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Since ¢(10)-d(6) = —5°+9° we may assume c¢(10)= —9°, d(6) = 5.
Hence R{15)= —3'8.x(6)!°-0(5)+55 -x(5)%- P(9). All monomials in the
first term are divisible by at least 10 powers of x(6) and those in the second
by at most 9, so.there is no cancellation of terms. Hence

0(5) = —65-2(0)-x(6)°, P(9) = 10'°-a(15)-x (57,
F = —9% - x{6)'°+10'%-a(15) x(5)° + P(8)+ ... + P(0).
Note that Emod(x(5)) is 3'%-4(0) times a product of fifteen terms of the
form 2%5-3%5 . x (6} 4+ 5-a(0p° - a(15)*5 where the g are various fifth roots

of 1. Since Fmod(x(5)} starts with 3'%-x(6)!® it must contain a product, =,
of ten of the above factors:

n=243% x84 .., +&:5% 2@ a(l5* with &5 =1
and .
F=-3%-x(6"°+ ... = -32-2"*-zmod (x(5)).
Hence the constant term, P(0), of F is —3'%.27%.51%.4(0)% a(15)* ¢.
A similar argument gives
F =10 a(15) x{5°+ ... =10'®-27%-q(15)-n’ mod (x(6)),
where 7' is a product of 9 factors of the form
223 x(S)+ ;-3 a (03 - a(15)'°

Hence P(0) = 5'9-2%-3%-q(0)® a(15)* . If the characteristic of F is not
2, 3 or 5, comparison of these two expressions for P(0) gives n-28 = —¢-37,
Put both sides to the 15th power to get a contradiction if (Char (F), 2'*°+
+3*%)=1. u

with 5} =1
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On sums of sequences of integers, I

by
A. BaLoc and A. SArkOzy (Budapest)

1. Throughout this paper, we use the following notation: ¢,,
€25 ovoy Mo, My, ... denote positive absolute constants. 0, #,, ... are real
numbers such that || < 1 for all i, We write ¢* = exp(x) and &*™* = ¢(a).
The distance from o to the nearest integer is denoted by |ix/| so that J1et]]
=min(¢—[a], [«]+1—~a). We put min{d, 1/0) = 4. We denote the least
prime factor of n by p(n), while the greatest prime factor of n is denoted by
P(n). v(n) denotes the number of all the prime factors of n:

v(n) = Z o.
Hlnptt Lpn
2. In this series, we study the arithmetic nature of the numbers of the
form a-+b where a, b are taken from “dense” sequences of integers. (See [2]
for some related results.) In fact, this paper is devoted to the proof of the.
following theorem:

TaeoREM. Let M > My, o < {1,2,..., M) and Z<{1,2,..., M}. Put

Am =31, Bm=73 1,
asp bsa
aeal bed
A=A(M), B=B(M).

Iif
(1)  AB> M¥{log M),
then there exist integers a, b such that aesf, bed and
(2 ~ Plat+b)yxy
where
B y=

exp |4(log M loglog M)'/?} for AB > M?exp {—2(log Mloglog M)'/?},

Ez"‘*"13' T L loglog M | for AB < Mzeip [ —2(log M loglog M)!/2].
AB log(M*/4B)
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The proof is based on the same method as in [1]. In fact, we need some
lemmas here which can be found also in [1]} (apart from some trivial
modifications of the constants); however, for the sake of completeness, we
give all the details also here.

(Note that the term y on the right hand side of (2) can not be replaced
by y!/27¢. This can be shown by the following construction: let p denote the

least prime number such that p>yY?7% and let o =4 = {p, 2p, ...
- [M/fplp})
3. For 1 € n<2M, we put
T(n) = y 1.
m10<a-+bSn
aced bed
First we need the following lemma:
Lemma 1. Put
M
max T(n—=T,
1€ng2M n
and let N be an integer such that
4 T(N)— =
Then we have
1 N
5 T e —
(5 (N) > 40AB 7
(6) M < N<2M
and
(7 A(N)B{N) < 13T(N).
Proof. Let us define the positive integer & by
1051 < 2M < 10~
Then by the defimitions of T, N and k, we have
' & %
AB=(SO(E0)= 3% 1= 1= T(0)
aes! hes akb J=1 yol=lagapgLod J=1
acs bed ael,bed
koo T T M
< Tooe £ 20100~ < 40M + — = 40T = bl
"‘,-; i 7 SAOM 1 40T(N) 5

which proves (5).
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Obviously, for n = 2M we have T(n+1) < T(m, so that T(n)g is
H

a decreasing function of n in 2M < n < + o0, this implies that

(8) N <2M.
Furthermore, we have
9) TN Y 1<(Y 1Y 1)<sN-N=N~
a+bh<N asN LA
acof bei acsH be®
(5) and (% vield that
—16AB— T(N) < N?
thus with respect to (1),
1 4B 1 M3 (logM)*? 2
—— /3
(10) N>40M>40 i > M3,

(8) and (10} yield (6).
Finally, define the positive integer r by

101 < N/10 < 107

Then by the definition of T and with respect to (4) we have

ANBN =(E )X 1)= > 1
asN bEN asSNbEN
acof bed ae hed
< Y b= 1+ 1+ 1
a+b<€2N at+bsN/10 Ni10<a+h&N N<a+b<2N
aes ,be® acs bedk aex bedt acd be®
N 10N
le T(10)+ T(N)+ T(10N) < Z T~—— FTop+ T
10 TN N TN TN
. L — =13 =
<2TM +11 v <2TM+11 W 137(N)

which completes the proof of Lemma 1.

4. Let N be an integer satisfying the conditions in Lemma 1 and define y
by (3). Then by (3) and (6), and with respect to the inequality

a+bja=2./b

{a, b= 0), for AB< M?ex r—2(longog.log M)?} we have
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2 og
M xpla—BYloglog M} = expq] dog M ogk
Y ABGXP{ log (MY/AB) © ¢ ]( EXP{OgAB+ log(M?/AB)

> exp {2(4log M log log M)?} = exp {4 (log M loglog M)"/?}

M?*  4log M loglog M}

so that in both cases in (3) we have
(11) y = exp {4(log M loglog M)"/}

= exp {3 (log 2M log log 2M)'?} > ¢
‘On the other hand, the function

xp 13 (log Nloglog N)'/?}.

J{x)=x+a/x

is increasing for Nﬁé x < +cc, so that with respect to (1) and (6), for
AB < M*exp | —2(log M loglog M)'?} we have

M? log M M?  4logMloglogM
=M xnda 2B joslog MY = expdl
y ABexP{ log (M2/AB) & ¢ } e"p{ °8TE T log(M%AB)

M3 4log Mloglog M
(og My ' Tog (M"{log M)
< exp |{(}log M —13log log M)+ 13loglog M} =

< cxp{log

M3 < N2,
and the ineguality
(12) y < N33

holds trivially also for AB > MZexp{

—~2(log M log log M)"2}; in fact, with
respect 0 (6), in this case we have

y = exp |4 (log M log log M)"/?} < exp {4(log N*loglog N3)'/}
< exp |8 (log Nloglog N)/*} = N0,
Put
2 N
. y? .
Let . denote the set of the integers k such that N/y <k
z < plk), P(k) <y. We write

K=TY1,

keX'

=71,

mk=n
mey
kex

= ¥ de(n) (for 0K x < N),

n<x

__1 172 =
Z_zy * Q_

N
" and U =[4N/y]j+1.

< 2N/y and

icm

UN SUMS O] SeqUences of imegers, | e

S(o) = Sy(o) = Z d e (na),

S=50 =Y dn

-1

Ul = Y, e(n),

n==

N U-1
SU@ = Y velna) (sothat o, = Yood)
ne 1 n-U<jsn '
Fia) = 3, elan).
asN
g
G = Z e (b
hoed

and

A =F@Ge@=_ 3 la+he)= Zhdm)

asN S
ac.adl bed

(so that h, == 1).

We start out from the integral

1 1
= {F(a)Ga)S{~a)da = j'H(rx)S(—oc)doc
)

1\ > f hyd e {(n—ma)dx = Z hod

op=1lm=1

Obviously, d, > 0 implies that

Pn) <y
while h, > 0 implies that n can be written in the form
(acf, he#).

Thus in order t6 prove the solvability of (2), it is sufficient to show that

a+be=n

. N
(13) v J=7Y hd,>0.
n=1
In order to prove this (by using the Hardy-Littlewood method), we need
some lemmas.
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@
Im Proof.

5. In this section, we assert some preliminary lemmas.
Lemma 2. If Vis a positiue integer, o« a real number then we have

=% Ti=F T 1

Mz

n=1 n= 1mk R mxy k< Nim
S, etm=¥| < 47?%l, e
Proof. With respect to the well-known inequality < Z Y1 Z Z 1<y g_ly_ .gﬂ =2N.
mEy ke mEy k< < y
(14) |L~e(B) < 2nlf e T
LevMa 7. If 1 S u< N and a, q are integers such thot 2< q <z and
we have (a, q) = 1 then we have
V-1 V=1 V1
|2 e(m)=V[< ¥ le(m)—1| < ZO 2anle] = w(V—1)Vix| < 4V?ja. (Sula/g) <2
n=0 n=0 n=
Lemma 3. For arbitrary real numbers «, x we have Proof. We have
. 1
| 3 e(ma)| < mm{x,m}. (15) S.(a/lg) = Z d.e(najq) = Z (Y d)elbla).
LEmsEx nEy b=1 LEY"
na=b(modg)

See eg. [3], p. 9

' Here the inner sum can be rewritten in the following form:
Lemma 4. If o, r are real numbers and a, q, f are integers such that ¢ > 0,

{a, q) =1 and {e—ajq < 1/q* then we have (16) Z d, = ’; ,,,fv;‘ul
f+q marip?n:'odq) Msb?n::\dq) r;fx;‘;
min < 6r+qlogq.
x=2f:+1 ( 2f[at H)\ = Y 1t=3 > o1
See e.g. {3], p. 23. mkagl;;?r:odq) P mkam:?r'l’wdq)
mey m=y
Lemma 5. If a, r, s are real numbers and a, q are integers such that s = 1, ke’

g>0,(a,q)=1 and lu—afq < 1/q* then we have

¥y oy o1+ ¥y 3oL

uly<k<u m<ufk

! 5 kl:egf;y mka= mb(ﬁ;odq) keX  mka=b(modg)
min - +1) 6r+qlogq).
xgs ( 2o ||) (Ci (r+glogg) | pk)>z>=q and (g, ¢) = 1 imply that (ka, g§) = 1 hence

Proof. With respect to Lemma 4, we have , Y 1=yg+0,

( i ) Lsfgl+1 kg 1 mkan——r:l!f(r}r'mdq)
min parma sl - min IR
x;x 2““')6” = kgl xm(k"‘?-‘;)q‘l'l ( 2”ax||) and -
ls/gl+ 1 Yo L=ufkq+0,
. §
< = | ] e ' mSy
S k; (6r+qlogq) ([Q’Jﬂu 1)(6r+qlogq) T
s (where 8, = 0, (a, b, k), 0; = 0,(a, b, k)). Thus we obtain from (15) and (16)
< 5+1 (6r+qlog g). that
. . . q

6. In this section, we estimate S, §(x), v, and K. Safg =3 ( ¥ dleb/q)

b= 1 LEY]

LemMa 6. We have S < 2N. _ no=bimodg)
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= EL, ( ) G} +01)+ ) ({{} +02))e(b/q)
b=1 \egyy Wy ks

4 u
— )+ 1} (b/g)
g %( qu u/y;.ksukq) 3kz~<.:u_ ¢ /q
ked" ke

L
=( Y Yy ¥ 'E)Z e(b/g)+ Z 0421
.ké‘uwp‘yq ufy <k<u b=l
N N
S0y T 1=t g2t
K< 2Ny Y
(where the numbers 0, depend on a, b, k) since by g = 2,

3 elbla) =

Lemma 8. If o is a real number and a, g are integers suchrhat 2 < g <z,
(a, ) = 1 and lo—alq <1/4Q then we have

1S ()] <8 Al

o m——p
yuz

Proof. We write § =a—a/q so that

|8l =

- 1
a-_""- —r———
q 90

Then by using Lemma 7 and (14), we obtain by partial summation that

N
S =|% (8

w(afg)—S,-1 (a/@))e (nB)]
— |3 Su(afa)(e(n—e((n-+ LB+ Sutu/a)e (N+ )

< i 253 —2m-4(1+2nN|ﬁ1 <M (1+7N Q)

Nq(N N) Ng . N N* N

B PP RAL OF TRV [ SRS
zQ +7qQ y g0 yQ Y

LEMMA 9. If a is a real number and a,  are integers such that z <9 <@,
(a, g) = 1 and |a—ajq| < 1/¢* then for large M (then also N is large) we have

18 ()| < 7;1—/—zlog N.

icm

gweme g car—wppes g o= [

Proof. By using Lemmas 3 and 5, and with respect to (12), we obtain
for large N that ;

Sl =] z duet) =] 3 el

em)) < Y1 ¥

kedt" ms min(Nfk,y)

e (mka)|
Y min (mm(N /k, ¥) L ) Y min( 1 )
v<Fh T A S NPT TP

N N N
£ (2@—) +1)(6y+qlogq) = 12m~ +6y+2mlogq+q_]0gq

=20 X

kedX mEmin(N/k,y)

M

N N 32
<12 432 yN +2—}ogN+QlogN
N N N N
< 12—; +3-; +2—z,—logN+ —L;-logN -(3+o(1));logN
N
(6+a(1)) ST logN<7ymlogN.
Lemma 10, If
17 1/ <a < 1-1/0Q,
then for large M (and N) we have
N
(18) 1S <7 mlogN.

Proof. By Dirichlet’s theorem, there exist integers a, g such that
<qg<Q (a9 =1 and
5\<x)
<
<%0

(17) implies that g > 1. If 2 < ¢ < z then (18) is a consequence of Lemma 8
while if z < g < Q then (18) holds by Lemma 9.

LemMa 11, If n is a positive integer satisfying U <n<

v, = K.

a
m_......

N then we have

Proof. For U< n< N we have

[ "
o= % &= 3 X1
Jmn~U+1 CJma-U+1 mk==j

M e

6 — Acla Arithmetica XLIV.1
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= 2

n—-U<mksn

[P TR VTS

1=y ¥ 1

ke (n— U)/k <mEntk

-3 5 1s3 (1)
ke (n— Uk <mEn/k heX” k
U U u u U1
S e, e = ¥ 2
g kgx’(k 4N/J’> kgi’( k 2"‘) 2k

U !
> - 1= ~~K>K
2k§«2N/y 4Nk§‘«

since for ke and n< N,

n N
kSN DT
LevMA 12, For t >0 and j=1,2, ..., et
K@= Y L
<5
osr 7

If M (and thus also N) is large and 2 < j then jor

(19) 2z <ty
we have
‘ t
(20) K(f)>———.
10> i Eiogyy

Proof. We prove the assertion by induction {with respect to j). Assume
first that j = 2 so that _
2z <t <yt
If 2z <t <y then for large M (then also N and y are large) we have
(21) K@= 3 1= } 1

s TSy rerey
wk)&2
1t 1 ¢ t
siSe  3logr” Ylogy~ 21(5log i’
£ y? and large M we have

while for y <t

(22) K=} 1= ¥
. H2<kst t2<pg st
3<P(".¢()< g') ¥y Z<pEgy

icm
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oy sl Y
2 A <y 2\d log./r

1 t 1t t
>

40log?y 2'(510gy)*'z

(since /t/2 > /y/2 = \/(22)*/2 > z and \ﬂ = ).

(21) and (22) yieid (20} (with j = 2) in both cases.

Assume now that (20) holds for all ¢ satisfying (19). We have to show’
that

<yt

implies
t
K. .
) 0> G oy
If 2z <t < y/2"? then this is a consequence of (20) and the trivial
_inequality K;(1) € K4 (r). (Note that the right hand side of (20) is a de-
creasing fanction of j) Thus it is sufficient to study the case
(24) YR < g Pt
Then we have
(25) Kjp1(t) = )3 1
Hr<hst
z<p(k) S P)) S5
viy<ji+i
S T e YK
/j"}'ly,iz-:p..y 2 <plst J+1 25 ! .
'~'<P(v1)n i’gbﬁy

If ¢ satisfies (24) and y/2 <p <y then
Jii—2 2y2-2 ) +1af—1 f
53”2 ?y/2 =y>2z and y’ /2 jyiz
Py y PSR 2

so that (19) holds and thus (20) can be used in order to estimate K;{t/p). We
obtain from (25) that for large M,

1 1 t/p
Ko () z— t —r
@2y B KD > 3 Glogy
t 1 I 1
= ey By
U+1)!(5103y)jy,'2<z1=$yp (]+1)I(5105y}jJ’y/2§:sy
t 11y t

— > .
> GEDIGlogyy y 3logy G+ 1) (5logyy ™
which proves (23) and this completes the proof of Lemma 12.
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" Lemma 13, For large M we have

N 6log
o8 joglog N
K> . exp( 5 Togy 10 og )

Proof. Define the positive integer j by

yor N _
53 < 2—}; <53
5o that
!N log N
y B
=] < <N, e
(2) 4 N 10g(y/2)
Then for large N, Lemma 12 yields that
K= Y 1z ¥ 1=K(@Np
© Nlpy<k<2N[y Niy <k< 2Njy
TPSFREY PRSP Sy
2N/y N 1 N
—exp { —jlog(5logy)
FTGlogs? ~ y Blogy ¥ TP }
>Nexp{ log N 8(7 log N gy)}
y Tog (y/2) log(v/2)

N N 6log N
myexp{ -1+ (1)) ]o glog N} }—cxp(——-s—ia—g-?loglogN).
7. In this section, we compiete the proof of the theorem.
By using Lemmas 2, 6, 10, Cauchy’s inequality and Parseval’s formula,
and with respect to (7), we obtain that
1

(26) IJ—~ T J‘F(a)G(a)U(—a)S(moc) dot| -

0

+1j0
=' J. F ()G (o)S (~ )( MHL_E)_),{G_}.
-1/Q
1-1/0
+ f (m)G(ac)S(~u)(l-—«p~£wa)) a’
+1/Q
+1/Q
< f PN 8(~a) * = ot

~1/0

icm

FAN

| Furthermore, by Lemma 11 and since k,
have

@n
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1-1/0

+ J IJ‘*‘(oc)HG(m)]|3(_,(,,)i(1+ U(Ja))da
+1;j0
+1/Q Uz
f FI1G () S Hd N
-2 1
b | FGIGEH | mx I5()-2d
+1Q<f<1-1/Q
+1iQ
11/ o
-1/ e |

L
< (8-!1:-2-[i + 14-}-?/_210g N) f{F(a}[ [G{a)| dot
o

<(S§N?%’ +14- 1,21 gN){(jw(a zda)(JlG(a |2dm)}”2

N
= (20@—;1\;2 + 1477z log N)(A (N)B(N))/2
N
< 157510 N(A(NB(N)? < 1555 i N log N(L3T(N)

< 60— mlogN( ()2

2 0 and v, = 0, for large N we

1 :
[ F)G @)U (—0)S (—a)da
0
1 2N 2NHU-1 an
= (Y h.e(na)) Z vpe(—na))doe = ¥ hy,z Y, hy
0 p=1 =1 n=1 U<neN
> ¥ hK=K 13K 1>k ¥ 1
vl " Coxipen e T mdgey
— KTIN).

(26) and (27} yield that
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1

oy I3 luﬁ(a)o'(aw( S (~a)da

1]

> —_KT(®N) —60—?:—2 log N (T(N))"/?

5N/
112
A —300).

K
> Hronpe X mlogN(N/ (T o

By (5), (6) and Lemma 13, here we have

(29) }\%(T(M)‘”

N
- 60@ I(}g N (T(N))l’,z

1j2
y!

NlogN ~

6log Nloglog N N\2 1
— AB L A——
>exp( 3 oz y 40 Niog N 300
1 [4By\V? 3log Mloglog M 200
” 10log M \ M? :

2 logy
(3) easily implies that

AB log Mloglog M
(30) Y . exp (4 Mﬁ_)

M2 logy

and finally we obtain by combining (29), (30) and the fact y < M3 (see the
line before (12))

6y = (T(N))”z——ym —300
N/y NlogN .
1 llogMloglog M log'? M
- —300 > —2 " 300 > 0.
> Tolog M = (2 log y 10

(28) and (31} yield that |J| > 0 which proves (13) and this completes the
proof of the theorem.

Acknowledgement. The authors would hke to express their thanks to the
" referee for his helpful remarks.
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