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1. Introdnction. Given any “2-coloring” f: N—{-+1, —1} of the
natural numbers, and given any finite subset. 4 = N, let

Discr{Ad)} = Diser({4,f] = ! 2]"(50)1
. wed
denote the discrepamcy (or irregularily) of f relative to A. :
~ In 1964 K. F. Roth [2] proved a remavkable result ‘on irregularities
of digtribmtion of integer sequences relative to arithmetic progressions.
His general result immediately implies the following
TEEOREM A (K. F. Roth). Given any 2-coloring f: N--{-+-1, —1}
of the natural numbers, and given any positive integer k, there is a (finite)
arithmetic progression P = {a, a-+d,a+2d, a+3d,...} of difference d >k
such that
Diser(P, ) > ¢ -¥d.
Throughout this paper ¢, ¢., 3, ... denote positive absolute constants.

Our main object in this paper is to prove a partial comverse to The-
orem A.

, THEOREM 1.1. Let ¢> 0 be an arbitrary small but fived real. Then
given any sufficiently large natural nwmber n > my(s) fhere is a 2-coloring
I N—={=+1, —1} such that for any arithmetic progression P = {a, a4,
a-+2d, a-+3d, ...} of difference n® < d<<n and of arbirary length,

- Diser (P, f*) < a'**e,

- Actually, we prove the following somewhat stronger result.
TEEoREM 1.2, Let o be a positive integer. Then there exists a 2-coloring

Cffe N=-{+1, =1} such that for any arithmeiic progression P = {a,a+4d,

at2d,at3d,...} of difference 1 < d<<n and of arbitrary length,
() Diser (P, f*) < e, V- (logn)>.
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Unfortunately, we cannot prove that Theorem 1.2 is valid with the

5

RHS of (1) replaced by @'°*% As an upper bound depending only on the
difference of the progression it is known the much weaker estimate @2+=10s7,
That is, there is a 2-coloring y*: N—{+1, —1} such that
T

{2) max | ¥ ¢*(a-+id) [ < {tosd

: am %o
gimultaneonsly for all 4 > d,{e) (see {1]).

In connection with this rvesult the fivst author had the following

CoxJECTURE B. There exisls a uwniversal function h(d) such that for
any real 0< a<1/2 there i wn “(a, a —1)-coloring” ga: N={a, a—1}
satisfying ' i

ki

max ng:(u—}—fid)‘ < h{d)

R )

stmultaneonsly for all 1< d < co.
Observe that the particular case o = 1/2 iz settled by (2). Tn this
paper we prove Conjecture B.

THEOREM 1,3, Conjecture B is true with
R(d) = dPHNEe  gop @ dy(e).

An equivalent reformulation of Theoren 1.3 is as follows. Given an
arbitrary real a, 0 < a < 1/2, there exists an infinite sequence o = & {a)
© < N of density o such that it is nearly well-distributed relative to the
congruence classes in the following quantitative semse

x| 3 a-w 3 1<
1.k wedlask azsks
a=j (mod @} a=j (mod d)

for all dy(e) < d < oo

The analogous generalization of Theorem 1.1 remains open. We cannot
prove that for any o, 0 < a<{1/2 there exists an (e, a —1)-coloring f¥:
N—+{a, a—1} such that

n
max| Y *(a--id) i < d for Al <A< m.

#,8 ' jZg

2. Proof of Theorem 1.2. The proof is based on the following lemma.

Leanra 200 Let oy = {4, Apy ooy Ay}, L<i<r be v partitions
”

of the set X = {Py, Gy, Doy Gas voey Py &5 Lot 21 == 1. Then there is o
2-coloring f: ¥—~>{+1, —1)} such that f=1

fod+ig) =0, 1<i<t,
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and for each A

Diser (Ay, f) < e Vi+(Viogr-logi-logt).

Lemma 2.1 = Theorem 1.2, Let 27 <n < 2% Let X = Z_, ie.
A is the set of congruence classes (mod 2°), Let p; =4 (mod 2% and g, = ¢+
427 (mod 2°%), 1 <i<2%. We will associate with every l<<d<n
some partitions of X, Let d = 2% ¢dd, and eonsider the following rectangu-
lar array of the congruence classes {mod 2°):

d 24 3d 28k g
d+1 2d+1 3d-+1 25k gy
A, = d-+2 2d+ 2 3d+2 v 2 hgae

d+2°7—1 24+2F -1 3q@497F—1 ... 2 F.gr sk

Lot B9 = {first row of M,, second row of M, ..., last Tow of A
For each 1 < ¢<Cs—k we partition the rows of M, (ie. the elements of
#P) into 2° equal pieces, and we obtain the further partitions &, 1<
<s—F of X,

Finally, let

oy =80, A, =30, .., Ay, =B,
Ay = B, Ay =B, ., Ay, =B,
g = gga), Aysiy = le), ceny Hygis = -@gs)a
Hygys = B, _
By Lemma 2.1 there is a 2-coloring f: Z ,—+{-+1, —1} such that

(3) Fly+257Y = —fly)
and .
(4) Diser(By ;, f} < &,V (logn)**

for all By, e 49, 1<d<n, 0<j<s—k (where 4 = 2*-0dd).
Now we are ready to define the desired 2-coloring f*: N—{+1, —1}:

if & =y (mod 2%), 0 <y < 2%, then let *(x) = f(y), z.€ N.

By (3), :
fro+2h) = (),
thus we have

s-k -

T fflaid) =0,

i=1

2
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From this it follows that we can restrict oulselves to the “short” arith-
metie progressions ‘

{0, 05, 042, eyt no1)d}, m< 2,

Let o = j, (mod 25~ "), 0 < jp < 2575, Observe that .P(mod 2°) is.a sub-
interval (or the nnion of two disjoint subintervals) of the jyth oW of M,.
Therafore, P (mod 2°) is representa.ble ag the union of not more than
¢;-logn disjoint elements of U %%, Thus, by (4)

=0

m~1

'Z f*(a-}—fid)|< ey Vi (logn)S (¢, logn),
f==0 i )

completing the deduction of Theorem 1.2 from Lemma 2.1. & - .

Let Ly, g, oooq @) = Gty -+ Gplle+ .o -y be - linear form with
all a;, {41, 0, 1} We call

| i:ﬁ(ml,,..,mi)={1<igt: a; 7 0}

the ‘suppost of the linear form L.

We redunce Lemma 2.1 to the following lemma on linear forms:

Lmyowa 2.2 Tet Lyy(may .0 2) = afo+ .o Fafley, 1<i<rn, 1<
< 1y, be linear forms wath i?w properties

(w) aff e {+1,0, —1} for all 4, j ond u;

(B) Lyy ond LM are dwgomt if § %= k.

Then there exist ey, 80y «..y g € {1, —1} such ﬂmt

(5)_ . qu',j(EU

for al 1<<ir, 1 <<, uhe;eZ—ZZ

s el < 03-1/4,- (Vlogr -_logl-logt)

Lemma 2.2 = Lemma 2.1. Let us associate with every ;e &

the linear form I ;(z,, .. ,rt) = Eaf”lmu, where

0 i {pnade :1m
aff) ={+1 i pyedy, g.¢ Ay,
-1 py¢dy, g6 4y
By Lemma 2.2 there exist sy, . = 1 such that (5) is true. Set f(p,)

=g, and f(g,) = —sg,, for all 1 < o < 1 Observe that f is:the desired
2- eolormg of X, since

DlS(:i‘(.A}j', F = Ly;(ey iy ). W

icn
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" Proofof Lemma 2.2. The proof will consist of a repeated appheatwn
of the following

Imywa 2.3, Under the by Jpoﬂzeszs of Lemma 2.2 there emist &y, 9, ...
o G e{+1,0, ~1} such that
(6) 1Ly (ry ey
and :
(7 Hr<it: o, =0} < 3t

We ean easily prove Lemma 2.2 from Lemma 2.3 Indeed, by Lemma,
2.3 there exists a function g¢,: {1,_4,.. ;13—+{+1,0, —1} such that

L9 (1): 02(2) -, 2 ()} < 5V -(Viogr-logl)
and the sebt ¥; = {1<i<t: gy(¢) = 0} has cardinality at most 27,

10

Let L) be the “restrietion”. of the linear form I, ; to ¥, that is, let

&)1 <(‘5-1'i-(1/10grjlogl) for all 1gi< r, 1<i<l,,

I = Ea‘g’mk,
kel
Applying Lemma 2.3 to the linear forms I} we obtain the existence of
a function g.: ¥ —>{ -+1,0, —1} such that :

D aBg, (k)| )| < & Vi (Viogr-logl),

AEY

and the set ¥, = {ke¥;: g,(k) =0} has cd1d1nahty ab most 71 ¥4}
< (%)*1, and so on. The pmeedme clearly stops within glogt steps Set
f 2 0;5 and define &; = f{i) for all 1 < i <. From the procedure above

izl

it follows that _
g (815 -evy &)1 < (£6-l0gt)-¢5- Vi -logr -logl,

which completes the deduction of Lemma 2.2 from Lemma 2.3, =
Finally, we prove Lemma 2.3. Let B denote the set of 2! +1-vectors

€ = (&1, 895...,8), 5 = 1, Using the well-known asymptotic propertles
of binomial eoeffmlents we get for every L

[ e B 1L,00) > 202V Ty} =2t taat. X (’L;;f‘)g gt g ¥,

Vo= Ly 31212V o
Thus, for a large enough constant ¢ the cardinality of ‘ﬁhe set

i,j(ﬁ)l < o-VIE; o] -logl for all 1< i<

(8) El_{aeE.
' and 1<3 t}

is greater than 2%,
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Define an equivalencé clags on B, placing E: and é: in the same clagg
if for each pair ({, ), L<e<r, 1<igl;

(9) g (21 — Ly ; (22} | < 26, Vi -logr logl.

By (8) and (9), the number of equivalence classes is legs than
L

(10) ' W:.ﬁg @—'%Jgf';-

i=1 f==

We need the elementary inequality: for arbitrary positive reals by, byy ...
b .
viny

n}

(11) H b, < exp {2 b; /e}

=1

where e = 2.718 ...
4
Since 3 |L; ;| < ¢, by (10) and (11) we get
=1

3
2e < 6l < g

Il
—

f
W < exp 1 r log')

2

Thus there is one equivalence clags, call it Hy, with

3

T
By > By -2 ol

Fiz sn € #;. The number of ¢ € B which dlsagree with ao in at most
t/10 pla.ees iz

if10

2( ) <2 (t‘,m) < 21_7°H.

i=0

Thus there exists z, & B, which disagrees with z, in at least ¢ /10 places. Set
& = (g —5)/2,
and Lemma 2.3 follows. m

3. Proof of Theorem 1.3. 4ctua;11y, we prove the foIlowmg general-
ization of Theorem 1.3.

TerorEM 81. Let I, i(B1y Bagooiny B,) = @@y FapB, - ... +a,x,,
L<i<n, be n lnear forms with all a;€40,1}. Let pl, cery PR e[0,1]. Then
ihew 6Xi8t &1y ...y 8, € {0, 1} such that

max} 2 a; (s —pj)| < AUPENBL g all py () < i< m
1<ksin |1 52 .

 where the threshold 1y (8} 48 independent of n and depends only Y on the positive
{arbitrarily small) comstant 6.
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Theorem 3.1 =Theorem 1.3. Let p; = p, = ... =p, =g and
consider the linear forms I; = ag#, + ... + ez, with the following
coefficients

1 # j=1I(modd),

a(g) +hi [0 otherwise,

where d =1,2,...,1<igdand j =1,2,..
By Theorem 3.1 there exist &, ..., ¢, € {0, 1} such that the sequence
(e, n) = {1 <i<n: g = -1} satisfies the property

(12) max | 3 1—a 3 1< gerdiess
Ik, l fes/(a,n); ?'2—?::
ik, i=I(mod d) i={{mod d)

forallng(8) < d< Va (Liere 1, () is independent of n).Now (12) imlﬁedia\-tely

yields Theorem 1.3 by a sivople compactness argument &8s n—-+co. =
We recall the main result of [17.
THEOREM 3.2. Let L,(r.,...,3,) = A By Qg By oo gy, 1K1
< my be n linear forms in n variables with all coefficients ay € {0, 1}. Then
there are ey ..., &, = +1 g0 that

max ! S’aua i< JEFNEE  fop all my(8) < i< m.
1<L<n i=1 .

Theorem 3.2 = Theorem 3.1. Set
(3 &)logi
B; =3i for 4> ny(d),
€ for i< n(d)

for convepience, Assume p,, ..., p, have finite binary expansions with
maximal length 7. Seb

J = {j: p; hag Tth digit 1}.
By Theorem 3.2 there exist ¢; = -1, j €.JJ 50 that

max E 8 | < By
1<k<n jedig<k

Set _
pj.+2-1’ it g =41,
p; =1p; —2-T if g = —1,
P H jéd.
Then
masx |2 %( pJ 1—2 T, max ”’I 2 B,,

l<kan ' jeigar 1<ksn jedij<k
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and p, ..
this procedure (T --1) more fimes we replice py,
£ 40,1} such that

veey By, With g4, ..., 8,

[.\*ja

2—7"'35 {; B’f' '

max Z 04385~ ;) [ <

1h=n i<k -

e

Finally, if py, ..., P, €[0,1] ave arbitrary the existence of o, .
follows by a simple compactness argument. m

Vi By
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On the genﬁs-group of algebraic number fields
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Introduction. Let K Dbe a finite extension of the field @ of rational
numbers. Call ¢(K) the ideal class group of A° in fthe narrow sense. Call
K the genus field of K, i.e., the maximal abelian extension of K which
is composed of K and of an abelian extension of @ and is unramitied ab

 all the finite primes of K (ef. [1]). Call G(K) the subgroup of C(H) cor-

responding to the genus field I in the sense of class field theory; G(X) is
called the prineipal genus of K, and the factor group ¢ (K}/G(K) i3 called
the genus group of K. Call 4 the canonical homomorphism of C'(K) onto
C{E) jG(H). Our aim of the paper is to study the image n(c) for an element
¢ of C(K). Particularly it will be shown that if A /@ is of odd prime degree
and an irreducible polynomial over Q defining K is given, then the image
w{H), where H is the subgroup of C{K), generated by the'classes of all
the prime ideals of K ramifying fully over @, can be known by an el-
cmentary and purely rational procedurs. As its immediate conseguence,
a generalization of Theorem 3 in [2] is obtained; this theorem states that
if a purely rational condition sbout the rational primes ramified fully

in K is satisfied, then the class number of the pure field K = Q(]/m)
of odd prime degree I is divisible by % @92, where i (resp. u) is the
number of rational primes {resp. those =1 (mod 1)) ramified in K.

We conclude this introduction with a remark about -conventions,
By a prime ideal, we will understand & finite prime ideal. Algo Z will
ba the ring of rational integers.

1. Tmage u(c). Let notations be the same as in the introduction.
Call & the maximal abelian extension of Q, contained in the genus field
K of K; then, by definition, K iz the compositum of k¥ and K, and sc the
restriction map: G{E/E)->G(k/Q) is injective, where G(L/H) is the
Galois group of a Galois extension I/M. By means of the Artin map,
the genus group € (I)/G (X} is isomorphic to G(K {K). So it we call » the
homemorphism of C(K) to G{k/Q)} obtained by composmg these two
maps with g; the study of the image u(¢) in question i3 reduced to thab



