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Discriminants of number fields defined by trinomials
by
P. LLORE’\TE B, NarT and N, Vina (Bareelona)

i. Introduction. In this paper we deal with the problem of the com-
putation of the discriminant of a number field defined by an irreducible
trinomial,

JlAy=F"1 AX*" L Be Z[X]

in terms of n, s, 4 and B. The case n = 2 ig well known, and the cubic
case was completely solved in [2]. The special case 8 = 1 has been con-
sidered by Komatsu in [1]. Our main result (Theorem 1) gives, exeept for
a few special eases, & complete solution to this problem, which in the cage
s = 1 improves the main theorem of [1]. The methods are quite different
from thosze of [1] and they can be easily generalized to the relative case.

2. The main theorem. Let K = Q(8), where f is a root of an irredn-
cible polynomial of the type,

FX) = X"+ AX°+B

where n, 8, 4, BeZ, n>sz1. Let m = (»,8), n = mn' and s = ms'.
The discriminant of & is known to he ([4], th. 2):
D = ( _l)nm—l),’imnBs-l ((ﬂf)zz'Bn’—s'+ ( __1)n’--1 (,H,r_Sl)n’-«-s’(s_t)s’_An'}m_
If 4 denotes the diseriminant of K we have,
{1 D = i(6)d,
where 'ri(B) ig the index of §.
Throughout this paper, for any prime p ¢ Z, we shall denote:
2,(r) = the greatest exponent % such that p’“fi reZ,
Ay, == A fptd)
B = B /p”p(B)
t_.p - gp((%r)n' n'—g" + ( 1)91—1(% st)n’—s’(sf)s'_A;,'),
.IlI == (R —8&)D (B) Ty (A},
= {n—38,, A)), '
bp (7, v, B))
o, = {8, v,(B)—v,{4)),
2, = [, 8,1,(4), 'vp(B)).
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Our main theorem is:

Tauorea 1. With the preceding wotations, let p e Z be a prime number
such that

(2} prae, if M,>0,
7 .
(3) pth,, or p]b— and —M, =15, i M,<0,
{2
(4) 12 i M, =0.
Then
{3) : v, (d) = no,(m) +n—d,
where
ay+ 6 —inf{ 3L, maxfso,(s), (n—s)o,(n'~sN}} of M, >0
by—int{—M,, nv,(n")} if M,<0,
6= b, if M, =20 and zﬁ-tp 8 evan,
g
by—2, if M, =0 and —1, is odd.

-
~p

Therefore, if for every prime p € Z dividing D, the corresponding
condition (2), (3) or (4) is satisfied, we have |d| = n %@, where v,(d)

iz given by (5). Moreover, by (1), 4> 0 1f and onlyr 1f D> 0.

Remark. It is well known that we may assume that v,(4) <n—s
or ‘v,(B) < = When applying Theorem 1 to a particular trmom.lal it
can be useful to put it in this situation.

For the proof of Theorem 1 we must discuss separately the cages

pf[‘B and p]B In the lafter case the proof is also different if M =0 or
a,

3. The case p{B. If p|4, then M, < 0 and b, = n. In this case The-
orem 1 asserts that

pin=0,(d) =0,

Y

(D)

which is obvious sinee if p{n we have 0,(D) = 0. If pf4, 1, =

— 10, (m) and the assertions of Thecrem 1 can be summarized in:

TEwoREM 2. With the above notalion, if p ¢ Z is a prime number such
that pt ABm, then

0 if

mif

v, (D) /m is even,

%@ = v, (D)/m s odd.
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Proof. We consider first the case m = 1. If pins(n—s), then piD
and the result is clear. Therefore we assume that pins{n-—g). In particular
»>> 2.

Bince pfsmin—s) 4, F{X) = X1 nX"*3-s4) has no multiple faec-
tors mod p other than X. Hence, every irreducible factor of f{X) (mod p)
has multiplicity less than three. Let # be a multiple root of f(X) (mod p}
in an zlgebraic closure of Z/pZ. We have

sd B _ wB
T (n—-s)4

hence n e Z[pZ, since (n—8,8) = (N, 8) = L. If £e Z/pZ iz another mul-
tiplercot of F(X) (mod p), from (£fx)® == {£/n)"~* =1 and being (s, n —s) =1
we conclude that & = 7.

Therefore we have proved that if p|D then the factorization of f{X)
into irreduciblé factors (mod p) is:

(&) = X —mPa(X) . elX

where the ¢;{X) are all different. By Hensel’s lemma f({X) has a factor-
ization in @,[X] which leads to p = d-p;* ... ‘P, Where the p,; are prime
ideals of K with Ngp(p,) = peElFdX) and o is an ideal of K with Ngg(a)
= p* Therefore, when pid, p ramifies and the decomposition of p into
a product of prime ideals of K must be

) (mod p),

_pi.pl-.” Py,

with Ngg(p) = p, and since p > 2 this implies that v,(d) = 1. By (1)
we distinguish this case from 2,(d) = 0 according to »,(D) being odd or
even. .

In the general case {(®, 8) =m>1, we consider the polynomial

g(¥Y) = ¥+ A¥Y"+B.

If D’ denotes the diseriminant of ¢(¥), we have D == 1B lm" (D)™,
hence v,(D) = v;(D)/m. Since g(X™ = f(X), g(Y) is irreducible over
0 and » = §™ Iz an algebraic mteger of K which ig a root of ¢(¥). Let
L = Q{w), we have

(6) a = (&)™ Nyo(Pgz),

where d' denotes the discriminant of L and Zy,; the diseriminant of
K |L. For every prime ideal p of L Iying over p we have mw ¢p, since
p4mB. Hence the polynomial X™ - is separable (modp)and p is non-
ramified in K /L. Therefore ptNyg(Zg;) and v,(d) = m-v,(d"). And we
have already shown that v,(d) = 0 or 1 aceording to v,(D’) being even
or odd. :
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4. The case p|B and M, = (. For the proof of Theorem 1 in thig
case; we apply the results of the preceding section and the following
Jerama. ] . ‘

Tsnga 1. Let I be o number field, v a positive integer and 5 ¢ I an al-
gebraic integer such thet g(X) = X" —f is irreducible over L. Let % be a
700t of g(X), M = L(y) and Dy, the discriminant of ML, For every prime
ideal p of L not dividing (r, v,(B)), we have

""p(gfrI[L) m ’P'Q)p(’l")+7'— (Ti @p(ﬁ))

Prooi. Leb p be a prime ideal of L and denote ¢ = v,(f) and v = (r, o).
We prove the lemma first when v = 1. In this ease p is totally-ramified
in A since if P is any prime ideal of M lying over p and e = ¢ (% /p) denotes
the ramification index, from g(y) = 0 we have,

revp(n) = vg(8) = ce,

hence r divides ¢. Therefore ¢ = 7, p = B’ and o) = o, Lebt wep be
such that o,(m) = 1; let u, v be positive integers snech that ow—ry — 1
and let w = 5%/2". Since (r, ) = 1, we have M = L(»") = L{w). More-
over, o" e L and k(X) = X" is the minimal polynomial of w over L.
Now, if dyyr denotes the different of ML, since vg(w) = 1 we have,

Up(Zanz) = vp(Banp) = v (W (@) = vg(r)+r—1 = reuyr)+r—1,
a8 required. . ' i

In the general ease > 1, we denole ' = rjz, ¢ = alv, ' = Bla°
and HY) = X", Since % (X" [z") = g(X), § (¥} is irreducible over
L and § = 5"ja” is a root of j{¥). Let ¥ = L (&), Clearly the minimal
polynomial of 4 over ¥ is X" — " £. Hence, we know that for every prime
ideal P of ¥ Iying over p, :

'fi‘$ ('@-ZlifN) ES Tl‘vgp (9") +?"’ —1 3

a?inc-e .fvgg(f) =0 and (r’, ¢') = 1. On the other hand, since v, (zf) =0,
J(¥} is separable (mod p) and p is not ramified in N {1, hence,

vp(r’) = 2,") =7, (r) for all Pip,

and

"o{ZDanz) = V(N {Pay) = w{r'uy () +r —1} = w-vp(w)+1*;r
and Lemma 1 is proved. ' .

Supp_ose now that M, = 0. Then Vp(B) = n'v and v,(4) = (n' — 38",
where % is a positive integer. We have 4, = (m, u) and b, = n'z,. Let

9(Y) = ¥V A, T+ B,

icm
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Clearly, it D’ denotes the diseriminant of ¢{¥), we have v,(D') = i,.
Since p"Pg (X" /p*) = F(X), g(¥) is irreducible over Q and the algebraic
integer of K, & = 9™ /p* is 2 root of g(¥). Let L = Q(w) and Ilet 4" be the
discriminant of L. By the proof of Thecrem 2, if ¢,(D’) is even p is nob
ramified in L and if ¢,(P") is odd, the decomposition of p into prime
ideals of L is

(7 P =Pi'Ps e Dy

In any case, for every prime ideal p of I Iying over p, if ¢, denotes the
ramification index e, = ¢(p/p), we have w¢p and

m
P‘f(m; ep“)m Zy (Bp}“""”):
2y
since pte) by hypothesis, e, =1 or 2 and when p = 2, v,(D) is always
zero. In this way we can apply Lemma 1 to X™— 9"w, which is the mini-
mal polynemial of § over I and we have, if @¢;; denotes the diseriminant
of K|L,
{8) U (D) = m-vy{m)+m—(m, eyu),

for all pip. The relation (6) holds and gives

{9) 1 {d) = m-0,(@") + 2, (N0 (Pryz))-

Now, if #,(D') is even, v,(d} = 0 and ¢, = 1 for all plp. By (8) and (9),
2(d) = ' {ma,(m)+m—2z,) = n-v,(m)+n—D,.

Tf ¢,(D") is odd, v,(d@") =1 and by (7), (8} and (9) we have,

: m
Vp{d) = 0 vp(m) +n—b,+22,—2, (2,;—),
P

and the assertions of Theorem 1 are proved.

5. The case p|B and A, # 0. In this case we shall make use of 2
formula of Ore which eomputes v, (13(6)) in ferms of Newton’s polygon
of f(X). We recall some definitions about Newton’s polygon.

Let g(X) = X*+a, X" '+ ... +¢a,ceZ{X] and let p € Z be a prime
number. The lower convex envelope of the set of points .{(i,wp(a,i)),
0<i< n} (a, = 1) in the euclidean 2-space debermines the so-called
Newton’s polygon of f{X) with respect to p. Let &, ..., 8 be the sides
of the polygon and I, kb, the length of the projections of 8; to the X-axis
and ¥-axis, respectively. Let J; = (I, %;) and §; = £;4; for all 4.- If §; be-
ging in the point (r, v,(a,)) let r; = r4+ji; and .

b — a,.j/p”l’(“fa‘) if the point {r;, 'up(a,j)) belongs to S,
;=

0 . otherwise,
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for all 0 =< § = ¢ The polyromial ‘
g (¥) = b Yri4-b, Y571 L, +b;,5

in called the “associated polynemial of §,°. We define g{X) to be
“poregular” if p does not divide the diseriminant of any of the poly-
nomials g,{¥), ..., gu(Y). In the regular case, the shape of the polygon
determines v,{i(w)), being @ a root of g(X):

THEOREM 3 (Ore [3], th. 8). Let ¢{X) e Z[X] be a monic irreducible
polynomial and let I = Q{w), where o is a root of g(X). If p € Z is a prime
such that g(X) is p-regular (1) then

k -1 &
vlie)) = X', (Zhj)%}j(zihi—zi—hﬁca,
=2 j= il

and this is also the number of points with integer coordinates below Newton's
polygon of g(X) with respect to p, except for the poinis on the X-awis and
on the last ordinate.

Suppose now that I, # 0. Newton's polygon of f(X) with respect
to p has one or two sides according to M, < 0 or M, > 0. The agsociated
polynomials are, respectively, '

¥ +B, : it M,<0,

Yo+4, and A4,¥Y?+B, if M,>0.
Hence, f(X) is p-regular if and ounly if
(10) Copth, HOM,<0, or pfa.,
Under these assumpﬁions, by Theorem 3 we have
(n—1)v,(B)—n-+d, i M,<0,
1y (Ad)—n+(s~1)v,(B)+ap+e, if M, >0.
Moreover, if we denote, '

8 = n'v,(n')+ (n'—5"}v,(B),

T =s'v,(s) (' — s, (0 —¢") +n'v,(4),

¥ M,>0.

20, (i(6)) =

the conditions (10) of p-regularity imply in any case that § = 7, so that
always

0,(D) = (s —1)v,(B)+-nv,(m)+ m-int {§, T},

) ) Althoug?l our definition of p-regularity is more restrictive than Ore’s, which
involves all the irreducible factors (modp) of g(X), it is enough for our purposes.
Anyway ‘Theorem § is valid as stated.
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and ¢,(d) = v,(D)—2v, (i(ﬁ)) has the desired wvalues. There iIs one case
left with M, + 0; when p| —;;'— and — M, = b, In this case p = a™p

for some ideal in K since Ne‘wﬁ-on’s polygon has only one side with slope
v,{B)/n {[3], th. 1). Hence, p is wildiy-ramified in K and v,(d) > #. On the
other hand, it is easy to see that in this case p{m and v, (D) = (s — L), (B)+ .
+nv,{4). Being always 20,(8(0)) = m—1),(B)—n+b, we have
By{d) <1, 80 that v,(d) = n as desired.
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