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0. Introduction. In [12], Vigneras shows that if F(z)
Za () exp(2ning) is & modular form of half-integral weight for some

eougrueuce subgroup of 8SL(2,Z) such that a(n) =0 unless n = tm?
for ¢ an element of a finite set of pozitive square-free integers and m an
integer, then the weight of ¥ is 1/2 or 3/2 and F can be reslized as a linear
combination of certain explicit theta series. Serre and Stark [9] established
that all moduolar forms of weight 1/2 are so distinguished, however it is
well known that not all forms of weight 3/2 are. For an odd
Dirichlet character p, Shimura [11] defines the cusp. form &,

= 2 w{m)mexp(2mimz) which hag weight 3/2 and is obviously distin-

gmshed as above. In fack as Gelbart and Piatetski-Shapiro [5] point out,
the k,, are “essentially ” the only forms of weight 3/2 which satisfy Vigneras’
Theorem. Thus we restrict our attention to Shimura’s k,.

There is intrinsie interest in the #,. Under the Shimura lifting of
modular forms of hali-integral weight to modular forms of integral weight,
the image of the orthogonal complement (in the space of eusp forms
of weight 3/2) of the space generated by the fi,is cuspidal. This was conject-
ured by Shimura [11] and first proven by Gelbart and Piatetski-Shapiro
[4], [B] using representation-theorefic methods (see also Flicker [3])
and, nsing “elassieal” methods, by Cipra [2] and Xojima [8]. It is relevant

to inquire whether the %, are newforms since newforms of 2 given level

are, in an explicit sense, fundamental to the construction of modular
forms of higher levels. Omne can also ask whether %, is a primitive form
in the sense of [1] or [6].

In this paper, we establish that %, is a cuspidal newform by means
of & trace operator and give necessary and sufhment conditions that
k, be a primitive newform
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1. Notation and termmology. Tor z e 0, put e(2) = exp{2wiz) with
i =V —1 and define ¥z = "* with —=/2 < args'® < =/2. Further put
2 = (Y for evary x e Z. Let 3 denote the upper half- pla.ne {z € ClIm(z)
> 0}. Denote by I',(¥) the group defined by

* 0 Csue, 7))
R

. . -
Fori e Z we define a guadratic symbol (»;) exactly asin [11]. All characters

Ty =

=0 (mod.N)].

are assumed primitive so the produnet of two characters y, v is the primitive
(=3

D e(n®z)

= 0(4z2)/6(z),

character associated with n-—>y{n)w(n). For ze3 let 6(2) =

P the standard theta function and if A e I'y(4) set j{4,2)
the theta mmltiplier of 4.
Weshall be concerned exclusively with cusp forms of weight 3/2 defined

on congruence subgroups Iy(¥) where N is always assumed to be divisible

by 4. If ¥ is a Dirichlet character modulo N, then in addition to holomorphy
conditions (see [11]) a modular form F of weight 3/2 and character yx
on I'y(N) satisfies the functional equation #(A4dz) = z(d)j(4d, 2)*F(z)

for every A = (“ b) e I'y(N). The space of all suech cusp forms

e d
is denoted (N, 3/2, ¢} We say N is the exact level of a modular form
F it 7 has level ¥ but does not have level N’ for any N’ < N.

Finally for a primitive character ¢ of conduector » and ¢ e Z/rZ,
we define the CGauss sum:

gul@) = D' w(b)e(ad)r).

bmod ¢

' Put gy} = g, (L). It is well known that g, () = p(a)g(y) snd lg(y)| = V7.

2. The newform . For an odd Dirichlet character v of conductor
r, pub

h{) = Zw(m)ms(mzz).
=1

By & remark following Proposition- 2.2 of [11), k, e ,93(4,.2’ a(_—;}_) ‘w)-

In this section we show that h, is & cuspidal newform of level 452 Having
first established that %, is an eigenform for all of the Hecke operators,
the result will follow from Theorem 5.2 of [10] which characterizes the
gpace generated by cuspidal newforms by means of a trace operator.
We shall also need two other operators to achieve our geal: the slash

icm

Primitive newforms of weight 3/2 _ 99

operator denoted by | and for o positive integer N, the symmetry operator
TW(¥). For the definition and properties enjoyed by these operators,
the reader is referred to §3 of [9].

We begin with

PrOPOSITION 2.1. &, is an eigenform for all the Hecke operators, T(p%),
and if r is the conductor of y and we put b, | T(p?) = w,h,, then
| Fpeln) i pf2r,

BREIED if  plor.

Proof. Let &, |T(p* = Eb(az)s(m) By Lemma 1 of [9], &

if n is not a square and

(n) =0

mpy(mp) i pi2r

b(m?) = { mpyp(mp) + v (p) ( . )msv(?n) z:(

w e
it pi,

where {%} == § if pfm or m/p if pim. This reduces to

py(p)my(m)
(@) + v () mp(m)

it pl2r,

b(m?) = | £ pror

from which the proposition follows.

CorOrLARY 2.2. The Hecke eigenvalues of L, determine the character .
In particular, if hy and h, have the same ezgmvalues forall bwf a finite number
of the Hecke opsmtors, them @ =y,

Proof. By the previous proposition, for all but a finite number of
primes p we have (14-ple{p) = (1+p)p(p). The corollary follows from
this and Dirichlet’s theorem on primes in arithmefic progressions.

Recall the definition and basic properties of the trace operator.
Lot g be a prime with 4g| N and write I'y(:¥ /¢) a8 » disjoint union of right

<cosets modulo I, (N), say
a; by
where 4, = i
ﬁj- d_‘,

PR
U Iy (N) 4,
=1

and where p = [I(N/g}: To(N)]. If ¢ is a Dirichlet character deﬁnable
modulo N/g, we define the trace operator Tr(y) = Tr(y, ¥, g) on
(N, 3/2, x) as follows, Let ¥ € (N, 3/2, 7). Then in the above notation,
i3
£
FTr(y) = 2

k=1

To(¥/g) =

x(0)] (4, DT FlAy2) € 9 (N /g, 3/2, 1),
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where §{4;,2) is the theta multiplier of A;. One easily verifies that the
definition is independent of the choice of 4,'s. Moreover, Tr(y) commutes
with the Hlecke operators 1'(p®) for pf N and if ¥ € #{N/q,3/2, 1), then
F|Te(y) = uF. For more details of the trace operator, the reader is referred
to §5 of [101.

We now fix some notation for the remainder of the paper. Let » be an

-1
odd Divichlet character of conduetor ¢ and set y = (-——)w In view of
#*

Proposition 2.1 of this paper and Theorem 5.2 of [10], to prove A, is a cus-
pidal newform in & (4¢3, 3/2, v) we need only establish that for each

prime ¢ir,
By iTr(y, 4%, ) =0 and %, |W{&%)|Tr (%, 4%, 9) = 0. -

For a prime ¢!r a complete set of right coset representatives of 1y(4s2}
in I'y(41*/g} is given by: '

1 0
4, = av 1| v="0,1,...,9~1; a=4rg.

We note that the theta multiplier of A,,§(4,, ), is simply (eve-1)"%
Leaous 2.3, B, [Tr(x, 4%, ) = 0.
Proof. In the above notation we have

a—1
Bl Tr(g, 492, 8) = 3 B, (a/(ave-+1)) (ava-1-1) %2,
=0

By Proposition 2.3 of {11},. we have

, -1 % '
| ke, (z;’(mjz—kl.)){a'lw—!wl)‘al‘ = «ém;_mg mé(m, w)e(m%e:)
where
¥ T
E(m, v} = w(k)e{(gm + gk — g?orjg)Jr).
k=1 g=1
Thus

_1 -] .g—1
BTl 412, 0) = E mA{m)e(m®s) vwhere A(m) — Z E(m, 1)

Now _ h . -
. » z—1 r
Hom) = Y elmglr) 3] e(—g>vla) ' p(kye(ghfr)
g1 v=0 : k=1

¥

=Y plnameimgin) 3 e(—gojg.
=0

g=1 =

icm

Primitive newforms of weight 3/2 101

Since the conductor of yis 7, §(g) =0 if (g,7) > 1. On the other hand,
if (g, 7) = 1 then sinece qlr,e(—g2/g) is a primitive gth root of unity.
g-1
Thus > e(~—g°»/g) = 0, hence A(m) = 0 for all integers = and so the
=0
lemma is proved.
Liganra 2.4, b, | W (402) [ Tr(7, 47%, q) = 0.
Proof, By Proposition 2.3 of [11], 4, | W (4r2) = zhg where » 13 & ¢on-

stant. The lemma is now immediate from the preceding one.
. —1
THEOREM 2.5, h, i & cuspidal newform in & (41'1, 312, (—) 1,0)-
sk

Proof. By Proposition 2.1, %, is an eigenform for all of the Hecke
operators so all we need show is that kb, is in the orthogonal complement
of the space generated by the cuspidal oldforms. Tsing Theorem 5.2
of [10], this is accomplished by Lemmas 2.3 and 2.4

3. Primitive forms. A final question which can be asgked about &, is
the conditions under which it is primitive. If F{2} = Ma(n)e(ne) is
@ modular form, the character twist of ¥ by the Dirichlet character w,
denoted F¥, is the modular form given by F¥{(2) = Ya(n)yp(n)e(nz) (see
[10]). Reeall that a cusp form is primitive if it is not the character twist
of a cuspidal newform which has level lower than the original cusp form.
Primitive forms of integral weight were studied in [1], {6] and [7]. On a tan-
gential note, character twists can also be msed to provide an alternate
means of proof of Theorem 2.5. ‘ _

Throughont this section, v is an odd Dirichlet character of conductor

7. One may write v in a unique way as y = [[ u,, the product over all
Bir
primes dividing » where y, is the pth component of y having conductor
7, equal to the highest power of p dividing 7. The question of when 7,
is primitive is completely answered by '
TaEoREM 3.1. kb, is primiiive if and only if each y, 18 an odd Diricklel

character of conductor p (4 if p =2). . ‘

Proof (only if). We prove the eontrapositive. Suppose some 1,211,
is even. Then y, = ¢ for some ¢, having conduetor 7, (2r, if p = 2).
Let ¢’ = [] v, Then p = ¢'g;, and by, = (B, (i.e., the character twist

glr
a#p

‘of b, by g,). By Theorem 2.5 h, is & cuspidal newlorm in y(-.i.@-/rp)z,_

3 /2,(i)gu’) and hence h, is mot primitive. Next suppose that each
*

P, is odd, but some y, (p =2) does not have prime conductor (i.e., p2|#y)-

Then we may Write @, = &,¢5, Wwhere ¢, is an odd character mod p agd

@, is primitive mod r,,. Letting ¢’ = &, [1v, we see that A, = (B} ".
o qir '

[eatd]
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By Theorem 2.5, 5, i3 & cuspidal newform of level 4(rp/r,)* < 4% so
h, is not primitive. Finally if each v, is 0dd and g, had conductor divisible

-1y e
by 8, then p, = (T) ¢, where @, i3 primitive mod 2r,. The rest of the

proof is analogous to the previous case.

(ify We prove this direction by contradiction. Suppose each v, is
odd and of conductor p (4 if p = 2), and suppose that A, is not primit?ve,
that is b, = F* for some cuspidal newform ¥ e (¥, 3/2, 1) with N < 442
and some Diriehlet eharacter ¢. Let s be the condnetor of ¢ and decompose

@ info pth eomponents: ¢ = [] ¢,. Since %, has character (i)ga and
nls . *

-1
JF? has character Ap® we have (~*— 1 = Ag? Now F is a cuspidal newform

in &(N,3/2, 2} and by Theorem 2.5, F¥ =5, is a cuspida-l' newform in
F{dr?, 3/2, Ap*). Let i be the conduetor of p® and £, the conductor of Yo
We consider two cases. If r|¢ then F* = hf = h,;» is (by Theorem 2.5)
a cuspidal newform in (44, 3/2, 2) and if we set F(2) = 3 a(n)e(ne)

then "

(Fuﬁ’ﬁ)(z) = D' a(n)e(nz) e (447, 3/2, 7).

{n,8)>1

By Theorem 1 of [9], F'—F* is an element of the space generated by the
couspidal oldforms of level 4i2(s°'%(4¢%, 3/2, 2)). Since N < 42 < 42,
e (41, 3/2, A)and so F* e (442, 3/2, 1), But I — ey is a cuspidal
newform in % (41%, 3/2, ). This provides the desired contrz:;iietion in the
case #{t. If »{'t then thers exists a prime p|r with ty, < 1y(%, |7,). Since
7 13 square-free (except possibly r, = 4) we must have for this p, -yf 7, = 1.
This is clearly impossible since each v, is odd. Thus % 11;1111;t be
primitive. Y

We remarlk that character twists can be used to prove that the exact
level of b, is 47% {in most cases). We start from the asgnmption that the
exact level of b, iy & square dividing 4+* (see Lerima 13 of [9] for moti-
vation). As no new resulls are obtained, the arguments will only be
gketehed.

ProrositioN 3.2. If v is square-free then the exact level of h, is 4r2,

Proof. Without loss of generality, we need only consider the cage
where 247, If 47* i5 not the exact level of &, then by agsumption the exaot
level must divide 4¢2/g? for some prime ¢ |2r. Bu in this cage the character

—11\. .
of h,, (T) v, has conductor 47 and so is not definable mod 4r2/¢® (i.e.,
4rf4r2fg®) so the exact level must be 4s2,
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For an arbitrary character y, we decompose it into pth componemnts
a8 beforg: v = [[y,, where each y, has conductor r,. For simplicity

»r

wwa shall consider only the case where 247,

Each v, can be further decomposed as y, =«

o0y Where

1 i
gy = {%¥n if

¥, iz even,
7, =p and w, is odd,

any odd character modp i p2lr, and yp, 18 odd
and

_ 1 # r,=pand yp, is odd, _
&g |a primitive character modr, if 2?7, or g, is even.
If we put ¢ = [] &, and ¢ == [] p, and let », be the conductor of ¢, then
Blr pir
by Proposition 3.2 the exact level of J, is 4r; and Theorem 2.3 yields
that I, is 2 cuspidal newform of that level
WWe now make one final restriction: if ¢, i3 even we require p*|r,.
Then using induction on the primes dividing » one verifies using either
Theorem 6.6 or 6.10 of [10] that ? = hs.:F has exact level 4i* where
n

{ is the conductor of s}, and hence is a cuspidal newform of that level.
One continues twisting by each g, in succession to obtain

THEOREM 3.3. Assume 24+ and either v, 18 odd or p*|r, for each prime
pir. Then h, has exact level 4r* and hence is @ cuspidal newform of that level.
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Oscillatory properties of M(x) = > u(n), III

g

by'

J. Pixtz (Budapest)

1. In part I [6] of this series we proved that i (o) = £{Bo+iye) = 0,
then for ¥ > eol**

hg .7
(@.3) mix M@z [ el
Fi(100log Fi<a<T Fl0leg T} lga! _

Thls implies by easy calculation thatfor ¥ > 2
VY
17000

{1.2) max

Fi{100log ¥)=tec ¥

|3 ()] > = |31 () dee >
FI{100108 Y}

In part IT [7] we showed that 1 (z) changes sign in every interval of the

form

(1.3)

[Yexp(—3logiT), Y]

for ¥ > ¢;, wherelog, ¥ denotes the v times iterated logarithmie function,
and ¢,,0,,... denote explicitly caleulable positive absolute constants.
Concerning these problems, it is natural to ask how large are the oscillations
of M(z) in positive and negative directions and what kind of estimates
can be proved for maxM(z) and min¥ (x).’ :

2<¥ TE .

The first results in this field are due to S. Knapowski. By the appl-

cation of Turdnm’s method he proved in [4] that the Riemann hypotheﬂs
implies for ¥ > ¢, the inequality :

CmaxM(z)> max I(x)>VYexp (—— 5

¥ A(F)=z<T

Y
{1.4) 5 log, Y)
and the corresponding mequahty for min M (z), Where

E20 ol

. logY
(1.5) A(Y) = Tesp (»caTOgg-?l.o_gQ,Y) .



