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Power mean-values for Dirichlet’s polynomials
and the Riemann zeta-function, II

by

J.-M. DEsHOUILLERS (Talence) and H. IwANIEC (Warszawa)

1. Introduction. Statement of the results. Tn this paper we describe
another version of an argument introduced in [4] and substantially refined
in the authors paper [2] to estimate the integrals

Ly
S(T, M) = [ |L(34140) 31 (it)[2ds

where £ (s} is the Riemann zeta-function and A (s) is a Dirichlet polynemial
of length M, ie.

M(s) = Z T

maM

The final objective would be to give & bound -

(1) 8T T Y a,p

m

for M = T which in fact is equivalent to the Lindelsf hypothesis. The only

unconditional result known hitherto asserts (1) for M = T2 while the
celebrated R*-conjecture of C. Hooley [3] concerning the order of magni-

_ tude of incomplete Kloosterman sums yields (1) for M = T% (see [4]).

Here we obtain such result without Hooley’s conjecture for poly-
nomials 3 (s) that are squares, namely we prove the following

ToOrOREM 1. For any complew numbers a,, with |a,,| << 1 we have
ar ’ )
@ [1GHne] 3 aumm ot G TT TR I,
0 m<y ’

Here and below e is any positive number, not necessarily the same

~in each occurrence, and the constant implied in the notation € may depend

on ¢ ab most.
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Theorem 1 will be a consequence of a somewhat more general result,
TEEORENM 2. Lot N < M. For any complex nambers 6y, b, with |t,| <1,
b, <1 we huve

T
@ [ rG+ne D aumtd |3 g
0

m A ngN

& T!(T + TII"M314N+ _Tll'ﬂMNl.’E _]_]i/[”‘l Nﬂ.’ﬂ)

The proef depends gtrongly on estimates for sums of mcomplete
Kloosterman sums which the anthors established in the memoir [1] on the
basis of Kuznetsov sum formula for the Hecke congruence groups.
We wish to moention that the same estimates were used in [2] in a different
manner to infer the following

THEOREM 3. For any comples numbers oy, we have

7
of 1Z(& i) E it df < T (T TV M2 4 T8 ) Z et 2.

sy m< M

Combining Theorems 2 and 3 we shall deduce the following
THROREM 4. Lét a,, = A(m) or , = p(m) and M(s) = 2 Ay s
We then have
T
(5) f IE(A+ i) ML a)idt < T5(T+ T 4 M%),
] .
Hence (1) holds for M(s) subject to M < T
In & letter to the second author D.R. Heath-Brown has informed that

he was able to prove the second assertion of Theorem 4 for polynomials

H(s)= Z‘ p(m)m™® of length M < T*% and a few other results included
mé
in our Theorem 2. He made use of A. Weil estimate for Kloosterman

sums a8 it had been done originally in [4].

~ In fhis paper we do nob give asymptotic formulas for our inte-
grals. They are important for problems eoncerning the distribution of
zeros of the Riemann zeta-function. It is therefore interesting to peint
out that R. Balasubramanian and B. Conrey have succeeded to show the
formula (oral communication}

Cony By T (my, ms)?

+ 2y wl)

[y, 5] 2, My

B . .
[ earinmarinpa ~7
[ MMM

it a, = p(m)f(m);7 is a smooth fanction <1 and M < T*'*~", Conse-

quenily by refining the method of Levinson they showed that at least

389 of complex zeros of [{s) lay on the critical line.
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2, Preliminary transformations. Our first aim is $o pmve Theorem 2.
It is clearly sufficient to show that

ar
(6) FLy M, N, Ty [ L) (@) F ()2
. T

€ (T T N U LMY
for L< L, <28 T, N < M where

Lisy = D) 1%, Ms)= D aym™, N= D b,

Lal<L) Mam2 Nan<geiN

We could restrict oursclves to L < T'” by the approximate functional
equation for [(s) but this iy not neeessary. However, it will be useful to
assume that

{7) : LN > Tl

in the opposite case (6) following from the clagsical mean value theorern.
For notational simplicity let us put-B = HN and

Bls) = A F(s) = 3 4~

B<b=<aB
where
? l
(8) Bo= D D aub,.
' M<m=520, N<n<iN
mp=0

In this section we express the integral #(L, I, Z\T,-IT) by meang of
exponential sums that are alike Kloogterman sums, We begin with intro-
ducing smooth weights f(1) and g (7) such that

fOy=0, fiy =1 i T<i<2T, fH) =0 ounless 3T<i<iT,
g =0, gl) =1 if L<I<2L, g(I)=0 ounless }L<i<il
and

P er”, 0 <L

for any » = 0, the constant implied in < c}.ependmg on ¥ alone. By a stan-
dard device we ean replace L(s) by

= Ygre

and we can introduce the kernel f{f) in the integration over &. To be preeise,
letting o '

C AU g M) = [ ()16 () B (i) 2at.
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it can be shown {by applying Perron’s formula for example) that '
FL, M, N, T) < (T-+-MN)LMN+max #(f, g; M, N)logT

where the maximum is taken over sequences (&,)yrm<esr 304 (I, vencan
with |a,,| < 1 and |b,| < 1. Hence it remains to prove (6) for 7 (f, g; M, N).

Squaring out the sum over the variables ! and b involved in
GO B(#){® one obtains terms g(I)g(l)f Bbl(lb b))% to be integrated
over t with weight f(f). For the terms placed far enough from the diagonal,

pracisely for those with .
b =1Ub4h, [h=zH:=LMNT?

we get

1\t I

f £0) @i < VT
Ib,

by iterated partial integration, whence such terms contribute to #(f, g;

M, N) at most O{MN). Also the terms on the diagonal, namely those with

b = LB, contribute to #(f, g; M, ¥) an admissible gquantity O(TLMN).

From the above digeussion we conclude that

) ~—if
At = (10 3 Sask > ebeta i)+
o< IRI<E By Bl Dy +h
+O(TLIN).

Here we insert the approximations

g(ty = g(@b[b)+0(T" 1)
and
AN hifib 1
R — — o
(1 lb) ¢ +. (T*)
with the effect that

A M, N = (i Y

' o<ihl<E b,b,

D' g(g(ibfby) e 4

1bEA,]
+ O(T*(T - MN) LK N).
The terms with 6 = (b, ;) > 4:= LMNT** contribute to #(f, g;
M, N) at most
ar 31 D D) BBy 28T0T

0<[pl=<H 8ik,6>4 (bby}=0

€ IBTH )Y Y I6fs)

6>d (bby)=6

<€ LADTH Y 1Bz (b) < T LMN (log2 MNY'.
b

icm
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The remaining terms ean be arranged as folows

S M) =[50 3 3 3 Bfy D ggb) e 4
028 p<dRicH (biby)=6 l=pale]
+ O (T*(T+ I N) LMN).
Here and below we denote ¢ = §~1b and ¢ = §~1b,, 50 (a, ¢) = 1. For the
innermost smm, we apply the Poisson formnla

2 :Ze(mhk%)g(h,k)
i k

jin, %y = fg(fan(Eﬁ)e(

If 6|k > K := L' MNT™, then by iterated partial integration it follows
that gk, k) € 5*T7 5o the total contribution of the “ail’ 5lki> K
is absorbed by the earlier error term, .

With the constant termg (& = 0), we proceed ag follows

gk, 0) = [gleag(ee)[ D) ™)ae

o<ihl<d—ig a<hl<a—ly

where

+ ir-E) a&,

2rfae

= J"y(fa)g(ée)x(af, VA& O(SLB™Y)

where (w,7) = (€™ — e ) (¥ —1)~ with © = 6=H and y =i/Eae
by the elementary formula
e = y(x, y) -+ 00).
0<[hlez
Notice that y € AT/LB = T"° and a2y » HT[LB = T°, therefore by
iterated partial integration with respect to & we get

[ glea)gleel i, yyds < T

which shows that the total contribution of the congtant terms iz absorbed
by the earlier error term.
Finally we arrive at the following general formula

Ffg; M, N) |
- Z 2 2 BoaBse 6(-—%%%)3’(17&, k,a,c)+

0 <dd 0<HRIKH 0ok (a,0)=1

+ O(T*(T+MN)LMN)

- where

9y F{h,k,a,c) = 2nae ff Eg(éa)g(§c)f(2w§nqc)e(£k—I-a;h)dédﬂ.
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Now, let us specify f, to that given by (8). We have b = o — man, '

hence writing m = ud with x|8%, (d,8) =1, we see that n = »r and

& = grd where v = df(u, ) and ¢ = uf(u, 6). With this notation, we get

P> S o

D<degd 1300 0<OIRISH 0<C6ik|=<K (¢, 0)=1

'y E b,,e(—hk grd

)F(h, ky ordy ¢) -+ O (T*(T+ MIN) LIEN).
(d,02)=1 {re)=1 ¢

Qo) F{f,g; M, N)

3. An upper hound for sums of Kleosterman type. To proceed further
we need the following

Levva 1. Let €, D, U, V=1 and [e(u, v))

5, 3 wnle )

I<etC 1<d<.D 1<‘U<U1<’L\P'
(0,0d)=1 {v,0)=

< 1. We then lhave

(CDUVYEH{(OD) P4 (T + VYA OD (T + pVY(0 + o V) + p U V2 D],
Proof. Split up the outer sum into sums of the type

il

A0, D, U, V) =

U<esgol D<dgzD uw

By the Cauchy-Schwarz inequality we get

A€, 0,7, 7)< 0D 3 Ng(o d)‘Z \71

(c,d)=1

074

= 0D Z 6ty V1) 6(1tg, 'Un)

I<upuy<U
1wy, v F

> ales e (o -0y

(¢,0v)v9d) =1

- . 1
=0D Z 2 bin, r) ‘2" Z g, d)e (%1-»—)
1<r R InkV (Ger)=1 (&,0}=1 ¢

gy, where g{¢, 4) is any function which ma]mues the characterigtic func-
tion of the cube [¢, 2¢] % [D,2D], B = oV% N = 20UV and

bn,r) = Z

10,0 <V Iuy, 1 < T
gty =r “1”2‘“2”1“'"

€(tyy V1) €(2s, v,).
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The terms with » = 0 confribute at mosh

4000 Y 0,7 « D Y (g < P D UV (log UVY

g0V

For estimating the remaining sum we appeal to Theorem 12 of [1] giving -
the apper bound

(CDUTYCDIC(R+N)O+DR)+ P DV(R-N)R+ I* NRT® %
x (E 15 (n, 1');2)112.

B
We have
2
>
e
Ty, Uy ST
'UI'U2 — ’llzbl =l

o s n
=) 2t

1€r), oV 1luty, Uy, gy iy T
{2y —ugtg={Ug—1s,);

< (U2 V(U -+ 7).
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Tiy?

Finally, by elementary caloulafions one completes the proof of Lerama 1.

4. Proof of Theorem 2. Lemuma 1 is almost applicable fo the sum
Folfy o3 H, N = 5‘22 > > from (10) with only & minor objection,

c d T

that the variables (, d’ » in the weight funetion F{k, %, ord, ¢) need be
separated. This ig, however, an easy problem which ecan be golved in various
standard ways. The {echnigue based on applying Mellin’s transform for
the kernel functions g(Zord), g{Ze) and Ff(2n&yorde) in the integral rep-
resentation (9) is standard, so we skip details. Having done it, we apply
Lemma 1 with ¢ = 1MWV, D = p'M, U = §'HEK = §2}* N*T%!
and V =» 1N giving

FulFs 03 3, H) < DM N TLE) (¢ S MR

{ MEN A\ (M‘%Nﬁ L ”‘*[MEN (Mwi QN)(MN N 9N2)+
"\ e PV Su \ 0T ¥ 8 2

oI N
52y ‘uz_fp] }

& 6—5{4#—1]4T35LMN {T”z.Ma”N 3 TIIHMNIR +M1[4N312} .

Hence, by (10), the snmmafion over g}6® and 4 <
proof of Theorem 2.

<4 completes the
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5. Proof of Theorem 4. We first rearrange the polynomial M (s)
by applying the celebrated identity of R. C. Vaughan [5]. Since the argu-
‘ments areg well-known we shall be very brief. Thus M (s) can be regarded
as the product of two Dirichlet’s polynomials having either the shape

{11) RONNG!
or
(12) Mo{s) Ly(s),

where M (s), N(s), M, (s) and L,(s) are Dirichlet’s polynomials of length
M, Ny, M., L, respectively satisfying

MV, <M, W<N <M,
M Iy < M, M,< W

and with coefficients bounded by the divisor function. Moreover I,(s)
is a partial sum of the Riemann zeta-function. Mere W is any parameter
at our disposal. We choose W= 1", so for polynomial (11), by Theorem 2
we geb :

r
[ MV (B Hit)2de < T(T+ PEME NP TR 4 M N
a

€ TE(T+ TUZJVIT"B + TE[SﬂI+ /i 1,'20_M7f4.)
which implies (5). For the polynominl (12), if #, > W the arguments are

very similar to those of the first one, and if M, < W we apply Theorem 3

gefting

n
[ EM L (d +anpadr < T,
]
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Réducibiiity of lacumary polynomials, IV
by

A, ScEmzeL (Warszawa)

The aim of this paper is to make a further contribution to the problem
of reducibility of polymomials

k
1) fla) =gt X e (0 =my <oy < e < gy @yt # 0)

i=1

for fixed integral coefficients ¢; and variable exponents n;. The non-re-

ciprocal irreducible factors of f(r) can he found by means of Theorem 2 in

[3] and as to reciprocal factors the conjecture proposed in [2] implies the

exisbence of a constant CO{ay,a,, ..., ;) such that either all reciprocal
I

irreducible factors of f are cyclotomic or 3 y;n; = 6 for suitable integers
y; satisfying i=1

0 < max|y] < Olag, @y vvrs ).
i<k
We shall prove
TaEoREM. If f is given by {1) with a; integral, then either oll reciprocal
irreducible factors of f are cyclofomic or there ewist infegers yi, ..., y; Sai-
isfying '

I
@ S =0,
=
(3) 0 < max |y < max 229
max
FE . Y i<k 10g2

and the number of reciprocal non-cyclotomic factors of f does not exceed the
total number of prime factors of (ay, a;) or finally the following system of



