Discriminants of number fields defined by trinomials

by

- P. LLORENTE, E. NART and N. VILA (Barcelona)
- 1. Introduction. In this paper we deal with the problem of the computation of the discriminant of a number field defined by an irreducible trinomial,

$$f(X) = X^n + AX^s + B \in \mathbf{Z}[X]$$

in terms of n, s, A and B. The case n=2 is well known, and the cubic case was completely solved in [2]. The special case s=1 has been considered by Komatsu in [1]. Our main result (Theorem 1) gives, except for a few special cases, a complete solution to this problem, which in the case s=1 improves the main theorem of [1]. The methods are quite different from those of [1] and they can be easily generalized to the relative case.

2. The main theorem. Let $K=Q(\theta)$, where θ is a root of an irreducible polynomial of the type,

$$f(X) = X^n + AX^s + B,$$

where $n, s, A, B \in \mathbb{Z}$, $n > s \geqslant 1$. Let m = (n, s), n = mn' and s = ms'. The discriminant of θ is known to be ([4], th. 2):

$$D = (-1)^{n(n-1)/2} m^n B^{s-1} \left((n')^{n'} B^{n'-s'} + (-1)^{n'-1} (n'-s')^{n'-s'} (s')^{s'} A^{n'} \right)^m.$$

If d denotes the discriminant of K we have,

$$(1) D = i(\theta)^2 d,$$

where $i(\theta)$ is the index of θ .

Throughout this paper, for any prime $p \in \mathbb{Z}$, we shall denote: $v_p(r) = \text{the greatest exponent } k \text{ such that } p^k | r, r \in \mathbb{Z},$ $A_p = A/p^{v_p(A)},$ $B_p = B/p^{v_p(B)},$ $t_p = v_p((n')^{n'}B_p^{n'-s'} + (-1)^{n'-1}(n'-s')^{n'-s'}(s')^{s'}A_p^{n'}),$ $M_p = (n-s)v_p(B) - nv_p(A),$ $a_p = (n-s, v_p(A)),$ $b_p = (n, v_p(B)),$ $c_p = (s, v_p(B) - v_p(A)),$ $c_p = (s, v_p(B) - v_p(A)),$ $c_p = (n, s, v_p(A), v_p(B)).$

Our main theorem is:

THEOREM 1. With the preceding notations, let $p \in \mathbf{Z}$ be a prime number such that

$$(2) p \dagger a_p c_p if M_p > 0,$$

(3)
$$p \nmid b_p$$
, or $p \mid \frac{n}{b_p}$ and $-M_p = b_p$ if $M_p < 0$,

(4)
$$p \dagger z_p$$
 if $M_p = 0$.

Then

$$v_p(d) = nv_p(m) + n - \delta,$$

where

$$\delta = \begin{cases} a_p + c_p - \inf\{M_p, \ \max\{sv_p(s'), (n-s)v_p(n'-s')\}\} & \text{if} \quad M_p > 0 \\ b_p - \inf\{-M_p, nv_p(n')\} & \text{if} \quad M_p < 0, \\ b_p & \text{if} \quad M_p = 0 \text{ and } \frac{m}{z_p} \cdot t_p \text{ is even,} \\ b_p - z_p & \text{if} \quad M_p = 0 \text{ and } \frac{m}{z_p} \cdot t_p \text{ is odd.} \end{cases}$$

Therefore, if for every prime $p \in \mathbb{Z}$ dividing D, the corresponding condition (2), (3) or (4) is satisfied, we have $|d| = \prod_{p|D} p^{v_p(d)}$, where $v_p(d)$ is given by (5). Moreover, by (1), d > 0 if and only if D > 0.

Remark. It is well known that we may assume that $v_p(A) < n-s$ or $v_p(B) < n$. When applying Theorem 1 to a particular trinomial, it can be useful to put it in this situation.

For the proof of Theorem 1 we must discuss separately the cases $p \nmid B$ and $p \mid B$. In the latter case the proof is also different if $M_p = 0$ or $M_n \neq 0$.

3. The case $p \nmid B$. If $p \mid A$, then $M_p < 0$ and $b_p = n$. In this case Theorem 1 asserts that

$$p \nmid n \Rightarrow v_p(d) = 0,$$

which is obvious since if $p \nmid n$ we have $v_p(D) = 0$. If $p \nmid A$, $t_p = \frac{v_p(D)}{m}$

 $-n \cdot v_p(m)$ and the assertions of Theorem 1 can be summarized in:

THEOREM 2. With the above notation, if $p \in \mathbb{Z}$ is a prime number such that $p \nmid ABm$, then

$$v_p(d) = egin{cases} 0 & if & v_p(D)/m \ is \ even, \ m & if & v_n(D)/m \ is \ odd. \end{cases}$$

Proof. We consider first the case m = 1. If p|ns(n-s), then $p \nmid D$ and the result is clear. Therefore we assume that $p \nmid ns(n-s)$. In particular p > 2.

Since $p \nmid sn(n-s)A$, $f'(X) = X^{s-1}(nX^{n-s} + sA)$ has no multiple factors mod p other than X. Hence, every irreducible factor of $f(X) \pmod{p}$ has multiplicity less than three. Let η be a multiple root of $f(X) \pmod{p}$ in an algebraic closure of $\mathbb{Z}/p\mathbb{Z}$. We have

$$\eta^{n-s} = -\frac{sA}{n}$$
 and $\eta^s = -\frac{B}{\eta^{n-s} + A} = -\frac{nB}{(n-s)A}$,

hence $\eta \in \mathbb{Z}/p\mathbb{Z}$, since (n-s,s)=(n,s)=1. If $\xi \in \mathbb{Z}/p\mathbb{Z}$ is another multiple root of $f(X) \pmod{p}$, from $(\xi/\eta)^s=(\xi/\eta)^{n-s}=1$ and being (s,n-s)=1 we conclude that $\xi=\eta$.

Therefore we have proved that if p|D then the factorization of f(X) into irreducible factors (mod p) is:

$$f(X) \equiv (X - \eta)^2 \cdot \varphi_1(X) \cdot \ldots \cdot \varphi_r(X) \pmod{p},$$

where the $\varphi_i(X)$ are all different. By Hensel's lemma f(X) has a factorization in $Q_p[X]$ which leads to $p = \alpha \cdot \mathfrak{p}_1 \cdot \ldots \cdot \mathfrak{p}_r$, where the \mathfrak{p}_i are prime ideals of K with $N_{K/Q}(\mathfrak{p}_i) = p^{\deg(\mathfrak{p}_i(X))}$ and α is an ideal of K with $N_{K/Q}(\alpha) = p^2$. Therefore, when $p \mid d$, p ramifies and the decomposition of p into a product of prime ideals of K must be

$$p = \mathfrak{p}^2 \cdot \mathfrak{p}_1 \cdot \ldots \cdot \mathfrak{p}_r,$$

with $N_{K/Q}(\mathfrak{p}) = p$, and since p > 2 this implies that $v_p(d) = 1$. By (1) we distinguish this ease from $v_p(d) = 0$ according to $v_p(D)$ being odd or even.

In the general case (n, s) = m > 1, we consider the polynomial

$$g(Y) = Y^{n'} + AY^{s'} + B.$$

If D' denotes the discriminant of g(Y), we have $D = \pm B^{m-1}m^n(D')^m$, hence $v_p(D') = v_p(D)/m$. Since $g(X^m) = f(X)$, g(Y) is irreducible over Q and $\omega = \theta^m$ is an algebraic integer of K which is a root of g(Y). Let $L = Q(\omega)$, we have

(6)
$$d = (d')^m \cdot N_{L/O}(\mathcal{D}_{K/L}),$$

where d' denotes the discriminant of L and $\mathcal{D}_{K/L}$ the discriminant of K/L. For every prime ideal \mathfrak{p} of L lying over p we have $m\omega \notin \mathfrak{p}$, since $p\nmid mB$. Hence the polynomial $X^m-\omega$ is separable (mod \mathfrak{p}) and \mathfrak{p} is non-ramified in K/L. Therefore $p\nmid N_{L/Q}(\mathcal{D}_{K/L})$ and $v_p(d)=m\cdot v_p(d')$. And we have already shown that $v_p(d')=0$ or 1 according to $v_p(D')$ being even or odd.

4. The case p|B and $M_p=0$. For the proof of Theorem 1 in this case, we apply the results of the preceding section and the following lemma.

LEMMA 1. Let L be a number field, r a positive integer and $\beta \in L$ an algebraic integer such that $g(X) = X^r - \beta$ is irreducible over L. Let η be a root of g(X), $M = L(\eta)$ and $\mathcal{D}_{M/L}$ the discriminant of M/L. For every prime ideal $\mathfrak p$ of L not dividing $(r, v_{\mathfrak p}(\beta))$, we have

$$v_{p}(\mathcal{D}_{M/L}) = r \cdot v_{p}(r) + r - (r, v_{p}(\beta)).$$

Proof. Let p be a prime ideal of L and denote $\sigma = v_{\mathfrak{p}}(\beta)$ and $\tau = (r, \sigma)$. We prove the lemma first when $\tau = 1$. In this case p is totally-ramified in M since if \mathfrak{P} is any prime ideal of M lying over p and $e = e(\mathfrak{P}/\mathfrak{p})$ denotes the ramification index, from $g(\eta) = 0$ we have,

$$r \cdot v_{\mathfrak{P}}(\eta) = v_{\mathfrak{P}}(\beta) = \sigma e,$$

hence r divides e. Therefore e=r, $\mathfrak{p}=\mathfrak{P}^r$ and $v_{\mathfrak{P}}(\eta)=\sigma$. Let $\pi\in\mathfrak{p}$ be such that $v_{\mathfrak{p}}(\pi)=1$; let u,v be positive integers such that $\sigma u-rv=1$ and let $\omega=\eta^u/\pi^v$. Since (r,u)=1, we have $M=L(\eta^u)=L(\omega)$. Moreover, $\omega^r\in L$ and $h(X)=X^r-\omega^r$ is the minimal polynomial of ω over L. Now, if $\delta_{M/L}$ denotes the different of M/L, since $v_{\mathfrak{P}}(\omega)=1$ we have,

$$v_{\mathfrak{p}}(\mathscr{D}_{M/L}) = v_{\mathfrak{P}}(\delta_{M/L}) = v_{\mathfrak{P}}(h'(\omega)) = v_{\mathfrak{P}}(r) + r - 1 = r \cdot v_{\mathfrak{p}}(r) + r - 1,$$
 as required.

In the general case $\tau > 1$, we denote $r' = r/\tau$, $\sigma' = \sigma/\tau$, $\beta' = \beta/\pi^{\sigma}$ and $j(Y) = Y^{\tau} - \beta'$. Since $\pi^{\sigma} j(X^{r'}/\pi^{\sigma'}) = g(X)$, j(Y) is irreducible over L and $\xi = \eta^{r'}/\pi^{\sigma'}$ is a root of j(Y). Let $N = L(\xi)$. Clearly the minimal polynomial of η over N is $X^{r'} - \pi^{\sigma'} \xi$. Hence, we know that for every prime ideal \mathfrak{P} of N lying over \mathfrak{p} ,

$$v_{\mathfrak{P}}(\mathscr{D}_{M/N}) = r'v_{\mathfrak{P}}(r') + r' - 1,$$

since $v_{\mathfrak{P}}(\xi) = 0$ and $(r', \sigma') = 1$. On the other hand, since $v_{\mathfrak{P}}(\tau\beta') = 0$, j(Y) is separable (mod \mathfrak{P}) and \mathfrak{P} is not ramified in N/L, hence,

$$v_{\mathfrak{p}}(r') = v_{\mathfrak{p}}(r') = v_{\mathfrak{p}}(r)$$
 for all $\mathfrak{P}|_{\mathfrak{p}}$,

and

$$v_{\mathfrak{p}}(\mathscr{D}_{M/L}) \, = \, v_{\mathfrak{p}}\big(N_{N/L}(\mathscr{D}_{M/N})\big) \, = \, \tau\big(r'v_{\mathfrak{p}}(r) + r' - 1\big) \, = \, r \cdot v_{\mathfrak{p}}(r) + r - \tau$$

and Lemma 1 is proved.

Suppose now that $M_p = 0$. Then $v_p(B) = n'u$ and $v_p(A) = (n' - s')u$, where u is a positive integer. We have $z_p = (m, u)$ and $b_p = n'z_p$. Let

$$g(Y) = Y^{n'} + A_p Y^{s'} + B_p.$$

Clearly, if D' denotes the discriminant of g(Y), we have $v_p(D') = t_p$. Since $p^{v_p(B)}g(X^m/p^u) = f(X)$, g(Y) is irreducible over Q and the algebraic integer of K, $\omega = \theta^m/p^u$ is a root of g(Y). Let $L = Q(\omega)$ and let d' be the discriminant of L. By the proof of Theorem 2, if $v_p(D')$ is even p is not ramified in L and if $v_p(D')$ is odd, the decomposition of p into prime ideals of L is

$$p = \mathfrak{p}_1^{\mathfrak{p}} \cdot \mathfrak{p}_2 \cdot \ldots \cdot \mathfrak{p}_r.$$

In any case, for every prime ideal p of L lying over p, if e_p denotes the ramification index $e_p = e(p/p)$, we have $\omega \notin p$ and

$$p \nmid (m, e_{\mathfrak{p}}u) = z_{p} \left(e_{\mathfrak{p}}, \frac{m}{z_{p}}\right),$$

since $p\nmid z_p^{\pi}$ by hypothesis, $e_p=1$ or 2 and when p=2, $v_2(D')$ is always zero. In this way we can apply Lemma 1 to $X^m-p^u\omega$, which is the minimal polynomial of θ over L and we have, if $\mathscr{Q}_{K/L}$ denotes the discriminant of K/L,

(8)
$$v_{\mathfrak{p}}(\mathscr{Q}_{K/L}) = m \cdot v_{\mathfrak{p}}(m) + m - (m, e_{\mathfrak{p}}u),$$

for all p|p. The relation (6) holds and gives

$$(9) v_p(d) = m \cdot v_p(d') + v_p(N_{L|Q}(\mathscr{D}_{K/L})).$$

Now, if $v_n(D')$ is even, $v_n(d') = 0$ and $e_n = 1$ for all $\mathfrak{p}|p$. By (8) and (9),

$$v_p(d) = n'(mv_p(m) + m - z_p) = n \cdot v_p(m) + n - b_p.$$

If $v_n(D')$ is odd, $v_n(d') = 1$ and by (7), (8) and (9) we have,

$$v_p(d) = n \cdot v_p(m) + n - b_p + 2z_p - z_p \left(2, \frac{m}{z_p}\right),$$

and the assertions of Theorem 1 are proved.

5. The case p|B and $M_p \neq 0$. In this case we shall make use of a formula of Ore which computes $v_p(i(\theta))$ in terms of Newton's polygon of f(X). We recall some definitions about Newton's polygon.

Let $g(X) = X^n + a_1 X^{n-1} + \ldots + a_n \in \mathbb{Z}[X]$ and let $p \in \mathbb{Z}$ be a prime number. The lower convex envelope of the set of points $\{(i, v_p(a_i)), 0 \le i \le n\}$ $(a_0 = 1)$ in the euclidean 2-space determines the so-called Newton's polygon of f(X) with respect to p. Let S_1, \ldots, S_k be the sides of the polygon and l_i , l_i the length of the projections of l_i to the l_i -axis and l_i -axis, respectively. Let l_i -axis l_i -and l_i -axis for all l_i -axis $l_$

$$b_j = egin{cases} a_{r_j}/p^{v_{\mathcal{D}}(a_{r_j})} & ext{if the point } (r_j, \, v_{\mathcal{D}}(a_{r_j})) ext{ belongs to } S_i, \ 0 & ext{otherwise,} \end{cases}$$

for all $0 \leqslant j \leqslant \zeta_i$. The polynomial

$$g_i(Y) = b_0 Y^{\xi_i} + b_1 Y^{\xi_{i-1}} + \dots + b_{\xi_i},$$

is called the "associated polynomial of S_i ". We define g(X) to be "p-regular" if p does not divide the discriminant of any of the polynomials $g_1(X), \ldots, g_k(X)$. In the regular case, the shape of the polygon determines $v_p(i(\omega))$, being ω a root of g(X):

THEOREM 3 (Ore [3], th. 8). Let $g(X) \in \mathbb{Z}[X]$ be a monic irreducible polynomial and let $L = Q(\omega)$, where ω is a root of g(X). If $p \in \mathbb{Z}$ is a prime such that g(X) is p-regular (1) then

$$v_p(i(\omega)) = \sum_{i=2}^k l_i \left(\sum_{j=1}^{i-1} h_j\right) + \frac{1}{2} \sum_{i=1}^k \left(l_i h_i - l_i - h_i + \zeta_i\right),$$

and this is also the number of points with integer coordinates below Newton's polygon of g(X) with respect to p, except for the points on the X-axis and on the last ordinate.

Suppose now that $M_p \neq 0$. Newton's polygon of f(X) with respect to p has one or two sides according to $M_p < 0$ or $M_p > 0$. The associated polynomials are, respectively,

$$egin{array}{lll} Y^{b_p}\!+\!B_p & ext{if} & M_p < 0\,, \ Y^{a_p}\!+\!A_p & ext{and} & A_p Y^{c_p}\!+\!B_p & ext{if} & M_p > 0\,. \end{array}$$

Hence, f(X) is p-regular if and only if

(10)
$$p \nmid b_p$$
 if $M_p < 0$, or $p \nmid a_p e_p$ if $M_p > 0$.

Under these assumptions, by Theorem 3 we have

$$2v_p(i(\theta)) = \begin{cases} (n-1)v_p(B) - n + b_p & \text{if} \quad M_p < 0, \\ nv_p(A) - n + (s-1)v_p(B) + a_p + e_p & \text{if} \quad M_p > 0. \end{cases}$$

Moreover, if we denote,

$$\begin{split} S &= n' v_p(n') + (n' - s') v_p(B), \\ T &= s' v_p(s') + (n' - s') v_p(n' - s') + n' v_p(A), \end{split}$$

the conditions (10) of p-regularity imply in any case that $S \neq T$, so that always

$$v_p(D) = (s-1)v_p(B) + nv_p(m) + m \cdot \inf\{S, T\},\,$$

for some ideal in K since Newton's polygon has only one side with slope $v_p(B)/n$ ([3], th. 1). Hence, p is wildly-ramified in K and $v_p(d) \ge n$. On the other hand, it is easy to see that in this case $p \nmid m$ and $v_p(D) = (s-1)v_p(B) + +nv_p(A)$. Being always $2v_p(i(\theta)) \ge (n-1)v_p(B) - n + b_p$, we have $v_p(d) \le n$, so that $v_p(d) = n$ as desired.

References

[1] K. Komatsu, Integral bases in algebraic number fields, J. Reine Angew. Math. 278/279 (1975), pp. 137-144.

[2] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), pp. 579-585.

[3] Ö. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), pp. 84-117.

[4] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), pp. 1099-1106.

SECCIÓ DE MATEMÀTIQUES UNIVERSITAT AUTÒNOMA DE BARCELONA Bellaterra, Barcelona, Catalunya, Espanya

> Received on 15.6.1982 and in revised form on 22.12.1982 (1311)

⁽¹⁾ Although our definition of p-regularity is more restrictive than Ore's, which involves all the irreducible factors (mod p) of g(X), it is enough for our purposes. Anyway Theorem 3 is valid as stated.