (I < Blx™""1,
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where || || denotes the norm of a transformation from C to H. If (i), (i), (iii) are
satisfied, then the constant A, in (4.2) depends on B and p alone.
Verification of (i) and (ii). We have:

]

1K~ (&) < I le'""fqo“((y+1)§)-<0"(yﬁ)|zdﬂm(y, 1) = a (e, <),

K2 (N < [ Ne™ =1 o) dum(y, 1) = a2(9; &)
T

and ||[K (&), j = 1, 2 are bounded independently of & (see Section 2).
On the other hand, using the same inequality as in the estimate of a(¢)

LIIK.? (1> dx = | IIK; " (> dE

E'——; !L——.
to e &

[ [ e~ (1+7)8)— 0" (YO din(y, 1 dE
T

<2[C }c ]5 lo" (0 +7) &)~ E)* 1™ 2 dedyds +
R e O
+ § ?TJ e " —1) " WE)I* dtm(y, t)dE].
Rr O m

In the first integral we use Hardy’s inequality

{ 0" (v +0) &) 0" (pO)21™2

o]

= [ 10" (8= (el (s—y) " 2ds < 4 [ [P (s-8)- &2 ds,
y

-

and

4

M C—— R

XL
[ 57" 2ds [ [P~ ()*1E2dE = Ce™"|[IV " )IEN] 2 gm-
¥y Rn

The second term is estimated in the same way as in the proof
of boundedness of a(f) in Section 1; here we get the bound

Ce™" | lo" (£)|*|¢|dé. The same estimate is also valid for [ [|K2* (&)|*dé.

Rn

(11) is an immediate consequence of Proposition 4.1: it suffices to notice
that ||VK](x)| < I[FK/(x)||. QED.

We next consider the validity of the converse inequality to (1.2).

THeoreM 4.2. If 1 < p < oo, ¢ satisfies the assumptions of Theorem 4.1,
a,(p, &) > O for all £eR" and a;(p; &)~ " is a multiplier of FL%, 1 < p < cx,
then there is a constant B, > 0 such that |ly(f, N, = B,\f|l, for all
fel?(R".
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Proof. If felP!nI? finIPnI% 1/p+1/p’' =1, then with a(%)
= a,(p, &)

S f) =[O QdE = [a@f (a8 fi* (&) dé

= [ [ [ (4eoy* i) 0y * £2(3) dpin(y, Ddx,

Rn O T

where f3* (&)= a(&)~! £ (&), fre?nIF. Using the Cauchy-Schwartz and
Holder inequalities and Theorem 4.1, we get

|(fy fl)l < “h(f, ')“p“h(fb ')”p' < ”h (f’ ')“pAp'“fZIlp'
< RS N Ap limglla, 1121l

we have used the fact that M, = M,

The last inequality with the usual density argument completes the proof.
When a(é) = a;(¢, &) the proof is identical.

The hypotheses of Theorem 4.2 are satisfied under conditions discussed
in Sections 2 and 3 which we shall not repeat here.

Theorem 4.1 remains valid in a suitable formulation for 0 < p < 1.
Using the terminology of [2], chapter V, we have

THEOREM 4.3. Suppose that O < p < 1. Than there is an integer |(p) such
that for ¢ satisfying (4.1) for all I, 0 < | < I(p) there is a constant C such that
WA, (fs M, < ClIfll, for all sufficiently smooth f e HP.

Proof. We apply a vector valued version of Theorem 12 in [2] in the
same setting as in the proof of Theorem 4.1, Proposition 4.1 and the
hypothests imply that the conditions of this theorem are satisied and we
conclude that 4, ¢, * f € HP(R", H), where, as before, H = (R, x T, du,)
or H = I*(T,, du,) with (|4, ¢, * f|] < C||fl- In particular for any
YeCq (R with {y = 1 we have

sup (Y. * K/ x f(Dlysz > 0 = (K )* (x)el, K N, < Cllflp.

If f is sufficiently regular, then for z — 0, Y, * K/ f — K/ f pointwise and,
by Fatou's lemma, ||K’* f (x)]|z < (Kif)* (x). QED.

We don’t know if an analogue of (1.3) is valid for 0 < p < 1.

The following remarks seem to be in order:

1° Some of the arguments in this paper could be somewhat simplified if
we assumed that e’ ; in particular, it would not be necessary to impose
various smoothness and integrability conditions on ¢ and ¢". This would
eliminate, however, the function ¢(x) = 1/(1+|x|*)"* /2 corresponding to
the Poisson kernel.

2° The results of Section 2 give rise to the following consequence. A
harmonic function u which is IZ2(R%*') is in PY?(R%"') if and only if its

HP(R", H)
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boundary value u|g, is in I?. The same is true for a disk or n-dimensional
ball. It would be of interest to see an analogue of this result for more general
domains and for p # 2.
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