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and p, ..
this procedure (T --1) more fimes we replice py,
£ 40,1} such that

veey By, With g4, ..., 8,
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Finally, if py, ..., P, €[0,1] ave arbitrary the existence of o, .
follows by a simple compactness argument. m
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On the genﬁs-group of algebraic number fields
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Introduction. Let K Dbe a finite extension of the field @ of rational
numbers. Call ¢(K) the ideal class group of A° in fthe narrow sense. Call
K the genus field of K, i.e., the maximal abelian extension of K which
is composed of K and of an abelian extension of @ and is unramitied ab

 all the finite primes of K (ef. [1]). Call G(K) the subgroup of C(H) cor-

responding to the genus field I in the sense of class field theory; G(X) is
called the prineipal genus of K, and the factor group ¢ (K}/G(K) i3 called
the genus group of K. Call 4 the canonical homomorphism of C'(K) onto
C{E) jG(H). Our aim of the paper is to study the image n(c) for an element
¢ of C(K). Particularly it will be shown that if A /@ is of odd prime degree
and an irreducible polynomial over Q defining K is given, then the image
w{H), where H is the subgroup of C{K), generated by the'classes of all
the prime ideals of K ramifying fully over @, can be known by an el-
cmentary and purely rational procedurs. As its immediate conseguence,
a generalization of Theorem 3 in [2] is obtained; this theorem states that
if a purely rational condition sbout the rational primes ramified fully

in K is satisfied, then the class number of the pure field K = Q(]/m)
of odd prime degree I is divisible by % @92, where i (resp. u) is the
number of rational primes {resp. those =1 (mod 1)) ramified in K.

We conclude this introduction with a remark about -conventions,
By a prime ideal, we will understand & finite prime ideal. Algo Z will
ba the ring of rational integers.

1. Tmage u(c). Let notations be the same as in the introduction.
Call & the maximal abelian extension of Q, contained in the genus field
K of K; then, by definition, K iz the compositum of k¥ and K, and sc the
restriction map: G{E/E)->G(k/Q) is injective, where G(L/H) is the
Galois group of a Galois extension I/M. By means of the Artin map,
the genus group € (I)/G (X} is isomorphic to G(K {K). So it we call » the
homemorphism of C(K) to G{k/Q)} obtained by composmg these two
maps with g; the study of the image u(¢) in question i3 reduced to thab
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of the image »(¢) in G{k/Q). We will use the following basic facts about
the abelian field k, which may be found in [4]. For a rational prime p,
call e(p) the greatest common divisor of the ramification indices of all
the prime divisors of p in K, and call Q%™ the field obtained by adjoining
to @ all the pith roots of unity, ¢ 1. Call U (resp. V) the sef of those
p which are ramified in K and satisfy e{p) = 0 (modp) and d4(p)
= gcd(e(p),p Al) =1 (resp. e(p) = 0 (mod p)); then each p € ¥ divides
the degree of K [0, since go dees e{p). For each p € U, define

k(p) = Q"™

by [4], Theorem 3, this equals the unique cyclic extension of @, of degree
‘d{p), contained in the pth cyclotomic field Q(Z,), where £, is a primitive
pth root of umity, Oall &(V) the intersection of k and of the compositum
of all the Q7 with p & V. [4], Theorem 3 says also that % i the compo-
gitum of (V) and of the compositum of all the k(p) with » e U:

k=%(V)- [ [ ®0);

ye(_

vin [[*ip) =

peld

" it iy clear that

Call W the set of rational primes » ramified in %({V), which is the same
as the set of those p € V ramified in %, and call %(W) the intersection
of % and of the compositum of all the Q%) with p € W ; then k(W) = (V).
From the above it follows that G{k/Q) is ca,nomeally ]SOIIIOI'phIc to the
direet product

¢(w) Q) x []elkr)0);

pell

so that the image »(¢) may be considered in this group. As was mentioned
above, for each p & U, k(p) was given explicitly, while, on the other hand,
it would be usually difficult to determine (W) exactly. Some of the cascs
where k(W) is known are found in [1], {4}-[6]. For our purpose, from
now on, we will assume k(W) has been known. Now, for the ¢ given, let
be an ideal of K contained in ¢. For each 4 £ U, choose an element a, # 0
of K so that the class of («,) in G(K) is trivial and Na¥(a,) is prime to B,
where X is the norm map from K to Q; choose an element ap == 0 of K so
that the class of (ap) in C(K) is trivial and Na¥ (ap) is prime to all primes
in W. Then, in view of the delinition of v, it follows from the translation
theorem in class field theory that

[ EOT) k)
@ 0= (o) ﬂ (N_fmr(a_))
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where (L) is the Artin symbol in an abelian extension Af f@. We will call

(J(W) ) and (———(@—-—) the W-component’ d t
T (an)] | Fa(a) P . and  p-componen
of »(¢) respectively. So to know »(¢), it suffices to find these norms ¥a¥N (ay)
and Na¥N (a;), p € U. Of course, we may put all these ¢ = 1 if ¥q itzelf is
prime to all primes in UUW.

2. 0dd prime degree case. Let all notations be ag above. In #his
section we will assume that X/Q is of odd prime degree I, and alzo that an
irreducible polynomial f{X) over Q defining J{ has been given. In this
case, by definition, U consists of all the rational primes =1 (modl)
ramified folly in &, and each %(p) is the unique eyclic extension of Q,
of degree !, contained in the pth eyclotomije field. Also k(W) is either
Q or the unique cyclic extension of @, of degree I, contained in the Ith
cyclotomie field according as W = @ (empty) or W = {I} (cf. [4], p. 36}
In [5], Tshida bas found an eclementary and purely rational procedure
to obtain from the given -polynomial f(X) “nice polynomials” +which
enable one to know immediately whether a given rational prime is rami-
fied fully in K or not and whether T = {I} or not. The nice polynomial
with respect to a rational prime ¢ ramified fully in X is of the following
form:

i
Xy = D) dy X

with coefficients d;; €Z, dyg =1, d;, =0(mod g), 1<ig], and 4;,
% 0 (mod ¢*); furthermore, W = {I} if and only if the coefficients d;
of fi(X) satisfy the congruence

(Z]’z+d1,z = dg'z =... = dl—l,l = (modlg) .

Now we will fix a rational prime g in TUW, Call g the prime ideal
of K lying above g, and ¢(g) its class in C(K). We want to caleulate the
image v(a(q)) by using the nice polynomial f,(X). Call = a root of this
polynomial; then NqN (z~1) = ¢/|d; | is prime to ¢. With the notation of
formmla (1) in Section 1, let a, =1 if p 5 ¢, and a, = 271 if p = g4; let
ap =1ifgé Wyand ap == 1ﬁqu orequwalently,W 7+ @andg =l
Then the p-component of w( (q)) is equal to

Fo) o Gl

aceording ag p w g or p ==¢. Also its W-component i equal to -

(k(W)) o (]c(W))
g ;]
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according as g ¢ W or ge W, Forp e U eall X7, the multiplicative group
of units in the factor ring ZjpZ, and fix a crenemtm z, for X,. Foreach
@ e Q, prime to p, define an element £, (a a) of the finite field ¥, of 1 el

ements by .
6":’(ywl}; = (J‘Ef’—””) (e , (mod p);

then it is easily seen that the 111apping
| E(p
(225,00

is an isomorphism of G{k(p) ,’Q)' onto Fy, which we Will.call e Call (D)
+the unique cyclic extension of @, of degree I, contained in the [2th cyc}o-
tomic ficld, and X; the multiplicative group of units in fhe factor ring
Z[*Z. Fixing a generator x; for X, e clefine, for each a € @, prime
to 1, an element Ez(a) of F; by

ﬁ.l = ( A= I)EZ(“) (n'l()d P‘)

f,hen the mapping
Rl
() =
a

alsoisan isomoriahism of @ (k(l)/Q) onto Fy, which we will call ¢;. Therefore

= i[X l i ,'13
nelr

is an isomorphism of & (k(1)/Q) x H G (k(p)/Q) into F{**V, where u is the
PE
nummber of elements-of TU. As we have already known. the image »{o(q))

with q lying above ¢ € UUW, the image LOv(G(q)) in F{***) can be immedi-
ately ealenlated.

Now, this time g will be. assumed to be a rational prlme, not in TV,
ramified fully in K. Call q the prime ideal of K lying above ¢ and c(q)
its clags in C'(K). Then the p-component and W—cqmponent. of 1'( (q))

-are respectively o . o
5 o O R(W

(k(p)) and ( ( )),

50 that wov(e(q)) also can be caleulated. Oalling H the subgroup of ¢(K),

generated by the clagses ¢{q) of all the prime ideals q ramifying fully over

Q, we have obfained the following _
THROREM. Lef nolations and assumplions be as above. Then both images
»(H) and ov(H) can be caleulaied in the way given above.
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Cororrary. Call ¢ the number of rational primes ramified fully in K,
m?l; the number of infinite primes of K, and It 5 — max {0, ¢ —r} or
max{o,t—'—l—a} according to whether or ot K 4s a pure field, i.s.,

H = Qv 'in) with m e 0. Call 5 the number of elemem‘s of TUW, and let
&' =s-—1 or 8’ =& according lo whether or not K }Q is eyclie. Furthermore
vall d the dimension of the image P:'(H) as a vector space over Fy. Then the
class number of I is divisible by 1 P4, and the dimension @ can bs calewlated
i the way given above.

Proof. For a finite gronp 4, let 4| denote its order. By definition,

H is elementary abelian; it is shown in [4], Chapter 2, and [T], that {H!
is a muliiple of I°. From an exact sequence

1+ HNGE)—+H > p(H) -1

and from the fact that u(H) is isemorphie to »(H) hence to- wy(H}, it
follows that (H NG (H)| = [H|l"%; thisisa multlple of =% Algo |C{K) ¢ (K))
= G(k{knK)|, whieh is known to be I (cf. [4], Theorem 5). Therefore
|C(E), = |C(K)JG(K) G (K) is a multiple of 1¥+*=%, which was to be shown.
To illustrate this corollary we will consider a pure field K of odd prime
degree I; in this case it is known that W is empty (ef. [1]and [4]). In what
follows we will fix an Ith power free natural number m for which K

= V’m Call T the =et of mtzonal primes ramified fully in & ; this
eonsists of all the prime factors of m or of those and I according to whether
or not m'~! =1 (mod1?), so that U consists of all the prime factors
=1(mod 1) of m. For qeT, call as hefore q the prime ideal of K lying
above ¢ and o(q) its elass in ((K)., For each ¢ e T but ¢ U and for each
pel, yovielq), by definition, it given by

5 o gPm I = (gY@ (mod ),

o, being, as hefore, the fized generator for X For ge U, eall a{g) the
exponent of the g-part of m; ie., a(g) iz meh that m =0 (mod ¢*) Lut
m # 0 (mod ¢}, Since m is as:;umecl to be Ith power free, each a(gy
is prime to ! (in fach, 1< a{g)<I1—1). So choosing ¢(g) >0, R{g) in
Z 50 that a{g)g(g) —l}’a,(g) = 1, ‘we have the nice polynomial With respech
to ¢ -

F XY = X — @) gl

so that dy, = —m?@(¢™® and g/id,,} = ¢+ @, Therefore ¢0v(s(q))-
is given by ‘

(glfm(a)/mﬂ@)(a—l)/l - (mgrwl};'l);q-v(c(q))- (mod ¢).
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Also, for p e U with p # g, 1,0v(c(q)) is given by
q(p—l)ﬂ — (wfup_'l)f’l):pw{c(q)) (modp).

For o finite set & of ideals of K whose classes in €(K) generate H, we let
HF) = (or(e(@)), pelU,aes,

be 2 wx f matrix with components ¢,o (c(q)) in ¥y, where ¢(a) i3 the class
of g in G{X), and u (resp. f) is the number of elements of U (resp. F).
Olearly the rank of .4 (F) is the dimension & of the space eov(H), From
what we have obtained above, .#(F,) in which

Fo={5; ¢ = (¢) with ge T}

can be calculated at onee; note that this involves the integers g(¢) and
k{g). But, as will be shown below, % (%) in which

Fy = {q; o =(g) with geT but ¢ Tyu{g™®; o' = (g) with ge U}
involves them no longer, and further is of simpler form. For g € U, we have
N (q“’@(lz/ﬁ )} = ¢~*@mj; this is prime b0 g3 50 that r07 (e (g™ satisfies
@) e Om)o I = (o) (mod g).

Also, for each p € Uwithp # ¢, 5,0¥{c{q™?))} is the same as 1,02 (c(q""*?)),
and so satisfies

(4) (gl—a(Q))(pml)ﬁ = (wgup~i)ﬁ)'pw(ﬂ(r“fq))) (mod p).

Now, with the notation of our corollary 2 = max{0,?—(1-1)/2},
and § = u, which is the number of prime factors = 1 (modl) of m;
g0 that the corollary then says that the class number of the pure

field K = Q(ll/ﬁ) ig divisible by 1***~¢, where d i§ the rank of the_matrix
A (F ) with components given explicitly by equations (2)—(4). Partmula.?ly
it is clear that d = 0 if and only if for each g € T and for each p € U with
p # ¢, ¢ is Ith power residue modulo p; this gives an alternative proof of

Theorem 3 in [2] (see also Theorem 3.6 in [8]). ‘ -
We conclude this gection with a remark about the dimension d of the

Frspace toy(H) in the pure field case. As is easily seen from [8],§2,d
equals the rank of the % x 1 matrix

(Blp, ), peU,qeT
with components §(p, ) in F; defined by

[J—
glﬂ(p,q) o (]/m)(q,LiF)p—I.
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Here {; is a primitive Ith root of unity; F = Q(§), the Ith cyclotomic

L
field; L = F(¥m), a Kummer oxtension of F, of degree 1; p is a prime
ideal of F lying above p; (, L /), i3 the norm residue symbol for L/F
at p. With the notation of [3], Teil IT, § 13, we have

Zf{p:rﬂ — ( 4, m);
p

the symbol (=) is called the ith Hilbert (norm residue} symbol. By virtue
of hagic properties of thig symbol, one can easily see that for every pe U,
there is an clement y, £ 0 of F, such that g(p, ¢) = ¥:0 pov(e(q)) for all
g el (cf. [8],§3).

3. Pure field of prime power degree. Let notations be the same

m__

as in Seetion 1. In this section K will be a pure field Q(Vm) of degree I,
where 7 is & prime number, % is a natural number, and m is an I*th power
free rational integer. Call P the set of rational prime factors of m and
T the set of rational primes ramified in X; then T is either P or Po{lh
For ¢ e P, call a(g) the exponent of the g-part of m and call b{q) the ex-
ponent of the g-part of a(g). Then it is easy to see that if g+ 1, e(¢) defined
In Section 1 is I"~%@ (cf. [6], p. 219). By definition, U consists of all the
primes =1 (modl) in P, and W is either empty or {I}; the latter cage
ocenrs only when I e 7. As to the field k(W), its complete determination
has been done in [6] under the condition that every b(g), geP, is 0 or -
L ¢ P; this says that particularly if 7 2 2, k(W) = Q. But, most of other
cases are still open. Tor each ¢ ¢ T, by the definition of e(g), (g)@ may be
viewed as an ideal of I, so we will call ¢, its class in ¢(K). The image
7(0g) in G (k/Q) is what we will find under the previous’ assumption that
E(W) has been known. For each g<P and for each 9 € U with p =% ¢,
the p-component and W-component of »(6,) are respectively

k (W
( I,E?)) and (“G‘,'Sq—)):
q lefn) q e(a)

if, in addition, q =1, these become respectively

since e(g) = I"~*®. For g ¢ U, putj(g) = a(g) /PQ@; thenj(g)/e(q) = a(g)/I",
80 that we have in K:

Vim) = [[ @] [ g,

Clag acl
qel
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which implies that _ ,
_}T(q)i('l)fﬂ(q] — gﬂ(Q)

om
mw—l/m) 1, we have

AT(Q)J(Q)HB(Q)AT(GQ): . ga(rﬂ/(mm_m);

So pufting a, =

this is congruent to — ¢"@/m modulo the conductor ¢ of the abelian field
k(q) since m = 0 (mod g), and the class of (a,) in O(K) is trivial; so that
our formula (1) in Section 1 then says that the g-component of »(c/?)

is equal to o
k(g
— g @D, |

From thls, the g- component of v( ¢,) can be found, since, by cleflm‘rmn,
k(g)/Q is of ith power deglee and j(g) is prime to 1. I]l the case wherel = P
and a(l } i prime to I (i.e., () =0), 1 is ramified fully in K, and so (] }

‘ . e
=17 (ef. [4], Chapter 7). Put oy = 971,9——?/171 =1, where oEZ iz chosen
so that @2 is a multiple of the conductor of the abelian field E{W); then,
by formula, (1), the W—component of »{c#") is equal to

k(W)
R TP
and so this alse gives that of »(e). The case where I e P and b(l) == 0,
however, would be difficult to deal with, and so we will leave it. It now

remains to consider the case where I e T but &P, It is easy to see that the
p-component of »(¢), for cach pe U, is

E(p) Y.
e ?

rat it is necessary to know e(l). Now it is shown, in [6], p. 220, that (P}

icm

=0 if "5 2, and that k(W) is the ith cyclotomie field if I = 2, where -

¢ is the minimum of 2" and the 2-part of m-11. Since we are now
interested only in the W—conlponent we may assume that I = 2 and ¢ = 4.

Pub then o = m—}/m —1; the class of (o) in. C(X) is trivial, and ¥ (ay)
= (m*" —m)~!, where "-part is 21 since m = -1 (mod 4); oy satisties
an Hisenstein polynomial with respect to 2, so that 2 is ramified fully in X,
and ¢(2) = 2" (cf. [4], Chapter 2). Therefors, by formula (1), the W-com-

ponent of »(¢) is equal to

L)

: 2!’(792.2”— m)

[6] — Own the genus fields of pure wmumber fields,
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An elementary calculation then shows fthat this component iz either
trivial or the generator of the Galois group of k() over the (¢/2)th cyclo~
tomie field according to whether or not m = —1 (mod 2**3),
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