Criterion for 2 to be an Ith power

by

- J. C. PARNAMI, M. K. AGRAWAL, SATINDER PALL, and A. R. RAJWADE (Chandigarh, India)
- 1. Introduction. Jacobi [3] has given necessary and sufficient conditions for primes q < 37 to be cubes modulo primes $p \equiv 1 \pmod{3}$. For example he proves the following

PROPOSITION 1. (i) 2 is a cube $\operatorname{mod} p$ if and only if $L \equiv 0 \pmod 2$, and

(ii) 3 is a cube mod p if and only if $M \equiv 0 \pmod{3}$, where (L, M) is one of the exactly two solutions $(L, \pm M)$ of the diophantine system (Gauss):

(1)
$$4p = L^2 + 27 M^2, L \equiv 1 \pmod{3}$$

Emma Lehmer [4] proves the following results:

Proposition 2. Let $p \equiv 1 \pmod{5}$ be a prime, then

- (i) 2 is a fifth power mod p if and only if $x \equiv 0 \pmod{2}$,
- (ii) 3 is a fifth power mod p if and only if $u \equiv v \equiv 0 \pmod{3}$, where (x, u, v, w) is one of the exactly four solutions (x, u, v, w), (x, -u, -v, w), (x, v, -u, -w), (x, v, -u, -w) of the diophantine system (Dickson):

(2)
$$16p = x^{2} + 50u^{2} + 50v^{2} + 125w^{2},$$

$$xw = v^{2} - 4uv - u^{2},$$

$$x \equiv 1 \pmod{5}.$$

Leonard and Williams [5] prove the following

Proposition 3. Let $p \equiv 1 \pmod{7}$ be a prime, then

- (i) 2 is a seventh power mod p if and only if $x_1 \equiv 0 \pmod{2}$, and
- (ii) 3 is a seventh power mod p if and only if $x_5 \equiv x_6 \equiv 0 \pmod{3}$, where (x_1, x_2, \ldots, x_6) is one of the exactly six non-trivial solutions

$$(x_1, x_2, x_3, x_4, x_5, x_6), (x_1, -x_3, x_4, x_2, -\frac{1}{2}(x_5+3x_6), \frac{1}{2}(x_5-x_6)),$$

$$(x_1, -x_4, x_2, -x_3, \frac{1}{2}(-x_5+3x_6), -\frac{1}{2}(x_5+x_6)), (x_1, -x_2, -x_3, -x_4, x_5, x_6),$$

$$(x_1, x_3, -x_4, -x_2, \frac{1}{2}(-x_5-3x_6), -\frac{1}{2}(x_5-x_6)),$$

$$(x_1, x_4, -x_2, x_3, \frac{1}{2}(-x_5+3x_6), -\frac{1}{2}(x_5+x_6))$$

(the two trivial ones being (-6t, $\pm 2u$, $\pm 2u$, $\mp 2u$, 0, 0), where $p = t^2 + 7u^2$, $t \equiv 1 \pmod{7}$) of the diophantine system of equations

(i)
$$72p = 2x_1^2 + 42(x_2^2 + x_3^2 + x_4^2) + 343(x_5^2 + 3x_6^2)$$
,

(ii)
$$12x_2^2 - 12x_4^2 + 147x_5^2 - 441x_6^2 + 56x_1x_6 + 24x_2x_3 - 24x_2x_4 + 48x_3x_4 + 98x_5x_6 = 0$$
,

(3) (iii)
$$12x_3^2 - 12x_4^2 + 49x_5^2 - 147x_6^2 + 28x_1x_5 + 28x_1x_6 + 48x_2x_3 + 24x_2x_4 + 24x_3x_4 + 490x_5x_6 = 0$$
,

(iv) $x_1 \equiv 1 \pmod{7}$.

Leonard, Mortimer and Williams [6] prove the following

PROPOSITION 4. Let $p \equiv 1 \pmod{11}$ be a prime, then 2 is an eleventh power mod p if and only if a certain condition involving solutions of a very complicated diophantine system holds (the exact statement may be seen in [6]).

As soon as a diophantine system (such as the ones given above) is available for primes $p \equiv 1 \pmod{l}$ (l an odd prime), it is not unreasonable to expect that a criterion for some small primes q to be lth powers modulo p may be worked out, the cases l=3, 5, 7, q=2, 3 and l=11, q=2 being stated above. More work has been done on this topic by various authors, for instance the cases l=7, q=2, 3 have been treated somewhat differently by Alderson [1], the case $q\equiv 1 \pmod{l}$ has been considered by Ankeny [2], the case q=l by Ankeny [2] and Muskat [7] and the cases $l=5, q\leqslant 19$ by Williams [9].

Parnami, Agrawal and Rajwade [8] have given such a diophantine system for all odd primes l. Our object is to give a criterion for 2 to be an lth power modulo p (p a prime $\equiv 1 \pmod{l}$) in terms of the variables of the essentially unique solution of the diophantine system of Parnami, Agrawal and Rajwade.

2. The main result.

THEOREM. Let $p \equiv 1 \pmod{l}$, then 2 is an l-th power modulo p if and only if

$$a_1 + a_2 + \dots + a_{l-1} \equiv 0 \pmod{2}$$

where $(a_1, a_2, ..., a_{l-1})$ is one of the exactly l-1 solutions of the diophantine system of equations

(i)
$$p = \sum_{i=1}^{l-1} a_i^2 - \sum_{i=1}^{l-1} a_i a_{i+1}$$
,

(ii)
$$\sum_{i=1}^{l-1} a_i a_{i+1} = \sum_{i=1}^{l-1} a_i a_{i+2} = \dots = \sum_{i=1}^{l-1} a_i a_{i+l-1},$$

- (4) (iii) $p \nmid \prod_{\lambda(2k) > k} (\sum_{i=1}^{l-1} a_i \zeta^i)^{\sigma_k}$, where $\zeta = e^{2\pi i}/l$ and where $\lambda(n)$ is the least non-negative residue of n modulo l and σ_k is the automorphism: $\zeta \to \zeta^k$,
 - (iv) $1 + a_1 + \ldots + a_{l-1} \equiv 0 \pmod{l}$,
 - (v) $a_1 + 2a_2 + \dots + (l-1)a_{l-1} \equiv 0 \pmod{l}$

(in (i) and (ii) the subscripts of the a's are to be considered modulo l and a_0 is taken to be 0).

Note that any of the l-1 solutions gives the same condition since these solutions are just permutations of each other.

Remark. The right hand side of (i) of (4) is a positive definite quadratic form since it can be written as

$$\frac{1}{2} \left[a_1^2 + \left\{ \sum_{i=1}^{l-2} (a_i - a_{i+1})^2 \right\} + a_{l-1}^2 \right] \quad \text{(note that } a_l = 0 \text{)}.$$

Hence all the solutions of (i) alone can be obtained in a finite number of steps. Of these only those solutions $(a_1, a_2, ..., a_{l-1})$ are to be retained which also satisfy (ii)-(v) of (4).

For completeness we give a (new) proof of the following known

LEMMA. 2 is an I-th power modulo p if and only if the cyclotomic constant (0,0), is odd.

Proof. Let $X_{00} = \{x \in F_p^* | x \text{ and } x+1 \text{ are both } l\text{th powers}\}$. Then

(5) 2 is an *l*th power if and only if
$$1 \in X_{00}$$
.

On the other hand $X_{00} = \bigcup_{x \in X_{00}} \{x, 1/x\}$. In this union the two sets $\{x, 1/x\}$ and $\{y, 1/y\}$ are either the same or disjoint. Further x = 1/x if and only if x = 1 since x cannot take the value -1. Thus $|X_{00}|$ is even unless $1 \in X_{00}$, i.e. $|X_{00}|$ is odd if and only if $1 \in X_{00}$. This, together with (5), gives the lemma, noting that $(0, 0)_l = |X_{00}|$.

Proof of the theorem.

$$\begin{split} l^2(0,\,0) &= \sum_{0 \leqslant i,j \leqslant l-1} J(i,j) &\quad (J \text{ being the Jacobi function}) \\ &= q-2-2(l-1) + \sum_{1 \leqslant i,j \leqslant l-1} J(i,j) \\ &\quad (\text{since } J(0,\,0) = q-2,\, J(i,\,0) = J(0,\,i) = -1 (i \neq 0)). \end{split}$$

(1305)

$$\begin{split} &=q-2-2(l-1)+\sum_{j=1}^{l-1}\operatorname{Tr}\big(J(1,j)\big)\\ &=q-2-2(l-1)+\sum_{j=1}^{(l-3)/2}\operatorname{Tr}\big[J(1,j)+J(1,l-1-j)\big]+\\ &\qquad\qquad +\operatorname{Tr}\left[J\left(1,\frac{l-1}{2}\right)\right]+\operatorname{Tr}\big[J(1,l-1)\big]\\ &=q-2-2(l-1)+2\sum_{l=1}^{(l-3)/2}\operatorname{Tr}\big[J(1,j)\big]+\operatorname{Tr}\left[J\left(\frac{l-1}{2},\frac{l-1}{2}\right)\right]+\operatorname{Tr}\big[J(1,0)\big] \end{split}$$

(since the respective replacement in the J's are equal by the Stickelberger relations J(a,b)=J(b,c)=J(c,a) if $a+b+c\equiv 0\pmod l$) $\equiv 1+{\rm Tr}[J(1,1)]\pmod 2$ since J(1,1) is a conjugate of $J\left(\frac{l-1}{2},\,\frac{l-1}{2}\right)$ and ${\rm Tr}[J(1,0)]={\rm Tr}(-1)=-(l-1)\equiv 0\pmod 2$.

But now $\operatorname{Tr}[J(1,1)]$ is even if and only if $a_1+a_2+\ldots+a_{l-1}$ is even since $J(1,1)=a_1\zeta+a_2\zeta^2+\ldots+a_{l-1}\zeta^{l-1}$ so that $-\operatorname{Tr}[J(1,1)]=a_1+a_2+\ldots+a_{l-1}$. Thus $(0,0)_l$ is odd if and only if $a_1+a_2+\ldots+a_{l-1}$ is even, i.e. 2 is an lth power if and only if $a_1+a_2+\ldots+a_{l-1}$ is even. This completes the proof.

3. Examples. I. Let l = 11, p = 67. A solution $(a_1, a_2, ..., a_{10})$ of the system (4) is (-6, -2, -4, 0, -4, -5, -2, 2, -2, 0) and the remaining nine solutions are $(a_i, a_{2i}, ..., a_{10i})$ (i = 2, 3, ..., 10). Here $a_1 + a_2 + ... + a_{10}$ is odd and so 2 is not an 11th power modulo 67.

II. l=13, p=53. Here a solution $(a_1, a_2, ..., a_{12})$ of the system (4) is (-4, -2, 2, 0, 2, 2, -1, 2, -2, 0, -2, 2) and the remaining eleven are $(a_i, a_{2i}, ..., a_{12i})$ (i=2, 3, ..., 12). Here $a_1+a_2+...+a_{12}$ is odd and so 2 is not a 13th power modulo 53.

III. l = 13, p = 131. As in example II, a solution $(a_1, a_2, ..., a_{12})$ is (6, 2, 4, 0, 6, 0, -6, 2, 1, 4, 4, 2) and as $a_1 + a_2 + ... + a_{12}$ is again odd, 2 is not a 13th power modulo 131.

References

- [1] H. P. Alderson, On the septimic character of 2 and 3, Proc. Camb. Phil. Soc. 74 (1973), pp. 421-433.
- [2] N. C. Ankeny, Criterion for r-th power residuacity, Pacific J. Math. 10 (1960), pp. 1115-1124.
- [3] K. G. J. Jacobi, De residuis cubicis commentatio numerosa, Crelle 2 (1827), pp. 66-69.

- [4] E. Lehmer, The quintic character of 2 and 3, Duke Math. J. 18 (1951), pp. 11-18.
- P. A. Leonard and K. S. Williams, The septic character of 2, 3, 5 and 7, Pacific J. Math. 52 (1974), pp. 143-147.
- [6] P. A. Leonard, B. C. Mortimer and K. S. Williams, The eleventh power character of 2, Crelle 286/287 (1976), pp. 213-222.
- [7] J. B. Muskat, On the solvability of $x^e \equiv e \pmod{p}$, Pacific J. Math. 14 (1964), pp. 257-260.
- [8] J. C. Parnami, M. K. Agrawal and A. R. Rajwade, Jacobi sums and cyclotomic numbers over a finite field, Acta Arith. 41 (1982), pp. 1-13.
- [9] K. S. Williams, Explicit criteria for quintic residuacity, Math. Comp. 30 (1974), pp. 1-6.

DEPARTMENT OF MATHEMATICS PANJAB UNIVERSITY Chandigarh, India

> Received on 10.5.1982 and in revised form on 10.1.1983