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1. Introduction. Jacobi [3] has given neeessary and sufficient con-
ditions for primes g < 37 to be cubes modulo primes p = 1 {mod 3). For
example he proves the following

ProrpogrTION 1. (1) 2 48 a cube modyp if and only if L = 0{mod2),
and

(i) 3 is a cube modyp if and only if M = 0{mod3),
where (L, M) is one of the exactly two solutions (L, -+ M) of the diophantine
system (Glauss): :

i ip = TP 27 M7,
LI =1{mod3)

Emma Lehmer [4] proves the following resalis:

ProrosrrioN 2. Let p =1 (med B) be a prime, then

() 2 1is o fifth power modp if and only i » = 0 {mod 2},

{ii) 3 is a fifth power mod p if and only if 4 = v = 0 (nod 3),

where (%, u, v, W) is one of the exacily four solutions (z,u, v, w), (B, —u,

— 0y W), (&, ¥, — Uy — ), (2, — 0, %, —w)of the diophaniine system (Dickson):

16p = w4 50u?4-b0v? 12502,
{2) Fw = v —4uv —u?,
‘o =1 (mod 5).

Leonard and Williams [5] prove the following

ProrosTTION 3. Let p =1 (mod 7) be a prime, then

(i) 2 45 a seventh power modp if and only if z, =0 (mod2), and

(il) 8 is a sevemth power mod p if and only if @; = s = 0 (mod 3),
Where (@y, By, ...y ) 98 one of the exactly siw non-trivial solutions

(#01, Wy Bgy Fyy By Tg) s (wu — &y, @y Byy — (25 30, %(x_s—%)):
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(TI: iy Byy — Ty, 3 — 25+ 32), _’%(555‘1'“%)): (01, —Byy — Dy, —y, &5, Zg)y

(wlﬂ By —Byy —Boy §( —L5 —3T6), ““'-%(595”“555)):
(95'1y$4: —@gy By, 5 @5 +3%), —5 (@ +935))

(the two trivial ones being ( —67, 2w, £ 2u, F 2u, 0, 0), where p = £} To?,
t=1(mod 7)) of the diophaniine system of equations

{) T2p = 2z 42 (mu—i—m3+w4)+343 (a2 -+ 8a3),
(i) 12@f—1207 -+ 14705 — 4410 +-B8wo, -+ 2dwam, — 2400, S48z, -
+ 98x5; = 0,
(3) (i) 12a;—120}+ 4927 — 14725 + 280,75 + 282,24 - 4820, +-
- 24x.m, + 24mm, + 49002, =
{iv) 2, =1 (mod 7).

Leonard, Mortimer and Williams [6] prove the following

ProprosTTION 4. Leét p = 1 (mod 11) be o prime, then 2 is an eleventh
power modp if and only if @ ceviain condition involving solutions of a very
complicated diophantine system holds (the exact statement may be seen
in [6]).

Az goon ag a diophantine system (such ag the ones given above) is
available for primes p = 1 (mod 1) (! an odd prime), it is not unreasonahle

- to expect that a criterion for some small primes ¢ to be Ith powers modulo

» may be worked out, the cases I = 3, 5, 7, ¢ = 2,3 and I =11, ¢ = 2
being stated above. More work has been done on this topic by various
authors, for instance the cases I == 7, ¢ = 2, 3 have heen treated somewhat
differently by Alderson [1], the case ¢ = 1 (mod ) hag been considered
by Ankeny [2], the case ¢ =1 by Ankeny [2] and Muskat [7] and the
cages 1 = B, ¢<.19 by Williams [9].

Parnami, Agrawal and Rajwade [8] have given such a diophantine
system for all odd primes 1. Our object is to give a criterion for 2 to be
an [th power modulo p (p a prime = 1 (mod 1)) in terms of the variables
of the essentially unique solution of the diophantine system of Parnami,
Agrawal and Rajwade.

2. The main result.

THEOREM. Let p =1 (modl) then 2 45 an 1th power modulo p if
and only if

@1+8s+ ... +a;_; = 0(mod 2)

where (ayy @ny ..., @) i8 one of the emactly 1—1 solutions of the dprhan-
tine system of equa,twns .

-1

(i) p= 2“?—2—:“{%-{-15

=1 i=1
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I-1
(i) Za A _Z' Qeflyie = o0 =§“ﬂf+zwn

=1 fe=

Z--l
(4) (i} pt

H (2 a,-C") k where £ =
A2 =1
non-negative residue of n modulo 1 and o is the automorphism:
{—»2F
(iv) 146+
(v) a,+2a,+ ..
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&1 and where A(n) is the least

voo Fa, =0{mod 1),
+(Z'—1)al_1 =0 (mofl I)

(in (i} and (ii) the subsecripts of the a’s are to be considered moduls I and
a, iz taken te be 0).

Note that any of the 1—1 solutions gives the same eondition since
thege solutions are just permutations of each other.

Remark. The right hand side of (i) of (4) is a positive definite quad-
ratic form sinee it can be writben ag

-2
pE+{> (@ . Y+af,]  (note that = 0).
=i
Hence all the golutions of (i) alone can be obtained in a finite nomber-
of steps. Of thege only those solutions (e, 4., ..., @_;) are tc be retained.
which also satisfy (ii)—{v) of {4).
For eompleteness we give a (new) proof of the following known
Ligamea. 2 s an I-th power mod’ulo p if and only if the eyclolomic constant:
(0, 0), is odd.

Proof. Let Xy, = {w = Fylw and w+1 are both ith powers}. Then.

(5) 2 i an Ith power if and only # 1 e X,

On the other hand X, = U {m, 1/#}. In thig union the two sets {2, 1 [m}

and {y, 1y} are either the same or disjoint, Further # = 1/ if and only-
# # = 1 since # canmot take the value —1. Thus | X, is even unless.
18Xy, ie [Xyl is odd it and only i 1 e.X,,. This, together with (5)

gives the lemma, noting that (0, 0); = | Xgi. :

Proof of the theorem.
2 TG0
bt jd—1

_g—z —21-1)+ D3 I, 4)

1, f<i—1
(since J(0,0) = g—2, J(i,0)

(J being the Jacobi function)

= J(0,i) = —1{ # 0)).
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=g—2-20-1)+ Y Tr(7(1,3)
i=1
(I—3)2
=g—2-20-1)+ > Tr{J{L,§)+I (1, 1-1—j)]+

R\ [J (1, %i)] +Tr[J (1, 1—1)]

i -1 1-1
— g-2-a0-n+2 3w, g+ o [ (5L, )]+ o
f=1 g ]
(since the respective replacement in the J’s are equal by the Stickel-
berger velations J(g, d) = J(b, 6) = J(¢,a) ¥ a-Lb+c =0 (mod 1))
=1+Tr[J(1,1)] (modulo 2) -since J(I, 1) is a conjugate of

J(l_‘)l, Z—;l) and Tr[J(1, 0)] = Tr(—1) = —(I—1) = 0 (mod 2).

But now Tr[J(1,1)] is even i and only if a,t+a,4- ... “a,_, is
even since J(1,1) = al-bapl®+ ... +a, 07" g0 that —Tr[J(1,1)]
= O3+ G-l ... ay_p. Thus (0, 0); is odd if and only i a;+ @, e g
i3 even, i.e. 2 is an Ith power if and only if @y + a;+ ... - a;_; i8 even. This
completes the proof,

3. Examples. I. Let =11, p = 67. A solution (G1y Gageany Grg)
of the system (4) is (~6, —2, —4, 0, —4, —5, —2,2, —2,0) and the
remaining nine solutions are (a;, Gy ..., ) (& — 2,3,...,10). Here
A+ @+ ... d-ag is 0dd and so 2 is not an I1th power modulo 67.

IL I =13, p = 53. Here a solution (a,, sy ooy @yp) Of the gystem
(4) is (—4, ~2,2,0,2,2, —1,2, —2, 0, —2,2) and the remaining
eleven are (@;, Gy ..., @) (5 = 2,3, ..., 12). Here O+t ooo + 0y, I8
0dd and se 2 is not & 13th power modulo 53.

I 7 =13, p = 131. As in example II, & solution {a,, 4y, ..., a;,)
is (6,2,4,0,6,0, —6,2,1, 4, 4, 2) and as @@yt ... ey, I8 again odd,
2 is not & 13th power modulo 131.
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