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1. Introduetion. For the quadratic fields the genus theory of Gauss shows
that the genus flelds are determined by the 2pd roots of “prime discrimi-
nant”. Here we deal with a Kummer extension generated by the /th root of a
positive rational integer m over the regular /th cyclotomic field k. We shall

construct the I-genus field (cf. § 2) of k( W) over k as a Kummer extension
which is generated by the adjunctions of the Ith roots of rational integers and
“Primérzahlen” [6] of prime ideals of k to k. For each prime factor p of m
satisfying the congruence p'~! =1mod[® we assume that the order of p
modulo [ is even when [ = 5.

For an algebraic number field F of finite degree over the field Q of
rationals, we denote by hy and Ep the class number of F and the group of
units of F respectively.

Let | be a prime number. If L/F is an Abelian extension whose Galois
group is of type (I, ..., ), then ‘we say that the extension L/F is of type
(4, ..., I). We shall use the notation « = f in F if o/f is the Ith power of a

number of F. If [ is odd and d is a real number, then we let \/d be the real
Ith root of d.

We denote by gy e the genus number of a Galois extension L over F. It
is determined by Y. Furuta [3]. If L/F is a cyclic extension, then gy, is equal
to the number gy, of ambiguous ideal classes with respect to L over F.

2. Regular Kummer extensions k(./p) and the i-genus fields. Let ! > 3 be
a regular prime and { be a primitive /th root of unity. We set k = Q({). We

call an extension k(\‘/ﬁ) for puek a regular Kummer extension generated by u.

Tet F= k(\'/ﬁ). We denote by F*¥(I) or k*(I, g) the lgenus field of F
over k, that is, F*({) = k*(l, 1) is a subfield of the genus field of F over k and
the degree (F*()): F) is equal to the l-component of ggy. Since [ is regular,
F*(I)/k is an extension of type (I, ..., I) (c¢f. [7], Proposition 2). In this section
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we shall construct k*(I, p) as a Kummer extension of k for a rational prime
# 1.
’ Now the class number k; of the regular /th cyclotomic field & is prime
to L There exists a rational integer h* > 0 such that hh* = 1mod!. Let
I=(1-{) be the prime ideal of k dividing ! and kg =Q(+("") be the
maximal real subfield of k. We denote by & the complex conjugate of a
number a« of k.
Let p be a prime ideal of k, prime to [ We can set
Jikk
= (n)

where n is a “Primérzahl von p” [cf. [6], Satz 157 in § 142); n is congruent
to a rational integer modulo 1* and =i is congruent to a rational integer
modulo 3.

LemMa 1. Let 1= 3 be a regular prime.

(i} If = and ' are “Primirzahlen von p”, then n/n’ is the I-th power of a
unit of Ey,.

(i) The class number of k(\i/f_t) is prime to L

Proof. (i) There exists a unit ¢ of k such that n' = en. Since =%t and
n'# are congruent to rational integers modulo -1, respectively, &f is also
congruent to a rational integer modulo I'~!. By Hilbert’s Theorem 156 (cf.
[1], Chap. V, § 6, Satz 3) we sec that ¢ is the [th power of a unit of E,.

Kummer’s Lemma ([1], Chap. IIL, § 1, Lemma 4) shows that & = {“&,
with 0 < a< /-1 and g0y € Ey,. Hence &f = £ and also & EE;’;(,« We set
e = {"eg, with g5, €y, .

Moreover, = and m' are congruent to rational integers modulo [,
respectively. Hence ¢ = {“sf; = A mod I? for some rational integer 4. We have
LU= = A1 mod 2 and {07 = 1 modI®. Therefore a =0Omod!, as
desired.

(i) Let k' =k (Un). It follows from [5] that

Qg ™ hWEAE,  E, 0 Ny k')

where Ny, is the norm map from k' to k and é =1 or 0 according as [ is
ramified in k', ¢r not.

If p is the “Primideal erster Art” ([6], Hilfssatz 37 in § 155), then
(Ey 1 E, " Nypk') # 1 and 1is ramified in k'. Hence ay = b, which is prime
to I

If p is the “Primideal zweiter Art™ ([6], Hilfssatz 37 and Hilfssatz 43),
then [ is unramified in ¥, Hence ay. , = k.

It is shown in [13] that h,. = a,., mod!. Thus we have (ii).

It is clear that the regular Kummer extension generated by a
“Primirzahl von p” over k is uniquely determined by p. '

Let
p=p;...5
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be the decomposition of p into prime ideals of k. For each i =1
can set

) eeen f WE

n h
= (m)
where n; is a “Primé#rzahl von p;”.

Lemma 2. Let 12 3 be a regular prime. Then p"*

(1 P =gy

for some unit ¢y of Ey .

Proof. There is a unit &; of k such that p"*" =¢n, ... =,. Since n7; is
congruent to a rational integer modulo ™! for each i=1, ..., g, p*™"
=g, &4, mod '~! for some rational integer 4,. Then ¢, £, is congruent to a
rational integer modulo I'~*. By the proof of (i) of Lemma 1 we see that &,
= (", with 0<b<I~1 and gyeEy,.

Moreover, n; is congruent to a ratlona} integer modulo [* for each i
=1, ..., g. Hence p"" = ¥4 A, mod*> for some rational integer 4,. Then
we have P D DDA T mod 2 and alo (MY = 1mod 2. Thus

b =0mod|.
Lemma 2 ensures that k(\‘/i) is a subfield of k(l/zy, ..., {/:rg)
3 be a regular prime and ¢ be a unit of k such that

" is written in the form

g

Levma 3. Let [ =
e# 1in k. Then |is ramified in k(/en}® . n’) where vy, ...,

t
rational integers.

r, are arbitrary

Proof. Since ! is regular, k({/g) is a ramified extension of k for each
unit & with & # 1 in k which is unramified outside L

i . . . ¥ F . B
We assume that [ is unramified in k(ifenit ... mf) for a unit & with g % 1
0}

in k. It then follows from [5, Teil I,, § 11], that there exists an integer x of k
such that

!

r
x' =enyt ... mfmodl.

Since [ is an ambiguous ideal of k over @, we have .

¥ =gy .. #fmodl.
Hence
(xR0 = ()~ () T

where 7,7, is congruent to a rational integer modulo '™ for each i =1, ..., ¢
and also (m®)""* = 1 modl'"*. It follows from [9] that the group of prime
residue classes modulo I'"!' in k is of type (I—1,1,..., 7). Hence (e2) *
=1mod 1. Then &8 = (s8)/(z8) "' and by the same proof of (i) of Lemma 1
we obtain £ = (%) with 0 <c<I-1 and & eEko

Moreover, m; is congruent to a rational integer modulo I* for each

(7)o H P mod

4 ~ Acta Arithmetica XLIV.1
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i=1,...,g. Hence x' = {*sgd; mod[* for some rational integer 4;. Then we
have =1 = = pell= Vgl ”A’ 'mod[? and also "V =1modIl>. Thus
¢ = 0 mod [ which implies z =1 in k, contradiction. ‘

W

If /=2, then Lemma 3 is not true. For example, 2 is unramified in
Q(f where p is a prime number such that p = —1mod4; 2 and the
infinite prime divisor of Q are ramified in Q(\/—

Lemma 4. Let L/F be an extension of type (I, ) and Fg, Fy, ...,
cyclic subfields of L, of degree 1 over F.

Then there exists a prime ideal o of F which is totally ramified in L if and
only if g is ramified in all Fo, Fy, ..., Fp.

Proof, The inertia field of g with respect to L/F is F.

Proposition 1. Let | = 3 be a regular prime. Then k* (1, p) is a subfield of

k(Y my, .y imy).

Proof. Let F = k(\/—) If F' is a cyclic extension of degree [ over k and
FF' is an unramified extension of F, then prime divisors of k which
are ramified in F’ are at most p,,...,p, and 1. Hence we can set

Fr=k({/e(T—0yny ... mf) where & is a wnit of k and r, ry, ..., 7, are
rational integers. '

Since k* (I, p)/k is of type (I, ..., D), it will suffice to show that if & s«é 1in
k or rs Omodl then FF' is a ramlﬁed extension of F.

If r 2 Omod! and I is unramified in F, then FF' is a ramified exiension
of F. If r#Omod! and [ is ramified in F, then 1 is ramified in all
 intermediate fields F, k({/pe(1—-0ym} ... m?) of FF' over k (s =0, 1,

,I—1). Hence I is totally ramified in FF' by Lemma 4. Therefore, 1f
¥ §é Omod ], then FF’' is a ramified extension of F.

Now we assume that ¢ #1 in k and r = 0. Then we see by Lemma 2

that F#£ F',  If s unramiﬁe(:lc)l in F, then FF’ is a ramified extension of F,
since [ is ramified in ' by Lemma 3,
If | is ramified in F and FF' is an unramified extension of F, then 1 is
not totally ramified in FF'. By Lemma 4 there exists a rational integer
s {1 <5< !—1) such that [ is unramified in k(\’/ pery ... /). By Lemma 2 it
is contrary to Lemma 3. Hence, if ¢ ?é): 1 in k, then FF' is a ramified extension
of F.
Thus we see that F' = k(\/ Ty T ”) for some rational integers ry, ..., r
which is a subfield of k({/m,, .. ,\/fc

We note from [11] that [is unramified in & Kummer extension k({/ i;i) if

and only if m~! = Ilmod? where m is a positive /th power free rational
integer.

F, be

4

Prorosirion 2. Let F-= k(\/~ ) be a regular Kummer extension generated
by a rational prime p such that p'~' s 1modI* and p # .
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Then we have
(Ex :Ey " NpyF) = L.
Proof. We consider regular Kummer extensions k; = k(\‘/;r:) and the
Hilbert norm residue symbols (ELP—) for i=1,...,g and ¢cE,. We have

by (1) i

& p Rl e phkhn e T
@ RE) (BB,
w P P;

since p; is unramified in k({/g) and k; for jsi. On the other hand
G-
P: P P
where (—E) is the [th power residue symbol defined by (i) {/E
i Pi
) is the Artin symbol of k(!/2) over k. Let f be

1/ [
= (____k(\/a) ){/E and (ﬂﬂ
Pr Pi

the order of p modulo L It then follows that

(52)=1=(5) -

<p; splits completely in the ~ P-th cyclotomic field k({f’f]
<p’ =1mod P <p'~! = 1modi®.
Hence, if p'"!'z 1mod/?, then { is not a norm in ky/k, that is,

(B ExnNypk) 21 fori=1, .., 9.

The number g of amblguous ideal classes of k; over % is given by
Gy = I PAE,: EkmN,‘imk) where d =1 or (0 according as [ is ramified
in k;, or not. Since hy = a4 mod! and hy, is prime to ! for each i by Lemma
1, Tis ramified in all kl, s ke Therefore we have (Ey 1 By Nypok) = Lor i
=1,....,g. Thus it 'follows from (2) that (E:Ey N Ny F) =

PropositioN 3. Let F = k(\'/ﬁ) be a regular Kummer extension generated
by a rational prime p such that p'~' = 1 mod I*. Let f be the order of p modulo
L If fis even, or 1 =3, then

(Ek E.lz M NF/J(F) =1.

Proof ILet N be a number of odd r with 1 <n</! such that
p" ¢ lmod!l. If f is even, then N = (I—1)/2—1. It follows from Theorem 5 of
[10] that (E, N Ng,F 1 EQ) 2 I"*! and also (Ey:E, 0 NepF) =1.
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If =3, then { is a norm in F/k, because p' ' = 1 mod I?.

Assume that I=3mod4, p""! =1mod# and f=(I—-1)/2# 1. If p*
= (x?+1p*)/4 for some rational integers x, y with y % Omod ! where #' is the
class number of Q(ﬁ), then we see by Theorem 8 of [10] that the class
number of F = k({/r;;) is prime to /. In this case 1is unramified in F and gy,
= WIAEy: Ey ™ NpyF), Thus we have (E :E N NgF)=I, since h;
= app mod

THeOREM 1. Let k({/‘ ) be a regular Kummer extension generated by a

rational prime p # 1. If p'~* = 1 mod I* and E, is contained in Ny, (k(1/p)),
or if P71 % 1mod #, then

:
e, = k(s )
is the l-genus field of k(/p) over k and (k*(l, p):k(L/p)) = 1+=1,
Proof If p'"! =1mod!* and E, = N AL (/p)), then [ is unramified
in k({/p) and g 4. =a hkl“l. If p'~'# 1mod/?, then [ is

ramified in k(< '/p) and it = Cegdipe = Il

k(%) is a subfield of k{{/=,, ... \/n )} by Proposition 1, we have

k (I, p) = k(/my, ..., Umy).

3. Regular Kummer extensions k(\/n_a) and the [-genus fields. If | =3, the
constructions of the genus fields of k(\/— ) are explicitly given by H. Wada
[12] and F. Gerth IH [4]. In this section we let{ > 3 be a regular prime and
k=0Q() be the Ith cyclotomic feld.

In order to construct an unramified extension of a number field we need
the following three lemmas, :

ABHYANKER'S LEmMaA (cf. [2] and [8]). Let L= L,L, be a composite of
number fields L, and L, of finite degree over a number field F. Let P be a
prime ideal.of L lying over a prime ideal p, of L, for each i = 1, 2. Let ¢, be the
ramification index of p, over F for each i =1, 2.

If py is tamely ramified over F and e, = Omode,, then L/L, is an
unramified extension at P,

Let p be a prime number such that p # ! and p'~* % 1 mod /2. Then [ is
ramified in all k(/7)), ..., k(i/n,) by Proposition 2.

Lemma 5. Let p be a prime number such that p I, p'~* # 1 mod * and
g = 2. Then there exist rational integers a; (1< a<I—1) such that 1 is

unramified in k(/mim) for i=2, ..., ¢.
k(/mim), ..., k(& im) for i 1,

Proof. If 1 is ramified in k(, R AR
then [ is totally ramified in k(\/_l, \/— )} which is contrary to the fact

~! by Proposition 2. Since

icm
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k(L p) = k(Y my, e,

orem l.
Lemma 6. Let d, and d, be the I-th power free rational integers prime to

I Let d, #dz in k. Then 1is not totally ramified in k(/d,, l/d

Proof If d"' =1 or d5 ! =1mod then [ is unramified in k(\/dl) or
k(/dy)-

If 7' =1+41Ix;, and d5 ' =1+Ix, for some rational integers x;, x.,
prime to I, then there exists a rational integer r (1 <r <!—1) such that
rx; +x;, = 0mod /. Hence

(@ dy) "t = (1+5x,Y (1+Dxy) = Lmod I2,

Therefore | is unramified in k({/dd,) which is a subfield of k(/d,, 1/dy).

Let m be a positive /th power free rational integer, prime to I For each
prime factor of p of m, let f, be the order of p modulo I and g, = (I—-1)/f,
be the number of distinct prime factors of p in the !th cyclotomic field k.

First we construct the l-genus field of k{{/ﬁ) over k where every prime
factor p of m satisfies p'"! =1modP® and f, is even. Let k*{/, p) be the
I-genus field of k(\[ ) over k given by Theorem 1. We note that k(\/_ } is
a subfield of []k*(l, p). Then we prove the following

plm
‘TueoreMm 2. Let 1= 5 be a regular prime and m be a positive -th power

free rational integer, prime to 1. Let K*(l) be the l-genus field of K = k(\’/r;) or
K =k(l/lmy over k. If p"* = 1mod * and f, is even for each prime factor
p of m, then . :

K*() = KH (1, p),

plm

1%,

) = < Plm

I1¢,
pim

Ym,) is the I-genus field of k({/;)) over k by The-

i K =k(/m),

*(1):K —_
(&b if K =k(im),
and (Ek . Ek m NK/J:K) = 1

Proof, (i) Let K = k(\/—) Then | is unramified in X and > ({, p) for all
pim. Applying Proposition 3 and Theorem 1 we have ([]k*(l, p):K)

plm
=[11%/1, since K is a subfield of []&*(, p). It follows from Abhyanker’s
|m plm i
Le;nma that K -[Jk*(l, p) = [Tk*(L, p) is an unramified Abelian extension of

plm

plm
K and also a subfield of K*(I). Hence (K*(I):

number formula [3} of K over k we obtain

= []71°/1. By the genus

phm
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(K*(I):K) = HI“P/I(Ek E, v NgpK)

pim

which is equal to the lcomponent of agg = ggy. Thus

' (Ek:EkmNK/kK)2 1 and K*U) =nk*(l, p).
plm
(ii) Let K = k({/lm). Then [ is ramified in K but unramified in k*(l, p)
for all pl/m which shows that Kn[]k*(l, p) =k. Applying Abhyanker’s

plm
Lemma and Theorem 1 we see that K -Hk* (4, p) is an unramified Abelian

plm
extension of degree []I”” over K and a subfield of K*{/). Hence (K*(!): K)
plm
> []!”. By the genus number formula of K over k we obtain
plm |
(K*(1): K) = I[] 1*"/l(E, : Ey 0 NguK) = [T 1A By 1 By 0 NigpK).
plm pim :

Thus

(Ey:ExnNguK)=1 and  K*(1) = K-T[k*(, p)-

plm
Secondly we shall construct the J-genus field of k({/ﬁ) over k where m is
divisible by primes p such that p'~! # 1 mod [?,
Let m be a positive Ith power free rational integer satisfying the
following conditions:
3) (m 1) =1;

(4) m=mym; where ¢'"* = 1 mod/* and f, is even for each prime factor ¢
of mg, my =py ...p, and pi"' # 1mod? for j=1,..,¢ (¢t = 1).

For each prime factor p of m; we obtain the [-genus field k*{l, p)

= k(\/_l, s AT ) of k \/_ ) over k. We note that [ is ramified in k(f).

By Lemma 5 let a; (1< a; <1-1) be rational integers such that [ is
unramified in k(!/nin) for i=2, ..., g,, if g, > 2. We define

{5 K (1, m) = ] k(/nrz, .00, ,/rrlﬂvnﬂp).

plml
gp>1

Then
(ky (1, my):k) =

[T,

plmy

because ] (n’my)? ... (nyfem, )'or =1 in k if and only if c;= .. =¢,
o

= Omod | for all p]ml w1th gp > 1. 1If g, =1 for all prime factors p of m,;, we

set ki (I, my) =

i
O

icm
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Lemma 6 ensures that there exist rational integers b; such that [ is

unramified in k({/p”ipj) for j=2,....t, if r=2, We define

k, : if =1,
(6) 2, my) = {Hk( /b_,p) if =2,
Then (ky (1, my) k) =71
Let KO = k(\[f mo). Then

(7 K= 1+

qlmg
is the l-genus field of K, over k which is given by Theorem 2. We should
note that (K&(l):k)= [] i

qimg
We now obtain the 0follc':wing result:
LemMa 7. Let m be the I-th power free rational integer satisfying (3) and
(4). Then we have:

) (k5 ( my) Ky (L, my) KE() k) = 1|11”P/1.
plm

Gi) If m~i=1mod® and K =k(i/m), then K is a subfield of
1, my) Ky (1 my)-KED).

Proof. (if If t =1, then m = p, and k3(/, my)
ki (I, m)yn K () =k. Hence we have

= k. Since [ is regular,

(i (1, my)-Ka (L, my)- K1) k) = 17277 g [T = HI“P/I

qlmg
Let ¢ > 2. Since I is regular, ki (I, my)-k5 (I, my) n K§(I) = k. We see that
the first assertion will be proved if we show that ki (!, m)nky(l, m} =k If
g, = 1 for all prime factors p of my, then ki (I, m;) = k. Assume that g, > 1.

I k(\’/p‘t) is a subfield of ki (I, m} nk;(l, m;), then by Kummer theory u is
written in the form
(8) p=T1 w2 . oge = H(pa P ik
0] plmy » (l)
#p>1 '
where xy, ..., X, and y;, ..., y, are rational integers. If g, =1 (2</< t},

then y; = 0mod! by (1) and (8). For p=p, we derive from {1) and (8)

Z ax, = Z byy;mod |,

=2

b
[ =]
]
[l

t
Xy, = j};z b;y;mod 1.



56 N. Nakagoshs

icm

Za——l)ZbeJ_Omodl If

=2 j=2

= I mod!. Since [ is unramiﬁed in k({/n3? 7:,_ y eers \/ﬁl"mgp), I is unrami-
fied in k(ﬁ%“mz = k(\/_ ) which is contrary to the fact

Hence E by;#0modl, then Y g
i=2

pit# Imod?. For p= pJ w1th gp, > 1 (2] <) we have
Z ax; = y;modl,
XZE cn =X :yjmodf

op

Hence (Za—-lyj~0modl If ;% O0mod!, then Zai._lmodl and 1 is

i=2
unramlﬁed in k(\/g a contradiction. We see that y, = ... =y, = 0mod!
and u —1 in k. Thus &, (I, my) nky(l, m) = k. It then follows. that

[T et L 17 =TT 11

plmy almg plm .
2 and mi™! = 1mod . Since (pf‘pj)’

(ki (1, my) K5 (2, my) K ( k) =

(i) If m"™ ! = 1mod , then t > -1

=1modl® for j=2,..,1, we have
ptlxbj"”u—-l)(pl L p) i =1mod .
Hence ‘
L2 1 mod .

pEATNED = 1 mod 2 where

1
Consequently we have ) b; =1modl. We then observe that

2
k(4/my) =

is a subfield of k5 {!, 511 For each prime factor g of m, it is clear that k({/t})
is a subfield of K%()= [] k*(, g} thus K =4k(!/m) is a subfield of

glm
ky (1, my) Ky (L my) - KE(1).
Combining all these results and (5), (6), (7) we have
TueoreM 3. Let [ 2 5 be a regular prime. Let K¥{l) be the l-genus field of
K = k({/ﬁ) or K = k({/l—rﬂ) over k where m is the l-th power free rational
integer satisfving (3) and (4). .
Then we have

pEiips . 1)

K*(I) = K K, (), my)-

[Ti™e,
®y s K)o 4 PIM
(K*(1): K) %Hf""/t,

©oplm

Cmd (Ek:Ek M NK”‘K) == l.

(1, my)- K¥ (1),
Fm'=1mod? and K =k({/ﬁ),

otherwise;
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Proof Let K =k(W) and m"!=1mod/?. Then | is unramified
in K and t > 2, Applying Abhyanker’s Lemma and Lemma 7 we see that
K (L my)y-ky(l, my)- K§() is an unramified Abelian extension of degree
I_[l"f’/l2 over K and also a subfield of K*(l) By the genus number formula

plm
we obtain

(K*(I):K) =[] 1*/1(Ey : By~ NgyK).

rlm
Hence (Ey 1 E, " Ngy K) < LI (Ey: By n Ny K) = 1, then { is a norm in K/k.
It is clear that {eNg,K <> p'~! = 1 mod® for all prime factors p of m (cf.
proof of Proposition 2). Since ¢ 2 2, (Ey:E, " Ny, K) =1, as desired.

Let K =k({/m) and m'"* % Imod/*. Then [ is ramified in K, but
unramlhed in Ky(l, m) k3L, m}-K§(I). Hence K nki(l, m) ky(l, m)) x
KX =k. Applymg Abhyanker’s Lemma and Lemma 7 we see that
k'1 (I, my)-k5(1, my)- K§(l) is an unramified Abelian extension of degree
[11%/t over K and a subfield of K*(I). By the genus number formula of K

rlm .
over k we obtain

(K*(1): K) = I[] I°%/1(E, - E Nx,kk) =[] /E;: E, n NguK),

pim plm
where (E, :E, N NguK) =1, since t > 1. Thus we have the assertion.

Finally, let K = k(!/Im). Then lis ramified in K. Thus we have the same
proof as stated above.
For example, let ] =7 and m=2-3-41. Then 22 =3°=41>=1mod7;

26#£1,35%#1,415% 1mod7?% but m = 1 mod 7%, Let K mk(\/_ where k is
the 7-th cyclotomic field. Then (K*(7}:K)="7**1*3/72 = 7* '
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Irreducible discriminant components of
coefficient spaces

by

M. Friep (Irvine, Cal)* and J. Smrru (Boston, Mass.)

1. Introduction and notation. Let 4% and A% be two copies of affine n-
space defined over Q. The Noether cover is the Galois cover (with group §,)

a)n
associated to the map Aj — Ag that sends (y(1), ..., y(n) to the a-tuple of
symmetric functions

(x(1), . x(m) =(...\ (= 1) . ¥ ( yGA) oy @), )
HIY <. < j{i

For {i(1), ..., i(w)} =1 a subset of {1, 2, ..., n}, the coefficient locus X (I) is

defined by the equations x(i} =0 for all i¢l.

The discriminant locus is the image in A% of the points of A% for which
two or more entries are equal. We identify the irreducible components of the
intersection of X (I) with the discriminant locus. If the elements of / have no

-common divisor, besides some trivial components (hyperplanes), this intersec-

tion is irreducible (Theorem 3.1).

Cohen [!] has shown that the Galois group of the cover induced by
certain subvarieties of X{(I) is §,. An easy consequence of the above
irreducibility is a less sharp result: the group of the cover induced over X(I)
is S,. Examples show (§ 4) that our results may remain valid for all of
Cohen’s subvarieties.

For F a field, F is a fixed algebraic closure of F. Let 4} (F) denote the n-
tuples of elements (y(l), ..., y(m))e(F)". The subscript R {for “roots”) in-
dicates that the n-tuple is regarded as an ordering on the roots of the monic
polynotazal .

n

i

n
(y—y@)=pO)=y"+ 3, x@y".
1 i=1
Let AR(F) denote another copy of affine n-space: the subscript C (for
“coefficients™) indicates that the points of AA(F) correspond to the coefficients
of monic polynomials of degree n.
For X defined by equations with coefficients in F ([3], p. 181), X is F-

* Supporied by NS.F. Grant MCS 80-03253,



