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Dedicated to Professor Tosikesu Fde on his 65-th birthday
o

1. In this note, we shall establish an effective lower hound for the
funetion

Agei+ oo A%,

where 4., ..., 4, are nonzero algebraic numbers, and ay, ..., @, ave dis-
tinet algebraic numbers. More precisely, we use the following netations.
Yot dega and H{a) denote, as usual, the degree and height of an algebraic
number e, Tespectively.
Using these notations, we put

(1) A = max(degd,+H(A,)).

_ 1<ih
Then we shall prove the following theorem.

THEOREM. Let d be an integer > 2. Then, for all distinet algebraic num-
bers ay, ..., o with degrees at most d, we have

| A e ... A% > exp(—o H™),
where H denotes the mazimum of H (o), ..., H{og), ond
¢y == expexp (Thid*4), e, = exp(THd"H4).

Results of this kind were already obtained by Mahler [3] and Lang
[2]. Mahler dealt only with the case when a, ..., a; are rational numbers.
Lang treated the more general context of E-functions, but this isin a
gsomewhat different direction to that studied by wus..

I should like to express my thanks to the referee for several helpful

suggestions. :

2, In this section, we shall prove threelemmas which will be needed
in the sequel. We use theé following notation. :

2 - Acta Arithmetica XLIIT, 4



334 M. Takeuchi

If £ is an algebraic number, we pub
B = max(| &V, ..., |£M),

where £9, ..., &M denote all the conjugates of &Y = £ over the rational
nmmber field.

LEMMA 1. If M, (1<<i<<p), as well as N; {1 <j<q) are nonzero
algebraic numbers, and g, (1 <3< p), as well as A (L <J< g) are distinet

algebraic wimbers, then the equality

@ (S S ) = 3 e

fe=1 h=1

where oy, = A,

where the terms having the same exponents have been combined cmd all g,
are distinet, has at least one nonzero R,

Proof. By Lindemann’s theorem, we gee that both of the sums
in the left-hand side of (2) are different from zero. Thus their produet is
also nonzere, since the complex number field does not include any zero-
divisors. This means that at least one nonzero R, appears in the right
member of {2). This concludes the proof of the lemma.

Levata 2. If o ds an algebraic nmumber, Then
lo]s [o~¥] < 2H(a).
Proof. Weflirst prove the result for |of. If |af < 1, the lemma is obvious,

and hence we may assume |a| > 1. Denote by

agtt L ax - L Fay,

the minimal polynomial of «, with the relatlvely prime rational integral
coefficients, Then

[ = |a P4 L ey < H(a) (el oLl R

af*—1 T jal®

= H(a) la—1 la—1"

Henee

lel <1+H(a)/la} < 2H(a).

The proof when o' is completely similar, This concludes the proof of the
lemma.

Lma 3. Let £, vuny & be algebraie numbers with the degrees amd
heights af most D, and H,, respectively. Then,

- i
H(E+ ... +8) < (321EH D,
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Prooi. Denote by o, ..
polynomials of &, ...
Then

.y @, the leading coefficients of the minimal
, &, respectively, with rational integral coefficients.

3 . )
{ay ... a-z)Dl H [m_“(sgu)_’_ Egcg)_l_

T

e EO,

where the produet iz taken over all the respective conjugates of
D = g, ..., &Y = &, is a polynomial with rational integral coefficients.
Furthermore, it is clear that the minimal pelynemial of &4 ... - & I8
a facbor of this polynomial, and hence by Gelfond’s book {[1], p. 14, Lem-
ma IV) and Lemma 2, we have

T §1|Di) 2313%
1
= (32EEy ™

ol ol .
H(&+ .o +E) < (ay.. al) g 1mzuc(l L&+ ...

z
e R
This concludes the procf of the lemma,

3. In this section, we ‘shall establish the modified form of the expo-
nential fonction in the theorem by using the argument in Gelfond’s hook

([1], pp. 45-47). We first note that if £ = 1, then the themem is obnous
Hence we may assume
k=9,
By (1) and Lemmsa 2, we have:
(3) [A]<24 (<i<h),

Let a be the smallest positive rational integer snch that all the a4, are
algebraic integers. Hence

(4)  a A"

Put K, = 0Q(4,,..., 4,), where O is, ag usval, the rational number
field. Let v, be the degree of the extension K, /0. Hence

(5) . v, << A%,

Denote by A an element which iz conjugate to AP = 4; over the
rational number field. Then the coefficients By, .5, In the produet

(6) a® H (2 Ag%i) N Y By ol

g=1 {mm] h1+ -]-hk-vlfa

will be rational integers, sinee all the ad® ave algebram integers and all
the B, s, are symmetric functions of the roots of the frreducible equa-

tion 'W]]lch is satisfied by a primitive element of the extension H,/Q.
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Betting o, = (1 <<IiKE) into 1dentmy {6), we oblain

- ZBjeﬂj,
=

where all the §; arc algebraie and distinct, and all the B; are nonzero
rational integers. It follows by Lemma 1 that m = 1. Further by (3), (4)
and Lemma 2, we have

Ok

o r [](3 400

g=1 i=1

k

(8} f a ZAPe“I‘ & Bk AR,
i=1
Next, we shall estimate m, By, degp;, H(f;). It follows eagily by (5) and
(6) that
(9 m< () <ok 2R

We also obtain

(10) |B,| < AT (24)0 = (28410 < exp[( -+ 1) AF+],

by (7). Moreover, since .

(1) B = Taoyt oo gy, gk .. LRy = 2,

we have

(12) degfi< d

It remains to estimate H {#;). We first note by (11) that
O(he) < »88 < AH (‘i=_1,...,kj,

deg(ha}<d (4 =1,..., k).
Hence by Lemmsa 3, we have | _
(13) Hp;) = H(byay+ ... +hy,) < [325(AFFH Y]

< explk(k+1) gHig | EEF

Now, we go on with our arguments. Put &, = Q(4,, ..
by (11), we have K, = Q(aqy, -
K;/Q. Hence

(14) ¥y ~.<_ dk.

s B). Then
..y o). Liet »; be the degree of the extension

Denoting by ¥ (g =1,..., »,) all the images of i =

B nnder vy 180~
morphisms of K, over @, we shall consider the product

"’1 m ﬁ(q) &
(15) ”( m’Bjef ) = ychg?n’
g=1 j=1 h=1
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where all the ¢, are algebrajc and distinet, and all the C; are nonzero
rational integers. As before, we see that s = 1. Further we note that if an
algebraic power y, appears in (15), then all the conjugates of ¥, over O
also appear as powers in the right member of (15) with the same € # 0.
Indeed, this is a direet consequence of the fact that y, is linear form of
all the roots of the irreducible equation which is satisfied by a primitive
element of the extension A /Q and all the conjugates of y, are obtained
by suitable permutations of these roots. We also have

6] < 20, H < 24°H,

by {11). Hence it follows by (9) and (16) that

biid (a) 3 :
| 3B | < mexp (41 4512 < exp (1 AP 2R,
j=1
Finally we shall egtimate of s, {5, degy, and H{y,). From (14) and (15},
we have easily
(17)

We also obtain

(16)

s < m% < (24 L exp(IAdEA).

10, < m® =1 (max | B;"t) < exp (6F2dFA*HY),
l<i<m
by (18). Next, since
(18) = B+ Y, 1<k <m,
we have

degy, < (21,

by (11). For, y; is included in the smallest Galois extension of Q(ay, ..., a;).
Furthermore, by (12), (13), (18) and Lemma 3, we have

H () < {890, (exp (h(k + 1) @A HERS prrpa
P 2kdk
< exp(ok-dm"A)Ekd ,
gince k=2, d= 2 and v, < d~.

4. From the arguments of Sectmn 3, We may assume our exponentml
function in the theorem to be of the form

6126y1‘+0226?2 T N o je

i=1
where (s, ..., (, are nonzero rational integers and y) = yl, Y
are pan‘Wlse nonconjugate algebraic numbers and y (i = 1, o)

are all the con]ugates of ¥, aver the rational number field, and dyy ..., d,
are the degrees of v1, ...y ¥y respeetlvely Moreover, from the last para-
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graph of Section 8, we see that

| s =dyt . 4,
(19} max |0} < exp (6K dFAF),
1<i<<n
Put
. (20) f) == (d‘)k’ H = €Xp (ﬁkzdzwkﬁ)ﬂd.kd%dk‘

Thern, from the last paragraph of preceding section, we also see that

(21) ma;x(dl,...,dﬂ){_,ﬁ, ma’X(H(?’l)r“-:H(Vn))ﬁﬁ-

Now, we note firs that if 8 = 1, then the theorem is obvious. Hence we
may assume s = 2. It follows immediately by (20) that
(22) " D>4, H>16,

singe % 2> 2. We take & number r to be any large positive integer which will
be explicitly determined below. Put

(23) N+1 = s{r--1).
Let D be the differential operator

d
de

Now, aefaording to Siegel’s book ([31, pp. 12-15), we can determine &
polynomials Py (2} (I == 1,...,m;4 = 1, ..., 4} of degrees r such that the
fanction :

@0 o= 3 3,5t

=1 {=1
vanishes at z = 0 of order V. We obtain an exphei’u formula for Py ,(e2):

k3

{25) “(2 H(.D”i’"j’w— (p))--r— HH D+?(£) (Q) ~—p—1 z:
i

h=1 o=1
P%z Rl e=

G=1,...,n; P=1,...,d)

(see [5], p. 15). From (24), we see that the power series of F' (#) takes
the form

26) | P(e) = ;n + ...

o
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Moreover, it can be shown that F{z) has an integral representation of

the form
' ) T P
@1 F) =2 f (H[] LA g7 )dt e s

t] 1ty =1 =1 =1
3,10, ,fﬂ dy =0
(see 5], p. 26). By comparing (26) and (27), it follows immediately that
the integral in {27) has for z = 0 the value 1/¥!; hence for any complex
number z, we have '
[zINellz[
Nt

From the above formula (25), it is clear that all the P () (I =1, ..., %3
4 = 1,...,4;) are nonzero polynomials of degrees s

(28) [ A (=)< . where 1 = max(f;:‘, ceey Iﬂ)

5. In this section, we shall use the argument in Mahler’s paper [4].
Pus .

(20)  Pp(e) = (D+’V“) YPue) (=1, ,m5 0 =1, d&;

J=0,1,2,..,
where P, ;(z) have been constructed in the preceding section. We begin

by proving the following lemma.
Lmayma 4 (Mahler). The delerminant

Prie () Py S o (2} 'Pﬁ.,l,l](z) -Pn,dmo(z)
wle) = Pr1a(2) B dl,xfz) Pp (%) v Boga(?)
Pyroa () Praerl® < Prpsald) Prgye(?)

is not identically zero. Moreover, w(z) can be writien
w(z) = R(z),
where v = N —s(s—1)/2, and R(z) is a nonzero polynomial with degree

at most (s—1)(s—2)/2.
Proof. We first note that the & exponential functions

Quile) = Pra)e” (=1, 058 =1,..., )
are linearly independent over the complex number field, so that the Wron-

gldan

e 0s.q,(#) Qae) - Qua,(®)
Qe e ) e Q) - QLD
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does not vanish idéntically. By a well known symbolie relation, we have

40, @, .
Q) = ( )(PM( 18 — o (D 1P, (e)

P=1.,ni=1,..,
Therefore, it follows by (29) that

d; i=0,1,2,..).

(%)
. ¥y iz
EI (2) = D .(@)e z

On substituting these into (30), we obtain

n 4G &
WA{z) = (H ﬁ ayg ))Bw(g},
I=1

=1

T=1,..,n3i=1,..,d;§=0,1,2,...).

and hence it follows that w(z) is not identically zero. Next, in
the determinant w(z) multiply, for ¢=1,...,d;, the ith ecolumn

.y dsy the (d;-+4)th column by the factor.

and so on. Finally add the 2th, 3th, .
new column. This leads to the equa.tlon

(i)
by the factor o't

iy
e

, and for ¢ =

.y sth. new columns to the firgt

w(z) e _
F(z) Pr20(2) P 1,8,0(%) . Prol?) Pp,g,,0(2)
- B (2) Py 21(2) Py g 1(2) Pp1(?) - 'Pﬂ.,dn,l(z)

......... '..........-.'..-.......“’
FOz) Praeal® - Prgeal® .. o Poge(z)
since
n g y(")s
Fig) = 3 ZPU,,-(z) e
=1 4=

On multlplymg in this determinant the succeszive rows by the facters
1,z,. zs“ respectively, we arrive at the equation

##E-DiZgy (2 g7

F (?) Py, 0(2) Py g,,0(2) Py 10(2)
_ 2 (=) 2Py 5,(2) 2P g,.(7) 2By, 1(3)
FENE) A ) L B e L e )
P, Ny, 0 (z)

z'Pn,dn,l (.z)

zs—l“P n,d.nl,s—l(_z)
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Hence by {26), w(z) itself vanishes at 2 = 0 of order at least
. N—s{s—-1)2 =w.~
Hence the polynomial
EB(2) = wiz}/"

has degree at most sr—o = (s—1)(s—2}/2, sinee w{z)
at most sr. This concludes the proof of the lemma,

Now the polynomials P, .(#) have been defined by the equation (29).
These equations show that they have algebraic coefficients, hence that
the values P;;;(1) are algebraic numbers. In terms of these polynomials,
the derivatives

0 has degree

n & m '
) = 3 Pt (1=0,1,2,...)

=1 i=1

are linear forms in the s expomential functions e (l =1,...,1;
§ ="1,...,&). By Lemma 4, the determinant w(z) of the first s of these
linear forms is not identically zero and vanishes at # = 1 of order at most
(s—1)(s—2)/2 = t (say}. Suppose that it in fact vamshes at # =1 of

exach order T, so that
(31) wl) =w (1) =... w(1) # 0,

where 0 <

= (1) = 0,
' T < 1.
On solving the first & linear forms

n 9 (l) .
F () Z‘Z’ i (z)e'! (j=0,1,...,8—1)

7=1 7=1

A8 .
for €'t (t=1,...,n; i =1,...,d) respectively, we have

(,,,) z—1 .
wiz)et —2 1, @F0E) (T=1,..,0;5i=1,..,4d),
where the 1, ;(2) are cofactors of the determinant w(z) and hence are
again polynomials with algebraic coefficients. On differentiating these &

equations = times, we obtain

| 2() W (a) iyt = 2 Uzw(z)F{”(z)

h=0

where the Uy, ;(z) also are poly'ﬂom_la-ls w1t]1 algebram coefficients. Here:
finaily put # = 1. Then it follows by (31) that '

?(‘i) s1+T—1 ) .

w1)6" = 3 Typyy(1YFO (L)

i=o

IT=1,..,nt=1,...,4).
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The s-4-7 expressions

FOL i‘ ZPI ey e?t

=1 i=1

(j=10,1,...;8t7—1)

»{@
on the rlght—hand sides of the equations are linear forms ine 7 {t =1,
, @38 =1, ..., d) with algebraic coefficients. Smce w® (1) # 0, these

8- linear forms can be solved for each of the e . It follows that there
exist s distinet suffices J = J(1), J(2), ..., J(8) in the interval 0 <<J
L s+i—1 = s{s—1)/2 for which the Gorresponding linear forms

n 9

ZZP,i,J@)(l)@

I=1i=

(32) BN = (G =1,.0,9)

) :
in ¢t (I=1,...,n;4%=1,...,d) are linearly independent. Hence the

determimant of these forms
Py a.0m)

Pra,01)

Pt

Py

Pﬂ dn,J(I)(l)

P, J’(s)(l)

Py -

Pl,l,J(s)(l) .
is distinet from zero.

6. In this section, we shall first find an upper estimave for
1Pyi0(1)]- We use the following notation. Let

Fofe) = D) ag

be a polynomial with complex coefficients and lef
= 2 b,"’zi
1

be a polynomial with real coefficients > 0. We write F,(2) < Fy(e) if
la;] << b; for all 4. Using this notation and applying an operator identity

[s.a]

(@40 = o7 3TN w0 % 0),

e=0

we obfain easily

@) @+D7 < o Y (7ol (— D = (o — D)
g=0
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Let M denote the maximum of the s(s—1)/2 numbers

1

P — ] (F=1,.m; 1(%<J ),

1
W(m)_y(:r) |
Then it follows by (23), (25) and (33) that

I<li<hgn; {=1,...,

e’

P(e) < (M =Dy — (I =1,..,m5 8 =1,...,&).

r!

Moreover, we have

r

(M-—I_D)f—lv.'u;:;: MN""Z(N ‘-";‘Q 1) _MQD”

;’ () ap-rsosr-,

=0

‘Hence the heights of P, ;(z) (that is, the maximum of the absolute values

of its coefficients) are at most

oV EY = (23)F .
On the other hand, it follows by (21), Lemma 2 and Lemma 3 that
M 2@HPD = P fpde,
Put now
(34) _ -

Then it follows by (22) and. (29) that the heights of Py, ;5 (2) are at most
27T (9 FYT0) (2 AN < 2T D2 F) ) f4(2 E)sﬁz}zv < AP

since J (§) < s{s —1)/2. Hence we obtain

85) [Pl < EPF@ 14 L 1) < B3P
N— e
r
I=1,..,m¢=1,...,d33 =1,...,8),

by (23). Next, we choose a positive integer T for which the s(s +1)/2
nnmbers

Tyl T =1,...,m; 4 == 1,

T
(,},(’i) (f))

T
(y(i) (J))

"ev? dz))

f=1,...,0;1i<i<dy,

Igli<bgny;i=1,...,d;5j=1,...,4d5)
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all are algebraic infegers. By (21) and Lemma 3, we can take
- (36) T < (4B PPt (g eD?
sinee » < 8. It follows from (23) and {23) that the polynomials
'r!TN_PM-(z)
have algebraic integral coefficients. Hence the polynomials
P IV E0P, - 5 @) - (TD Ty Ot TP, 4 (=)
also have algebradc infegral c-:)e-ffﬁcients. Put now
BT Gy = 1TVOPL ) B =1, m5 i =1, d;

j=1,...,8.

Then all the numbers g, are algebraic integers, and from the last para-
graph of Section 5, their determinant is different from zero, namely

B e Trapr cer G cer fngg,a

gl,I,a hl g_l,dl,s e Qﬂ.,l,s b Qn,dn,s
— (?I')3T3N+J(1)+...+J(s)g ?»: 0
Furthermore by (35), (36) and (37), we have

(39)  Igyoql < PITNHOP, o (1)) < rl (AR D P IO D gy s DN

T=1,..a5n5i=1,..,d;=1,...,8),
since J(j) < s(s—1)/2. Now, in analogy to the algebraic integers gy,
put
(40) Ly = rIT¥HI0ORN 1) (j =1, ..., 8).

Hence it follows by (32) and (37) that L; iz the linear form
n G ?(-,;) .
(41) Iy= D M’ (1=1,..08)
. I=1 4=} .

) _ .

in &t @ =1,..,m i=1,...,4). From (38), L, ..., T, are lincarly
independent. We shall find un npper bound for |IL;]. We first estimate
|FYO)(1)[. By Cauchy’s integral formula, we have

FUO) 1) = J(f)! f - F(z)

27:% 1) ‘m)"'l
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where JI' iz the ecirele J2| = 2. A well known form of Stirling’s
formula states that

N1 = ¥2uN N¥e ¥+ where 0 < 5(¥) < 1/i2N.

Hence it follows immediately by (21) and (28) that
IF(J(:'.)) (1); < 62N+4ﬁ—N1DgN.

Thus we obtain
(42) !le g Tleaszf)lenzﬁ+4fI—NlogN’
by (40).

7. In this section, we shall conelude the proof of the theorem. Put
E =000, ..,43, ...,y ..., #%). Let » denote the degree of the
extension K [Q. Let ¢ be an isomorphism of K/Q which leaves every el-
ement of Q fixed. Let 0 be an element of K. We shall ofter write §7 instead
of ¢{6) which is the image of ¢ under the isomorphism o. Furthermore,
we use the following notation.

From the first paragraph of Seclion 4, we agree that an element »{°
is equal to exaetly one among Y, ..., (dl) Hence we pub

AT - .
;;51) :},E[‘”JI) Te=l,.,n; 8 =%, .50

Thus [o¢]; is equal to exactly one among the numbers 1,2, ..., d;. Using
these notations and recalling the explicit formulas (25} for Pp.(z), we see
easily that the egualities

-Pi‘,f(l) = -PI,{ai]z(l) t=1,..

hold. Moreover from (29),
Proan) = Priogam (1)

Therefore we also see by {37) that the equalities

43} s = ey
hold. Next, put

yH3 0 =1, 0, d)
we have

B =1, s34 =Lyeenydi; 5 =1,.00y8).

T=1,.m;i=1,...,d5 J=1,..0,8)

(#

u o . .m
(44) L=0 e +.. )_']
. =1 i=1

which is not equal to zero. Hence L is linearly independent of certain
s—1 of the forms L, We may suppose, without logs of generality that
the s forms

L, Ly .00y L

8
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are linearly independent. Hence their determinant

¢ e € . O, .. 0O,

(45) A= Do o Qna,2 - Qpia O, d,,2

........... . = s

has --- gl,a'il,s see nig ' gn,dn,s

iz distinet from zero, This determinant is am algebraic integer, and so

(46) [ Normgn(4)i=1.
Now noting 07 = €, (I =1,...,%), we have
L4 4 e O . 07
AT — VRTINS Fapa - Gz e o, 2
46 0,50 Un1,s U, a5
< e Oy e 0, e 0,
o | Duperlps oo Gupeagye On,[o1],,2 D, fod 102
B
QI,[al]l,s gl,[crdl]l,s q'n,[al]n,s Qn,[adﬂ]“,s
by (43). Here we note that, by change of columns, we have
A% = & A,

sinee [ol]y, ..., [od,]; is just a permutation of 1, ..., d,. Thus
Normgn(A)| = |4,
Hence by (46), we obtain
(47) _ 4] =1.
- Now, in the right-hang‘l side of {45), multiply for ¢ = 1, ..., d,, the
+th column by the factor ey(li), andfor i = 1 s eery tlyy the (2;+4)th column

(1)
* by the factor ¢ ; and so on. Finally, add 2th, 3th, ..., sth new columns
to the ﬁrst new column. By (41) and (44), this leads to the equality

L ¢ .. C ... 0 .0

................

I’s q1,2,s v gl,ctl,s e gﬂ,l,s A QR,dn,s
Hence by (34), (59) and {42), we have

(48) |4 < sU{|T| (R APy 1 (max | I;[) (max | Oy} (1 H " DN ys-2y
7 1

< || (ﬂ}sﬁasz(s—l)ﬁzym%_ (ﬂ,.!)amlﬁ 8s2(s— 1) D% (max | GI ) 6415?_ngN'
i
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From (23), N > rs. Hence we obfain
(%!)S—IB—NlogN « gle—Driogr—rslogr _ g~rlogr
Moreover, by (19}, (20) and (34), we have
8s3(s —1) DN log & +log (max Gy) +4H
< 88%(s?— 1) Drlog H - 6K AP AN L 4F
< 8s*D¥logH = Erlogr,
gince N < (s +1)r. Henee it follows from (47) and (48) that

1
o . ~21,
l671] < L] (rl) SR eI g

On the other hand, it is clear that

>

le1] = e,
sinee |y,| << 2H. Therefore, we have
1< T (T.E)Sﬂasﬂ(s—l)ﬁzNeﬂﬁl_I_ 3.
From (34) and ¥ < (84 1), we oblain
L=} (ﬂ)msﬂ‘—ﬂsa(s—l)ﬁﬂl\?‘e-zﬁ > exp( __ﬁ-ms“.f!i) .
Hence it follows immediately by (17) and (20) that
L 2 exp(—3e. %),
where ¢, = expexp(Tkd*4) and ¢, = exp(Th'd**'4). Here, recalling
the equality (15) and using the estimate {16), we have
N .
[2 Bjeﬁ:‘ l > exp( —3e.H™).
=t

Fina;llj, recalling the equality (7) and using the estimate (8), we obtain

k
| 2 Aett

i=

> eXp{ —c, H®).

This eoncludes the proof of the theorem.
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Anwendung einer Summationsformel auf Dirichletsche Reihen
und verallgemeinerte Dedekindsche Summen

von

UrricH HALBRITTER (Kéln)

1. Einleitung. Bereits Dedekind [2] bewies fiir die Klassischen Dede-

kindgchen Summen
: Vil
w3 (E))
#(ﬂ%‘k} R) k

mit %, % e N,
_ s—fm]—4%, w¢Z,
(=) = [O, | ez
die Gleichung
p—1 .
1y - s(ph, K)+ D) s(h+mk, pk) = (p-+1)s(k, k),
m=0 .

wobei p eine Primzahl ist. Diese Identit4t ist ein Spezialfall des Petersson—
Knopp Theorems (Y) (Enopp [4]):

Bir by by neZ, >0, 00, (b, %) =1 ist

(2) b E slah +bk, dk) = (Zm'} S(ha k).
{a,DeN? b (mod d) meV
a-d=n min

Parson und Rosen [5] bewiesen ein aﬁaloges Resultat Hir verallge-
meinerte De&eldgdsehe Summen;:
Setzt man B, (2) = B,(z~—[#]), r e Nu{0}, wobei B.{y) die durch

ze¥® - &
= B _
71 ; () o

(1) Diese Bezelehnung stammt von Goldberg [3].

3 — Acta Arithmetica XLIII, 4



