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1. Imtroduction. In this paper we discuss various properties distinct
integers n,, ..., ny taken from a short interval may have, such as

S .
H meN" for some meN, m > 2: the product of ny, ..., ny is a perfect

i=1

power;
IT m =[] m for distinct subsets f,, I, of {1, ..., f}: there exist two
el iely

distinct subsets of [ny, ..., ny} that yield the same result if their elements are
multiplied;
[T =[] n" for distinct subsets I,, I, of {1,....f} for certain
tefy el g . L. i
meN, iel, ul,: there exist two distinct subsets of {ny, ..., n;} that yield
the same result if their elements are multiplied, when repetitions are allowed.
Stated differently: ny, ..., ny are multiplicatively dependent.

)

" (T m)<f the total number of distinct prime divisors in the prime
iwl .
factorizations of the integers ny, ..., n, is less than the number of integers.

By short intervals we mean intervals [n, n+k(n)], where k{n) is a ‘small
function of n (such as ./n, or logn), for arbitrary n = L.

Our results can be summarized as follows: the above properties never
occur in ‘very short® intervals, sometimes in ‘short’ intervals and always in
‘large’ intervals.

For example, distinct sets of integers from

[n, n-+c; (log m*(loglog n)~3], for any n> 3,

have distinct products, for infinitely many ne N this also holds for [n, n+
+exp(c, (log n log log m*/?)], but for infinitely many neN there exist two
distinct sets of integers in [n, n+exp{c;(log n log log n)''?)] with equal
products and for all ne N the latter holds for [n, n+c,n***°]. The ¢, 3,
¢3, ¢4 are absolute positive constants.
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2. Basic lemmas and notation.
Notation. For primes p and neN we define the non-negative integers
v,(n) by n=[] p*™. For ne N the number of distinct primes dividing » is

w(n) and the gpreatest prime dividing n == 2 is P(n), while P(1):= 1. As usual,
7{x) is the number of primes not exceeding x, ged{n,, n;) denotes the
greatest common divisor of n; and n, and km(n, ..., #;) is the least
common multiple of n,, ..., n,. In proofs we sometimes use the familiar
Landau symbols O and o, as well as < (having the same meaning as 0),
for convenience. In the statements of our theorems we shall not use these
symbols and we reserve the symbols ¢, ¢q, ¢y, ..., kg, K1, ...y Mg, Ry, ... fOr
certain absolute positive constants, If m divides n we write mn. We denote
the number of elements of a set § with |S|. We write N™ for the set
{n™ neN}.

To prove our main results in Sections 3, 4, 5 and 6 we need upper and
lower bounds for the number of integers in ‘short’ intervals which are
composed of ‘small’ primes. The purpose of this section is to derive such
bounds. To be more specific we need the following definition.

DermvitionN. For k, ne N we define
S k= Y 1.
n<vsptk
Po) sk

We shall be interested in upper and lower bounds for f(n, k) in terms of %,
with k equal to various functions of n. Note that for k > n we clearly have
fn, k) = k—(z(n+k)—n(k), so

Ck=2nflogn<f(n, k)<sk for kzn

Our interests are in the cases where k<n
Lemma 2.1, For k=n", where 0 <a < 1,

S (n, k) < ak+2k/log k.

Proof. Let {m,..,n}={n<vo<n+k: P(t)< k}. For every prime
p <k delete one integer from n,, ..., n, with v,(~) maximal. The resulting
product is at most .

a
I, k= 11ph

IT »’~

psk
and at least #/ ™™, so that f < (k log k)/log n+mn(k).

S kI gk
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Note that Lemma 2.1 does not give an upper bound less than 2k/log k,
even when k becomes very small in comparison to n. The next lemma gives a
better upper bound for f(x, k) for such ‘small’ k (ie. k < exp (e, (log n)'/?)
where &, is some positive absolute constant).

Lemma 2.2, For k = exp(4™'(log m)'/?), where 4 > 3,

k loglogd}
logk logd |

T

fin, k) < max<l, ¢,

where ¢y is an absolute constant.

Proof. See [12], p. 37, 3.104. The proof involves a theorem on lower
bounds for lineair forms in logarithms of rational numbers.

The next lemma shows that ¥ 1<(1—y( f)~e)n* for suffi-

A€y En-kn®
. Ploysaf
ciently large n and f = « > 2/5. For f§ 2 o actually Lemma 2.1 is somewhat
stronger, but we shall use Lemma 2.3 only for § > a.
LemMMma 23, For 2/5 <a <1 put

fa—-}  for 3

a—%  for

1
2
1

5(&):{

s trdea
N

<o
So
and for Bz a put

b, ) = 1 ~a—(B— o) (B+a)/5(a).

Then for any y < y(a, B) we have, with Ny a constant depending only on a, B
and v,

(*) Z 129yN*  for
N<n€ N+ N&
Piny> NP

N = N,.

Proof. We follow the method of Ramachandra in [8]; we use the same
notation as in [8].
We have

X x" x
.\:dmﬁz-:x‘irx“ : ngxﬁ {H(WTW)_H(VH)}
Py =x1 B _
X x* (x| log(x/n)
)G

X+ x* x\| log(x/n)
‘-xﬂ'(n%xl—“{n( h )_ﬂ(—’;)} lOg X

:21—):2.

1l

W

)
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By Lemma 1 in [8] we have, provided that 1/3 <x <1,
Z, =(1—a)x*+0(x"log x).

. [T T
To estimate X, we divide [xf, x!7%] into N segments [x", x"'*'] where
Bo =P, By=1—0o (assuming f < 1—«, otherwise Z, =0). By the method
of Lemma 3 in [8] we have, for z = 3,

2, PG

BigngBi+t
Jog (x Pivr iy o) {140 ._L 1 +0{z max |R,|),
gix ! xﬂi log

d%z

log z

where the remainder terms R, can be estimated by Lemma 2 in [8]. We

obtain
_ x\~ 1/2 x‘ 1/3
IR} =0 (x“‘“‘”2 log x+ x!! =372 (E) + E) )

Choosing z = x* we get

max {ziRdl} —_ O(max {xtl-aj/2+610g X, x3(1-a)/2-1/2+35/2‘ x
dsz

This is o(x%) if § <8(x), 2/5 <a < 1.
< (1—pplog x for "< n<x"* we obtain

(Besr — B log x- (”O(I‘T;‘“))*“(" )}

= (1+0( l))zf Z (A =B)Biv1— B}

3
1/ +'<5})_

Since log(x/n)

N—-1

5ns Y {(1 Wiy

i=0

Note that
N—1 '
Z (1_ﬁi)(ﬁi+1_ﬁi)"”f.f(l“‘“ﬁ“““)(l“ﬁ‘}‘“)
i=0 :
when max (B.,—B)—0.
0EisN-1

Combining the bounds for X, and X, we obtain that

) 1>(l_a_(1—ﬁ~a)5(1~ﬁ+a)_ﬁ)xm

x<m < x+
Pmy>xl =8

for any ¢ > 0 and ary 0 < & < §(x) for x sufficiently large. Changing 18
into f and choosing y < y(a, f) now gives the assertion.

We use Lemma 2.3 to obtain a lower bound for f(n, k) when k = n*
= oo, Where ag is a certain constant less than 1/2 (x, = 0.49509...). We use

icm

Products of integers in short intervals 151

the specific dependence of p(a, f) in Lemma 2.3 on % und B to obtain such a
bound.

LemMa 2.4, For every o

2 o(= 0.49509...) there exist a c(a) > 0 and a
ng (o) such that

fk)>clo)k for k=rny Hg (o).
For o> % this actually holds for any c(a) <2~a"*.

Proof. Let o, f, y satisfy the conditions of Lemma 2.3, hence, the
inequality (*). Then, for k = »?,

(%ﬁﬁ) Stk

: p> W T p,
i=1

pl(n+€)>t(n+k) )
where k< p, <...<p, are the first 5 primes exceeding k and s = w({(n+
(n—i—k))—n(k)wyk
It follows that
@((n+1)...(+ 0} < (@7 = 1—p(B/x—1)+0((log k)" 1))k.

Since f(n, k} = k~aw((n+1)...(n+k))+n(k) we infer that

J(n, k)= (2—a“+}’(ﬁ/ozw1)+o(1))k.
Let ay be the constant defined by: 2/5 < ay < 1/2 and for & 3 a, there exists
a fi>o with y(x, f) > (1-20)/{f—a). (We have x, = 0.49509 .. J.

Then for « > a, there exists a y < y(a, f) with 2—a™ ' +y(B/a—1) > 0,
which implies the first assertion of Lemma 2.4. The second assertion follows
by taking in the above discussion the trivial values y = 0, f=a.

Remark 24. Plausibly, for every a > 0 there exists a c*() > 0 such
that f(n, k) > c*(@)k for k'=n* n= ny(a).

This certainly ho]ds for infinitely many ne N, as can be seen as follows.
We have

Y. t~gleYx for

nEx

Piny <n%2

x — oo,

where g(a™!) > 0 is the Dickman function. Let ¢ < ¢{e™" and x large, then
there exists an interval [t, t+*] = [1, x] with reN large with at least cr*
integers n with P(n) < 4n*, As 3n* <3(t-+1%" < 1* the assertion follows,

Lemma 2.3 Let nz3 and 1t < 09(log n) nfloglog n. Then the number
¥ (n, n') of positive integers v < n with P(v) < n' equals /¢ (o)

Proof. See [1], Corollary of Theorem 3.1.

Lemma 2.6, For every ¢ < 1/\/5 there exist infinitely many ne N such that
the interval [n, n4-k*(n)], with k*(n) = exp(c(log n loglog n)!3), contains
only integers which are divisible by a prime p > k*(n) but not by p*. -

5 ~ Acta Asithmetion XLIV.2
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Proof. The number of integers in [1, n] which are divisible by a square
x2 with x > n' is at most ¥ [m/x*] = nf{l+o(1))n"
x»allt
By Lemma 2.5, there exist at most /et o) integers in [1, n] which are
not divisible by a prime exceeding n'. Take ¢ such that (1 +o(l)}n'h
= r!(l+n(1))‘ then
t=(1+0(1))(2 log #/loglog ntsz,

Call the above integers in [1, n] bad. ‘Since their number‘ is E.lt most
2{1+o(1))n/n*" there must exist at least [$nl] consecutive mtegc]rsj
m+1, ..., m+{4n'*] which are not bad, ie. divisible by a prime p > n'l
but not by p*. Provided that n is sufficiently large, we have [in'"] = k*(m).
In this manner we obtain infinitely many meN for which [m, m-+k*(m)]
has the desired property.

In the next lemma we use the notation o(1) for several functions of »
tending to zero as n— 00,

LemMA 2.7. For every A = | there exist infinitely many ne N such that the
interval [n, n+ k*(n)], with

k*(n) = exp{% {(1+o(D){log n loglog n)”z},

contains distinct integers ny, ..., By with

and f - k*(n)l(i +0(1))I(1+;’l).

Proof. By Lemma 2.5 there exist ¥(m, m*") = mytt ok intesers o in
[1, m] with P (v} < m'”. Suppose every interval [ok, (¢+1)k], gelN, con-
tained in [m/2¢""°% m] contains at most m* integers v with P(v) < m'"".
Then

o ...oony<fH

‘I’(m, ml/r) < m/zt.(1+o(1))t+(m/k) mit
Choosing _
t ={1+0(1))(2 log m/loglog m*/

~and

ko = 3mAlr et exp{’iﬂ (1+0(1))(log m loglog m)”z}

7

we obtain the contradiction ¥(m, m!"t) < m/i'"+% Hence there exists an
interval [n, n+kl, with n?m/Zt‘(”"‘”", which contains distinct integets
Ry, ..., np with P(n) < m' and f > m*'. We have

k =exp {1—\—;—; (1+o(1)}(log n log log n)”l} = k*(n)
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and
@(ny-...ong) < wm') g milt < fUA
while
[ > mAt = gk (e + 2

3. Integers composed of few primes.

Derwrrion 3.1. The positive integers n,,
of few primes if w(ny ... n) <f.

Drpmnerion 3.2, The positive integers ny, .. ., ny are said to be composed
of few integers if there exists pg, ..., p,eN with

..., np are said to be composed

[0]

Pei
m=1I p”
i=1

for certain v;eZ with v; >0 (1<i</f, 1 €< w), while w <.

Note that the p; in Definition 3.2 are not required to be prime, which
makes the difference with Definition 3.1. We shall also consider, more
generally, the properties w(n; ... n;) < F(f), resp. w < F(f), where F: N
~ N 15 some given function with F{f) <f This last restriction is a natural
one since any f positive integers are composed of f integers, namely
themselves (take p; = n;, v;; = J;; in Definition 3.2). Being composed of few
integers is really weaker than being composed of few primes: m?, m(m+1)
dnd (m+1)* are composed of few integers but not of few primes (for most
meN). A still weaker property is being multiplicatively dependent (see § 6),
which is equivalent to Definition 3.2 without the stipulations v > 0. The
property of being composed of few integers (primes) is a basic one in the
context of this paper. From the existence of a set with w(n,-... 1) < F(f)
we infer the existence of a subset with certain desired properties in several
instances (5.1, 5.2, 6.1}.

We also recall a relation between the property of being composed of few
primes and another multiplicative property of consecutive integers (see [97):

There exists no subset |ny, ..., n;} of {n+1,n+2, ..., n+k} with
w(ny - ...onp) < f<> There exist distinct primes p,, ..., p, with pln+i for
i=1,.. k

The following theorem shows that short intervals do not contain in-
tegers composed of few integers. :

Treorem 3.1. Suppose ny, ..., ny are distinct integers in [n, n+k] com-

6]
posed of py, ..., po€ N (ie. m = [] p¥ with v, 0), where f, n, ke N. Then
j=1

(cos €1, &o are absolute positive constants):

(1) if @ < f then k 2 n'/® 2t~ 1)
() if © <f=/2 then k > ntVED,
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(3) if @ < Jf then k > co(log njloglog )",

(4) if <1 then k > n'9V'*,

(5) if w<f then k > ¢, (log nfloglog n)*.
Proof. The first two resulis are special cases of

17 min lw/d+(A-1)2)
k;n 1SA8f—w ,

which follows from
i

m<lem(ng, ..on) [ ged(m, ny).

1 1giafgi

See [12], p. 17.
The third result is elementary, too, but more invelved. See [13] or [12],
Theorem 2.8, p. 23. On the other hand, (4) and (5) are non-clementary (a
lower bound for linear forms in logarithms of rational numbers is used). See
[13] and [12], p. 35. Note that (1), (2) and (4) give a trivial conclusion if f is
large in comparison to », but that the lower bound for k in (5) is independent
of f. This bound (5) was first proven in [9] in the case w(ny ... ny) </

The next theorem is the main result of this section.

TueoreM 3.2. For ne N let k() := min {ke N: [n, n+k] contains distinct
integers composed of few primes). Let &€ > Q. Then (cy, ¢, are absolute positive
constants):

(1) k(n) > cq(log nfloglog n® for all neN with n 2 3,

(2) k{n) > exp ((ﬁ—e)(log nloglog n)”z) for infinitely many ne N,

(3) kin) < exp((ﬁ+6)(log n loglog n)'"2)} for infinitely many ne N,

(4) k(n) < ¢, n®*%® for all neN. '

Proof. See for (1), Theorem 3.1{5). From Lemma 2.6 we infer (2}: the
primes p > k*(n) must all be distinct. Lemmma 2.7 immediately gives (3). From
the proof of Lemma 2.4 we see that w((n+1)...(n+ k) < kil k > w0 nzny,
which implies (4).

When the number of elements f of a set {ny, ..., n;} < [n, n+k] with
w(ny -...one) < f is restricted, then better lower bounds for the length & of the
interval than k » (log n/loglog n)* can be obtained. When /' is small in
comparison to the size n of the integers involved then 3.1 (1) and 3.1 (4) are
superior to 3.1 (5). When f =/, = 2/ej then 3.1 (5) is better than 3.1 (1). If
f < k*? then 3.1 (4) gives a better bound for & than 3.1 (5), eg. when f = k%,
0 <o < 2/3, then k » (log n/loglog n)**. In the extreme case when f = k-+1
(ie. my, ..., n; arc the consecutive integers n, n+41, ..., n+k) we have
k >.exp(c(log m)'/?). Actually we have the following results about this im-
portant special case of consecutive integers,
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TheoREM 3.3. There exist absolute positive constants €1y Cy, C3, Cy SUch
that .
(I @{ln+1D...(n+k) <k for all (n, k)eNxN with k > ¢y n%499,
(2) w((n+1)...(n+k) = k for all (n, k)eNxN
with k < exp(c,(log n)'/?),
(3) x((n+1...(n+k) >k for infinitely many (n, ke Nx N
with k = ¢y n'le,
@) o((n+1)...(n+ k) <k for infinitely many (n, e Nx N :
with k < ¢, n'’,

Proof. For (1) we refer to the proof of Theorem 3.2 (4). To prove
(2); note that, since every prime exceeding k divides at most one integer in
[n, n+k], we have w((n+1)...(n+ k) = k—f(n, k)+n(k). So it is sufficient
to show that f(n, k) <m(k) for k <exp(c,(log n)'/3). This follows from
Lemma 2.2 if ¢, is sufficiently small. In [3] an averaging argument is given
that proves (3). Actually this argument can be used to prove both (3) and {4),
as we show now. For n, ke N with n>k>1 we put r:=[n/k] and we
denote by @, (m) the number of distinct primes exceeding k that divide me N.
Since every prime > k divides at most one integer among k consecutive
integers we have

-1 k

(*) 2 o[l ikt p) =5 (% 1)

jmQ J=1 p>k n<psSptik .
plv

The right side of (%) eguals
tk ‘ log n 1
—0 1) =tkllo +0 :
k<p§n-|~rk P (k <p-<_2rl+tk ) ( g(lc’g k) (IOE k))

k

max o ([] (n+ik+j) =: M.

O%isr—~1 i=1

Put

k
min - o ([] (n+ik+j)) =:m and
J=1

0gigt-1

Since the left side of (*) is at Teast mt and at most Mt it follows that

log n C, log n C,
g_; : b . ‘ > e | S )
m<k (Iog (log i )+ o k) and M=k (log (log k) o k

where ¢, and (', are certain absolute positive constants, Take 0 <e¢
<exp(—C,). Then for all sufficiently large neN and k:= [cn'®] there
exists an 0 < i< r—1 with

k
M = o ([T (n+ik+j)> k.
=1
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This implies (3), if és <2712 Now take ¢4 > exp(C1+2).. Then l’or. all
sufficiently large ne N and k1= [c,n'/?] there cxists an 0< i< t—1 with

k
m= (] (n+ik+)) <k—2klog k.
i=1 '
Since (k) < 2k/log k this implies (4).
Finally we remark that for every ke N we have

o(m+1)...(n+k) = kf.ﬂc(k)~1

for all sufficiently large n, eg. n 2 expexp(Ck), where C is an absolt'lie
constant. See [12], p. 38. On the other hand, for every ke N there exist,
though only conjecturally for k 2 2, infinitely many neN with w({n+1)...
v (n+k)) = k+n(k). See [5].

4. Multiplicative dependence.
‘DeriNmmioN 4.1, The positive integers ny, ..., iy are anultipli(.'atiue!y de-

pendent if there exist my, ..., m;eZ, not all zero, with H mt=1.
' i=1
Equivalently, sy, ..., #y are multiplicatively dependent if they ¢an be
divided inte two sets having equal products, wherc‘ repetitions are allowed.
Also, ny, ..., n, are multiplicatively dependent iff there exist py, ..., PN
with @ < f such that '

n =

pi¥  with (I<igfilgjsw).

e

v; €L

)

j=1

Note that being composed of few integers (Section 3) implies being
multiplicatively dependent,

Lemma 4.1. Suppose ny, ..., n, are distinct (f 2 2) integers in [n, n+k]
which are multiplicatively dependent. Then k = n!f/ =Y,

Proof We have [ n* =[] nj’ with meN for te(fud) = {1, ..., f}.
We may assume that I[rE'iJ = Q)J.EJLet max [m: teluJ] = My By symmetry
we may assume that foel. Then 0 divides || #)’, hence

jef
Hhy

mg? = ged (g% T 7, )| I ged g, )
) Jet jet

I’ll,‘n

Since ged (4, ny) divides [n,,—nje (1,

"y
n <k

..., k) we conclude that
[y, (S = 1m,
o < k rO.

TueoReM 4.1. For ne N let k(n) := min{keN: [n, n+k] contains distinct
integers which are multiplicatively dependent}. Let ¢ > O be arbitrary and let
¢g, ¢ be certain absolute positive constants. Then

-

icm

Products of integers in short intervals

157

(1) k(n) > cglog n loglog n(logloglog )~ ! jor all ne N with n > 15.
1

(2) k(n) > cxp((:»-/——i—a)(log n loglog n)”z) for infinitely many neN.

(3} k(n <exp((\/§+z:)(log nloglog m''?) for infinitely many ne N,
4} k(n) <c;n%*® for all neN.

Proof. Suppose [n, n+k] contains distinct integers n, ..., n, which are
)

multiplicatively dependent: [] ni' =1 for certain m; e Z with m; 5 0 {without
fw ]

loss of generality), Then P(n)<k for i=1,...,f, hence [ <[f(m k). To
prove that k3 log nloglog n{logloglog n)™! we . may assume that
k<{lognm?® and then we have, by Lemma 22, that f(n, k)
< k(log 3k)”?loglog (3k). Combining this with flog k = log n (Lemma 4.1)
we obtain (1).

To prove (2) we inveke Lemma 2.6: these intervals [n, n+k* (1] do not
contain integers n; with P(m) < k*(n). The third result (3) follows from
Lemma 2.7: w(ng-...-n;) <f implies that n,, ..., n, are multiplicatively
dependent.

Similarly, (4) follows from Theorem 3.3 (1).

5. Equal products. In this section we investigate intervals which contain

distinct subsets of integers S, and §, with equal products: [] s= ] s.
i . L | %eSt xeSq
Note that this property is stronger than multiplicative dependence:

the latter guarantees the existence of distinct subsets S, and §, with [| s™@
seSq
= JT 8™ for certain m(s)eN, seS; US,. Observe that integers in 5,1 S,
se8q .
can be deleted from both §, and S, without destroying the equality of the

products, so we may always assume that Sy and S, are disjoint.
Lemma 5.1, Suppose ny, ..., ny are distinet (f = 2) positive integers with
w(ny ... ny) < flog 2/(log(fv)), where v = max {l4v,(n)}. Then there exist
1K€ f '
porime

distinet disjoint subsets Sy, and 8, of {ny, ..., ne} with equal products.
Proof. For every subset § < {ny, ..., ny} put

p(S)=[]s= I1 97

ses P

Then
va(8) = 3 1,(8) € (0~DIS| < (v~ 1 f,
seS

so the number of distinct integers p(S), S = {ny, ..., n}, is at most
(1+@-1) )" € (f)* < 2. The number of distinct S equals 2, hence the
conclusion (elements in §; ~ S, can be deleted from both §, and §.).
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fieN be minimal with
ooy By} WiLh

CoroLLARY 5.1. In the above situation, let
2’1 > (of1)°. Then there exist disjoint subsets Ty and T, of ing,.
equal products and |Tyu T,| > f~f;.

Proof. Choose any subset F; of {1,...,f] with |Fy|=/f; (il this
is impossible take T = T = (). This gives disjoint §; and §; in F; with
[1 m =] m. Remove n, ieS;uS,, from {n, ..., ny} and start again.

=31 =) e .
This gwes sets Sy, S5, 83 S4,.... disjoint from each other, with

I1 ﬂ n {t=1,2,..). The process stops when there are less than

feSa o
A elements lcft Take T, = |J 8 and T, = |J §;.
fodd fuven

In the case when {ny, ..., n;} is the set {n <v < ndk: Plo) < k] we can
relax the condition in Lemma 5.0 to get equal products:

Levma 5.2, Let n, ke N with k = ky and suppose

'k
k) > 2 ——-—logloglog k.
f(n, k) Tog & OBloglog
Then there exist two disfoint subsets of {n+.1, vy NHKD with equal products
{(and ar least f(n, k)—2k logloglog k/log k elements).
Proof. Let {ny,...,n} © (n<vo<n+k: Pv) <k} with

(A1) | 2%k

where co (k) shall be chosen later Delete all n, with P(n) > k/oc (k). The
number of deletions is at most

log oo (k)

S (T = (1ot =% o)

klz (kY <p=k . k

Hence SD. = {m: P(m) < k/oo(k)} has more than f/3 elements. For all § < §,

we define
vP(S‘) tap(S) . . .
=[ls=T] p"" I] p7 =:p(S) p2(8),
se¥ pely pely
where P, = [p < kflog k! and P, = {k/log k < p < k/oo (k)}. We have

v,,(S) =Y vy(s) < max [v,(s)] ¥ 1< (og k) ¥ 1,

56§ § ¥&¥ yes
pls pls

g2 and k>eXp((log m'/?) (this follows from our

assumption on f(n, k) and Lemmzi 2.1),
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For peP, the trivial bound ¥ 1

sed
pls

I+log k, hence 1,(S)

<k gives 0,(S) < k(log k)*", For

peP, we have Y 1
sef
s

< 14[k/p] € < (log k)°V,

The number of distinct integers p(S) = p, (S} p,(S) is therefore at most

{k(log k)()(l)}li"1[ r{(log k)O{l]}‘IP2| = exp (EE_IE (%4.0(])))

Since the number of distinct § < S, equals 2°° > ¥ we can infer the

- ‘existence of two distinct S; and S, in S, with p(S,) = p(S,) if

B 3 k [loglog k ‘
(A2) leongogk( i +0(1)).

Now choose oo (k) = 3(loglog k)(logloglog k)™', then (Al) and (A2) are

log &

As in the prool of Corollary 5.1 it follows that there exist two disjoint
subsets of {n <v < n+k: P(v) <k} with equal products and at least /' (n, k) —

satisfied if f = 2 ~——’£~~_~ log log log k.

k
-2 i'"";?' logloglog k elements.

Lemma 3.3, Suppose [n, n+k] contains [ distinct integers which can be
divided into two distinct sets having equal products, where n, k, fe N with n
> 2. Then

2logn <f< k klog k
log k. lqg n’
Proof. Let [T m =[] n;, where {1,...,f} =TwJ with I, J disjoint
. del JeJ .
(without loss of generality). Then for iel, n =ged(m, []n) divides

Jel

H ged (n;, nj), hence n < k“' Similarly, n < k'l Since one of |1| or |J| does

Jed
not exceed [ f/2] we obtain the first inequality. For any set [n) of integers in
{n, n+k] we write, for every prime p, max v, () = v, = v, (M), Then we -

" have

"

Y v, = Z |lmy: r;ér(p ), p! divides n;}|

{%i(p)

< 3 Thip] <o, kD,

j=1
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Nowif[[ m = H n, where InJ = (2) then we have, for every p with i(p)el,

iel

that p® d1v1des ﬂ PP Hence
ied
v (A h]
A< [Tn=T1 1% TT o)
el 4 i #ip)
isl
<[JtI] P"”’”‘iﬂ P = k1.
i+
iefuJ

Similarly n! < k! (< k¥). Since one of [I| or [J| is at least f/2 we obtain the
second inequality.

TheoreMm 5.1. For neN let k{n):=minlkeN: [n, n+k] contains two
distinet subsets of integers with equal products}. Then, for arbitrary ¢ > 0 and
a certain absolute constant c,

' 1/ logn 2,
Y . { ’>( ,
(1) k(n) >4(loglog n)‘ for all ne N with n 24

. 1
(2) k(n) >exp ((—ﬁ—a)(log n loglog n)”z) for inﬁnil‘ely many neN,

(3) k{n) < exp((/2+¢) (log n log log n)'/2) for infinitely many neN,
(4} k{n) < en®**® for all neN.

Proof From Lemma 5.3 it follows that if [n, n+k] has two distinct
subsets of integers with equal products then k =
(1). Since [} n =]]n with 'nJ =@, and all ne[n, n+k), implies that

fel JeJ
P(n) <k for all ¢, Lemma 2.6 immediately gives (2). To prove (3), choose
1 < 2 < 1+8/2, then, by Lemma 2.7, for all n in an infinite subset N of N there

exist distinct integers ny, ..., n,in [n n+exp((ﬁ+a)(log n loglog n)'/%)] with
> k*( )(“‘"”)“”"” and cu(n, worng) < fHY Now we can use Lemma 5.1
we have v < (log 2n)/log 2+1 hcm.e wlng...-np) <% < (flog 2)/log(fi)
for all neN with at most finitely many exccptlons
_To prove (4} we use Lemma 5.2 and Lemma 2.4: if k> n%*%% and »n
> n, then the assumptions of Lemma 5.2 are satisfied hence k(n) < n®4%8,
To include n < ny we simply take ¢ sufficiently small.
In view of Remark 24 it is plausible that k(n) = O,(n") for all ¢ > 0.
Note that the lower bound k 3 (log n/loglog n)* for the length of an
interval [n, n+k] eontaining f (> 1) distinct integers which can be divided
into two disjoint sets with equal products, can be improved if the number f
of mtegcrs involved differs appreciably from k*? (use Lemma 5.3): e g if f is

((log m)/log k)* which implies .

icm
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bounded then k= »*¥; if f <
fzek O<as<l, 1hen .’\>n“"2

We also observe that for o = oy there exists a ¢, > 0 sach that there
exist equal disjoint products in [n, n+k], k = »*, with at least c, k terms (and
this is .probably true for o« > 0). This follows from Lemma 5.2 and Lemma
2.4. On the other hand, for o < 1 there exists a ¢, < 1 such that there do not
exist equal disjoint products in [k, n+k], k = »®*, with ¢,k or more terms.
This follows from Lemma 2.1 (with ¢} = a-+o(1)).

%, 0 <a <1/2 then k » (log n/loglog m)*; if

6. Power products. In this section we investigate sets of distinct integers
ny, ..., Hp with the property that there exists a non-trivial way to multiply

s
them that yields a perfect power: [] n'e N* for certain m, my, ...,
i=1
with m= 2 and mAm, for i=1, ...,/ A variant results when one does not
allow for repetitions (m; = 1 for i =1, ..., f): distinct integers the product of
which is a perfect power. Before turning to results on power products in
short intervals we give some results related to the well known Erdds—
Selfridge theorem ([4]) which states that the product of two or more
consecutive positive integers is never a perfect power.

What happens if one deletes one (or more) integers from a product of
conseculive integers? It is trivial to show that if one deletes one integer from
a product of three consecutive positive integers then the resulting product is
never a perfect square (it can be a perfect power but it can be proven that
the only instance is 2.4). Deleting one out of four does not give a square
either (as we hope to prove soon). However, deleting one out of nine (or
ten) positive consecutive integers does produce '@ square sometimes:
(1-)2:3-4.5-6-8-9-10 is a square. We shall prove (see Corollary 6.1) that
there exists a constant k(1) such that if one deletes 1 integer from a product
of k(1) or more consecutive positive integers then the resulting product is
never a perfect power.

Another natural question is: do there exist (infinitely many) products of
consecutive positive integers which are twice a perfect power? Since x?—2y?
=1 has infinitely many solutions x, y ¢ N there exist infinitely many neN
with n(n-+1)€2N% Theorem 6,1 implies that, apart from these infinitely
many products n{n-+1)c2N? there exist at most finitely many other prod-
ucts n{n-+1)...(n+k) with n, ke N which are twice a perfect power.

TuroreM 6.1. Let 0< 8 < 1/2 and aeN* Let ny, ..., n; be two or more
integers obtained by deleting at most Skflog k integers from k consecutive
positive integers, where k&N (k 2 2) is arbitrary. Then

mee N

for any m,my, ..., meeN

i
[ n'¢&aN™

=1
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with m=2 and ged{m, my=1 for i =1, ..., 1, except for at most finitely
many such sets:{ny, ..., ne}. If aeN, ad N® then the same is true but then
there are also the infinitely many exceptions ny, n, with nyn,calN? 1<
|y —ny < 2.
Proof. Suppose the conditions of Theorem 6.1 are satisfied and,
moreover, k > max {2P(a), ko(5)}, where k() is some (large} constant de-
s

pending only on §. We shall prove that []| neaN" gives a contradiction.

j=1
The cases with k < max {2P(a), ko{&)} shall be treated at the end of the
proof. Let ny, ..., n, be contained in (n, n+k], where ne Nu {0].
Suppose k= n Then there exist more than Jdk/log k primes p in

((n+ k)2, n+k] = (n, n+Kk], hence n, = p for some . Since 2p > n+-k we have
pin; for j#i and since p > k/2> P(a) we obtain a contradiction from
; .

[T n"eaN™ So k <n.
=1 .

Suppose n** <k (<n). By the well known theorem of Ingham, the
number of primes p in (n, n+k] is asymptotically k/log n, hence exceeding
dkflog k. So n; = p for some i and s:mce p>n>k we have pymn; for jsi

and we obtain a contradiction from H n*eaN™ as above. So k < n?3,
i=1
For ko <k < n*, where k, is an absolute constant, the number of
integers v in (n, n+k] with P(v) > k exceeds 3k (> dk/log k) by Lemma 2.1.
Hence P(n) =

and we deduce from H n}"f €aN"™ and ged (m;, m) = 1 that p”n,. This implies
j=1
(k+1)"< p" < m; < n+k, hence k < n'/™
Put n; = a; x", with 4;€ N m-free (i.e.
We distinguish two cases now.
Case 1: m 2 3. We refer to the paper of Erdés and Selfridge [47; it is
casy to see that, since k-< n'/™ and m 2 3, all products g, aj (1<i,j<f) are

distinct. This implies ([4]) that ¥ 1< x(logx)~ (1+O((logx 1),

aysx

Assummg without loss of generality that g, <... < ar we infler that
a>tlog t+¢ loglog t+0(r), in particular, a, > ¢ log t for ¢ = T (an ab-
solute constant). So, for T > 2, :

vo{g)<mforall p),fori=1,...,.f[

T T
(*) I & = exp(Y log(t log 1)+ 0(1)) = exp(Tlog T+ Tloglog T+ O{T)).

1= =2

Choose for every prime p dividing the product a, -,

n(p)ein,, ..., n;] with max v, (1) = v {n(p).
. sisr

.rdy an integer

p >k (> P(a)) for some i. Since p > k we have p.fn; for j#1
s
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Then
E |11 1€ 7 m; % n(p), dewdew th
II & = H piz
nﬁ'n(p)b‘p

m= ] m—I 1 .

B 11 SI& fing alp), pd divides g )| '_Elrk/rﬂ]
<f] ! <[[p7t 0 <k

P r

I
Note that every prime p dividing ] &, does not exceed k: if pla then
=1

!
p< P(@ <k and if pta, pls then, since ] a/'caN", we have pja; for
i=1
some f# i, hence plged(w, a)ged(n, n)llm—nlell, ..., k}. So there are
;
at most m(k) primes dividing [] «.
i=1

Put f* =f—n(k) (= 2). We have

Combining this with (*) (with T = f*) gives

loglog k )
—_— log k) |.
r* k(l fog k +0(1/log k)

ThlS contradicts f » k--dk/log k, since k = ko(é)
Case 2: m=2. As we saw above, 1_[ a, divides (] p)k! Hence it
i=1 pEk
divides, in fact, ‘

(T Pkt TT 2™ forany 2< P<k.

PESS pEr
Now
S S S
Voulap=Y 1= Y 1< ¥ 1=kip+1)+0(log k)/log p)
i1 L} te= 1 nanEnth ’
pla; o plng)ould eyt odd

for all p< k.
Also,

v, (k1) = kf(p—1)+0{(log k)/log p) for all p<k
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Hence

v ja; ) — 1 - 1
1T » o1 ETRUIES! sexp<-k 5 g_zog1p+0(n(P)log k))

psP pEP -
= exp(—ok+O(k/P)+ O ((P log k)/log P)),

2logp
o=y 8P
pprime pz'”l

conclude, choosing P = k/log k, that

where Since k! [T p=-exp(k log k+O(k/log k)) we

pEk

f
[T @ < explk log k—ak+ O(k/log k).
i=1

On the other hand, the a; are square-free and (without loss of generality)
a; <...<ay;. Hence g, = di for any d <n%6 and i>iy(d), a constant
depending only on d. Hence, for some constant &, > 0,

S
I[l a; > d/f! e = exp(flog f—(1—log d) f+ O (log f)).

!
Combining the estimates for [] 4; gives

{=]
f < k~(o—1+log d)kflog k+ O(k/(log k)?).
Since o —1+log(n%/6) > 1/2 we obtain a contradiction with I = k—8kflog k,
0 < 1/2 and k = ky(d).

Now we consider, finally, the cases for which 2<k <k,
:=max {2P(a), ks (8)}. Suppose we have f distinct integers My, ..., Ry inan

r
interval [n, n+k], where n, keN, such that [] n"caN™ for certain m,

i=1
My, ...,meeN with m> 2 and ged(my, m) =1 fori=1, ..., f In [147 it was
proven that this implies k > ¢ logloglog(n+15), where ¢ =¢(a) is some
positive constant depending only on a, provided £ >3 or £ 2 and ae N>
Since k < ko we infer that n < n,, a constant depending only on @ and §. So
both n and k are bounded and there can be only finitely many sets

s
{15 ..., mp} < [n, ntk] for which [] n™eaN" for some m, m,. ..., meeN
Codml
with m> 2 and ged(my, m) =1 for i =1, ...,/

CoroLLARY 6.1. For every teN, and every ae N there exists a minimal
k. (tyeN with the following property. Let Ay, ... e be integers obtained by
deleting t integers from k,() or more consecutive positive integers, Then

s
[T n"¢anm
i=1
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Jor any m, my, ..., meeN with m22 and ged(m;, m)=1 for i =1, s S

Moreover,

(1) k() <ctlogt for any e>2 and all t >1t,(c), a constant depending
only on a and . ‘

(2) ky(t) > t log t for infinitely many teN.

Proof. Let 20 and aeN and 0 <d <1/2 be given. Let k satisfy
Skflog k= 1.l ny, ..., n, are obtained by deleting r integers from n+1, ..., n+
+k and [T n"eaN"™ for certain m, m,, .-+, My, then, by Theorem 6.1, k

a1
< kg(a, ), a constant depending only on a and 8. So if k,(r) satisfies
k,(t)/log k,(th = 871t and k, () > ko (a, 8) for some 0 < & < 1/2 then it satisfies
the property defined in Corollary 1. This proves the existence of k() and
also (1). To prove (2) we argue as follows. For every keN there exists a
t < m(k) such that there exists some way to delete  integers from 1, 2, ..., k
such that the remaining integers have a perfect square as their product {by
Lemma 6.2). Since certainly the primes in (k/2, k] have to be deleted. we have

m(k)—m(k/2) <t < mik),

#
so there exist infinite sequences k, <k, < ...

< (k) and

and t; <t, <... with
(k)ljny .. .n e N?

for certain distinct ny, ..., me{l,.., ki So ki(n)zk+lzp.+l
> t; log t; (p, denotes rth prime number).

Note that k; (0) = 2 (if we change the definition of k,(f) somewhat by
taking m;, = 1 for all i) by the Erdds-Selfridge theorem and that k, (1} = 11,
k,(0) = 11 since 101e7N?, _

LemmA 6.2, Let ny, ..., n; be distinct positive integers apd let meN
with m 2. There exists a subser {n: iel} of {ny, ..., n;} with at least
f—w(ny ... ny) ‘elements such that

I"I ”;'”i e N
fal

Proof. We may assume f > w(n -...-n;) (otherwise take I = ). Let
Je{l, .../} with |/ = 1+ ...-n). Then ny, jeJ are composed of less
than |J! primes, hence multiplicatively dependent: [] n}’f =1 for certain

el

for certainme{l, ..., m—1},iel,

a;eZ, not all zero. In fact we may assume that not all g; are divisible by m,
since the only root of unity in N is 1. Reduce all m; modulo m, then we
obtain a nonempty Jo = J with [] nYeN", where me{l, ..., m—1} for

Jelg
jeldy.

Now remove the n; with jeJ, from {ny, ..., n;}. Choose another set
J with 1+w(n...-n;) elements from the remaining integers and repeat
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the above procedure. We obtain disjoint sets Jo, J§, J&, ..., J9, ...
with [] nj7eN"™ for certain mye{l,...,m~1]. Take I={J§, then
ja;(v) b
4]
[1#7eN" and [I| 2 f—w(n, ... n;).
Jel

2 and neN we define

min{keN: [n, n+k] contains two or more distinct

THEOREM 6.3. For me N with m =
k™ () =
., ng, say, for which H n e N™ for certain

i= |
my,...,meN with mym for i=1,.. Jf)Y

integers, ny, ..

and

k(n) = min{keN: [n, n+k] contains two or more distinct integers the
product of which is a perfect power).

We have, for certain positive absolute constants ¢y, ¢y, Cs,
(1) k" (n) > c(m) loglog n for all ne N with n = 3, where e(m) = com™19,
(1) k(n) > ¢, logloglog n for all ie N with n =
For every ¢ > 0 there exists an infinite set*N, Qf positive integers with
(2) k™ (n) > exp((1/+/2~8)(lognloglog m'2) for neNy and all mz2
(2 k(n) > exp((1/r/2—¢)(log n log log n)''?) for neN,.
For every ¢ > ( there exists an infinite set N, of positive integers with
(3) k™ (n) < exp{(~/2+5)(log n loglog m''%) for neN, and all m2 2
(3) k(n) < exp((r/2+6)(log n loglog m)'7?) for neN,,
(4) k" (m) < con™*C for all neN and all m> 2
(). k{n) < c,n®*C for all neN.

Proof. Suppose'n,, ..., n, are two or more distinct integers in [, n+k]
I

with- ] /e N™ for certain m, m,, .
i=1
Put m¥ = mjged (m;, m) and write n, = a, x"

o, meeN with mfm for i=1,...,/.
with g;e N mi-free (i = 1, ..., /).

I
Suppose pla; for some i. Since [ o*e N™ and «; is m*-free we infer that play
i=1

for some j#i. Hence p|ged(a, aj)ged(m;, n)||m—nlell, ..., k}. Hence
<[l pt<3™fori=1,..f1
rsk
Case 1: m¥ = 3 for some i. Choose j # i. We have

1]

F(XJ) ——aijj. d-—a, m

for some d with 0<|d] <k, where m* >3 and mf = 2. We now use an
explicit version of the estimates of SprindZuk for the solutions x, yeZ of the
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Diophantine equalion 1' (x) = Ay” (see [17]). Using that @, a; <3 we

obtain that (n <) g; xjf < exp(C”‘ ) for some absolute conmstant C. This
implies (1), for this case. :

J
Case 2: mif =2 for all i. Then [] n,eN* In [14] it is proven that this

i=1
implies that k > (loglog m*(logloglog n)~* so (1) also follows in this case.
This proves (1). For the proof of (1) we refer to £14]. We note that a lower

bound for min ™ () seems unattainable in the present state of mathematics,
mz 2

That it is poqslble to prove the lower bound (1) for k(n) is due to the
requirement in the definition of k(n) that all multiplicities m, are 1. (Actually
it would be sufficient to require only that ged(m,, m) = ged {m;, m) for some
P#)).
To prove (2) we use Lemma 2.6: let n, ..., n, be any distinct integers in
[n, n+k*(n)] and let play, p*tn, p>k*(n) Then ptn; for j#i hence
)

II ”i)

m,{’m, for i=1,...,

my, in particular ] n/"¢N" for any m, m, ...,
i=1
f- Since clearly k(n) =

mf eN with

min k'™ (), we obtain (2 im-
mz2
mediately from (2). _

The inequality (3) follows {rom Lemma 2.7 and Lemma 6.2. Since clearly
k(n) < k@ (n) we also have (3),

To prove (4} we note that, by Lemma 2.4, we have

S B>ck2nk+2 for k2>n"**% and n2n,,

where ¢ and n; are positive constants, Now use Lemma 6.2 to obtain {4).
Again by k(n} < k™ (n), the inequality (4) follows imrnediately.

In the next two theorems we give some results about sets {n,, ..., n;] of
!

integers in short intervals [m, n+k(n)] with the property that H n is a

i=1
perfect power where the number f of elements is rcstricted

TueoREM 6.4, Let n, keN be arbitrary and suppose H m is a perfect

power for distinct (f > 2) integers ny, ..., vy in (n, n+k]. Then

S K k—dokflog k,

where 8, is o positive absolute constant,
On the other hand, for all n, keN with k=

iy ens meE(n, nt-k] with .'Hx m is a perfect power and

2 k—dk/log k.

n there exist distinct

C6 = Actu Azithmaticn XLIv.2
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For every o with 1/2 <o <1 there exists a ¢, <1 such that if n,y, ..., n,
S
are distinct (f = 2) integers in (n, n+ k], where k = n*, with [T n is a perfect
: =1
power then
f <k,

On the other hand, for every o = aq there exists a ¢¥ > 0 such that for all

n there exist distinct integers, ny, .

e

n is a perfect power and

]

i=1

I>c*k.

Proof. To prove the first assertion we use Theorem 6.1: we obtain
f < k—%k/log k provided that k 2z k,, an absclute constant. Now choose
0<dy (€3 such that dokfloghk <1 for 2<k <ky, then f k-1
€ k-85 kflog k also holds when 2 < k < k, by the Erdos- Sclfridge theorem.
To prove the second assertion we argue as follows: for k = n we have
w{{n+1)...(n+k)) =n(n+k). By Lemma 62 there exist, therefore,

A
M1, ..., HeE(n, n+k] with f 2 k—n(n+k) for which [| », is a perfect square.
i=]
Furthermore we have w(n-+k) < n(2k) < 4k/log k.
J

To prove the third assertion, assume ﬂ m is a perfect power, where
i=1

My, ... My are distinct (f > 2) integers in (n, n-+k], k=n" 2= n"% Then
Pa)<kfori=1,. ., f (aprime p >k cannot divide two distinct integers
in (n, n+k] and p* cannot divide an integer in (n, n4k] either, since
(k+1)?>n+k), so f <f(n, k). Now use Lemma 2.1.

The last assertion follows from Lemma 24 and Lemma 6.2.

THEOREM 6.5. For m and feN with m=2 and f > 2 there exist
& = a1 (m, f) >0 and &, = &3(m, f) > 0 such that if [n, n+k] contains f dist-
inct integers with a perfect m-th power as their product then k > &, (log n)%,

For meN with mz=2 and ¢eR with O<e< | there exist o,
=0y{m, &) > 0 and &, = 6,(m, £) > 0 such that if [n, n+k] contains f distinct
integers with a perfect m-th power as their product and f 2 ¢k then
k> 8, (log n)*2. .

Proof. This has been proven in [14]. Similar assertions, though with
_different numbers ¢y, ¢, 8y, J,, hold for the property

’
[T neN" for certain meN not divisible by m,
i=1
see the first part of the proof of Theorem 6.3 and the proof of Corollary 4 in
f14]. '

Suppose m and [ are given integers, m > 2, f = 2. How far do we have

ooy By, @y, in (n, n+k], where k = n*, with

icm

Producs of integers in shorr intervais 169

to go from # to obtain f distinct integers which have a perfect mth power as
their product? Trivially, the first f mth powers larger than or equal to n
have a perfect mth power as their product, so we do not have to go further
than n+Cn* ™" C = C(m, f). We are not able to find a better upper bound
than Cn' "™ valid for all # (it does not exist when [ =m=2). One method
to try and find one is to search for f distinct neighbouring integers n; of the
f.;}rm m o= a; X", where the ay, ..., a; are pre-chosen (m-free) integers with
[T @ eN™ for example a, “..otdp.y arbitrary and g, = (a, - ...-uf'_l)'"‘l. One
i=1

can show (sce [15]) that this gives an upper bound Cn!~VUm-tmis-1 ¢
= C(m,f) valid for infinitely many neN ((m, f) # (2, 2)). In particular, for
every m, [ withm 2 2, [ = 2, except {m, f) = (2, 2), there exist infinitely many
neN such that between n™ and {n+1)" there exist [ distinct integers whose
produci is a perfect m-th power.

This method (with pre-chosen ay, ..., a;) is certainly not able to produce
upper bounds Cn” with ¢ <1—1/m~1/m(f~1), as was proven in [15]. In
particular, il [n, n+&] contains 2x7, 3x3, 6x3, then k > c(g}n'*~* for any
¢ > 0. An interesting example of three distinct integers whose product is a
perfect square is 10082, 10086, 10092 (= 2x}, 6x3, 3x3), found by Selfridge.

7. Generalizations and problems.

7.1, Integral values of a polynomial. Let FeZ [X], where we assume, for
simplicity, that F is irreducible. We shall consider the integers F (1), teZ. We
are interested in the following properties of F(n,), ..., F{n,), where n,, ..., n,
are distinct integers:

S
n cu(l:[l F(n)) < f.

" (2) F(ny), ..., F(n;) are multiplicatively dependent.
(3 T1 F(my =[] F(n) for distinct subsets N;, N, of {n,, ..., .

HeNy| HeN g

!
@ [T F(n) is a perfect power.
Js= |

In the preceeding sections we have shown that when F(X).= X these
propertics. '

{A) pever ocour when ny, ..., 1, are any distinet (f 3> 2) integers in any
“short™ interval,

(B) always occur for some distinct (f 2 2) integers ny, ..., n, in any
“large” interval. . '

We can prove the (A)-theorems also for the general case: there exist

‘PO_Sitive constants ¢;, ¢z, €3, C4, Cs, depending only on F, such that for all

nz=15 we have
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(1A) For all distinct (f;Z) integers R, ..., My in [, ndogx

x(log n)*/(loglog n)'%] we have cu(l—[ Fin)) =/

(2A) For all distinct (f > 2) integers ny. ..., ngin [n, a+cy log v/loglogn]
the integers F(ny), ..., F(n;) are multiplicatively independent.

(3A) For all subsets Ny # N, of integers in [n, n+c¢; log nfloglog n])
we have [[ F(n)# n F(n).

neN g neN 5

(4A) For all distinct ([ 2 2)
f

x(logloglog m] the product [] F(
: i=1

integers iy, ..o 0y in [ ategx

n) is not a perfect power.

These results can be proven like in the special case F(X) = X, using the
following lemma.
Lemma ([16]). Let Fe Z [X] be irreducible. Then for any distinct integers

x, y we have

ged (F(x), F (7)) < ¢olx =",

where ¢, and ¢, are constants depending only on F.

The first problem we propose is

P1: Prove (3A)for intervals larger than in (2A) also when the degree of F
exceeds 1 (see Theorems 4.1. (1) and 5.1, {1)).

We are only able to prove (B)-theorems when the degree of F' cquals
(one or) two, and the intervals are actually “very large™

Let FeZ [X] be of degree 2. There exists o number ng, depending on!y on
F, such that for all n > ny the interval (n/log n, n) contains

(IB) a set of integers S, with w ([T F(s)} <|S,],

se8
(2B) a set of integers S, such thlar F(s), .SFSl are multiplicatively

dependent,
(3B) two distinct sets Sz, Sy of integers with [] F(s) = [] F(9),

se8 g w8y
(4B) for every meN, m 2 2, a set 8, of integers with [] F(s" e N™ for

868y
eertain m(s)e{l,...,m—1}, s&8S,. : "

Proofl. It follows from Lemma 4 and Lemma 5 in {2] that, if F is
irreducible of degree 2, for all n > ny the interval (n/log », n) conlaing at least
gon(log m)~tloglog nlogloglog n integers v with P(F(v)) € n. This clearly
helds, too, when F is reducible and of degree 2. Lel Sy be the set of these n,
then (1B} holds {we take n, sufficiently large) and (2B) follows immediately.
To prove (3B) we invoke Lemma 5.1. The set §; does not necessarily [uliill
the conditions of Lemma 5.1; let S¥ be the subset of §, obtained by deleting

icm

v
IT A" e N™ where m, my, ..
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all v with P{F(v)) > n/log n. The number.of deletions is at most

n n
~+1) < —1
n/!ngnz<p€.n e(p) ([P:l )\ Tog n (loglog n+0(L).
Here o(p) denote% the number of xe{0,1,..., p—1! with F(x) = 0 mod p.
Hence |S¥ > 41S,, if ny is sufficiently large We apply Lemma 5.1 to
{F(s), se8¥} to obtain (4B). To prove (4B) we apply Lemma 6.2 to the set

Fis) se 8],

COROLLARY. Let F o=
many finite sets § < 2

with [] F(HeN°.

tel

X*+bX+ceZ[X]. Then there exist infinitely
2 with [| F(s)e N? and infinitely many finite sets T < Z

ses§

Proofl. We obtain the sets § = N from (4B) with m = 2. From (4B) with
m=3 we obtain infinitely 7' =N with [] F(t)"eN* with m(r)e{l, 2}.

teT”’

Since F (1) = F(t)F(~t--b) and t # —t—b for t + b/2 this gives the sets T,

Note that if F = X?+bX +ceZ[X] then, for certain se N, there exist
infinitely many xe N such that F(x)eaN? (e.g. for any ¢ = F(r) with ¢t such
that F(f)e N—N?). Hence there exist infinitely many sets § of two distinct
integers with || F(s)e N2

S&8
We propose for consideration:

P2: Let FeZ[X] be of degree at least three (and irreducible). Do there
exist infinitely many sets {ny, ..., n,| of integers with property (4)?, (3)2, (2)7,
(1)? .

We finally mention that we can prove the following results on the values
of a polynomial taken at integers from a short interval (see [10] and [6] for
the case F(X) = X). _

Let FeZ[X] be irreducible. There exist positive numbers cg, ¢y, €10,
¢13, depending only on F, such that for any n> 3 we have

(5) if ny, n, are distinct integers in [n, n+cg (log n)°] then F(n,) and
F{ny) do not have the same set of distinct prime divisors,

(6) il ny, n, are’distinct integers in [n, n-+c,o(loglog n)**] then F(n,)
and F(n;) do not have the same greatest prime divisor.

7.2, Some more. problems. In Section 6 we considered the property

wmpeN withmz2 and midm fori=1,...,f

i=1

and ny, ..., n; are two or more distinct integers in an interval [n, n+k], with
n, ke N, We noted that it is a difficult matter to prove a lower bound for k
when there is no (further) restriction on the multiplicities m, (we only have &
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2 2 for n larger than an absolute constant by Tijdeman's result [117 on the
Catalan equation), but that we can prove k > logloglog n when (e.g.) m; =1
for i=1,...,f. On the other hand, it is more difficult to prove the
accurrence of the property in an interval [n, n+k] when there are restric-
tions on the m.

P,: Let meN with m>3. For neN we define

K (n) = min {keN: [n, n+k] containg two or more distinet  inlegers

whose product is a perfect m-th power!. .

Find upper bounds for ki (n) valid for (1) all ne N (2) infinirely muny
nelN.

Let feN be fixed and let P be some property of sets of integers. F:or
ne N define kp ;(n) =min (keN: [n, n+k] contains J distinctlmmgers haw%ng
property Pl. Find upper bounds for kp, ,(n) for the properties P occurring
in this paper. For example:

P,: Given ne N find an upper bound for the minimal ke N for which there

exist three distinct integers in [n, n+k] whose product is a perfect square,

Another complication in a search for integers in an interval with a
certain property would be to insist that one of them is fixed. For example:
For ne N let k(n) be the least integer such that there exist n=¢; <...

;
<a; =k(n) with J] q;e N*.
i=1

So k(ly=1, k(2) =6, k(3) =8, k(4) = 4, k(5) = 10, k(6) = 12, k(7) = 14,
k(8) = 15, k(9) =9, k(10) = 20, ...

Clearly k(n) < 2n for n = 10: let x* be a perfect square in (n/2, n), then
n-2x%-2ne N2 On the other hand, clearly k{n) = n+ P, (n), where P, (n) =0
for neN? and P,(n) is the largest prime p with v,(n) odd for neN—N2 It
follows that k{p)=2p for primes pz=5 We show that ki(n) <n+
+3(P,{(mn)"?: We may suppose that n¢ N Let p be a prime withwzj,,(n)
odd. Let 1, N be minimal with n+ pr,€pN* Then n+pt, € n+2./np+p
and -] (n+ pt,) e N?, where the product is over the primes p with v, () odd.

Since the n- pt, are distinct we obtain -

() < et 2Py [0+ Py () < 13 /By i,

. Ps: Can the bounds for k{(n) be improved?

. We cbserve that k is 1-to-1: Suppose m < n and k(m) = k(n). Then there
exist m=a; <...<a =k(m and n=>b, <... <h, =k{n) with

s
“T] 4eN*  and

i=1

a.
n bjE sz
i=1

icm

Products of integers in short interveds 173

Hence

i=1 J=1
and, since a; = b,, also
-1 g1
1—[ @ ]._[ bjENz.
=i j=1

Cancelling any other integers that occur twice we obtain a set of
integers from m to at most max{a,_,, b,,} whose product is a square,

~ contradicting the definition of k(m).

It may be possible to prove that distinct sets of neighbouring
integers have distinet products, ie. there exists a function k: N — N with
lim k(n) = oo such that if §;, and §, are distinct sets of integers from

e
intervals [n;, m;+k(n)], { = 1, 2, where n,, n, are arbitrary integers > 1, then

Il s=1] s

55y se¥

2
Note that k(5) would have to be 1 in view of 5-6-7 = 14-15 and that
k(n) <3 log n for infinitely many n in view of [7]:
2 1) (2 k) = (L DRI, (2F 2k,
We certainly do not see how to obtain such a function k éx‘p]icitly. Note

that for the restricted problem with n,=n, we can take k(n)
= [¢(log nfloglog n)*] for sufficiently large n, by Theorem 5.1. (1).
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ACTA ARITHMETICA
XLIV (1984)

Bemerkungen iiber Primzahlen in kurzen Reihen
yan

K. Pracuar (Wien)

1. Von A. Selberg [14] wurde erstmals die folgende Fragestellung
untersucht. Sei x eine grolle positive Zahl. Es ist eine mdglichst langsam
zunehmende Funktion ¢{x) anzugeben, fiir welche

¢ (1)

{1) “(”"HP(”))—-‘?I(V!)“M (n— oc)

gilt, auBer eventuell fir o(x) Werte von natiirlichen Zahlen n, n < x. Dabei ist

n(x) wie Ublich die Anzahl der Primzahlen < x. Selberg zeigte, dal unter
Annahme der Richtigkeit der Riemannschen Vermutung fiir die Nullstellen
der Zetalunktion {(s) (wir ziticren diese Annahme im folgenden kurz mit R)
@(x) = f(x) log®x eine solche Funktion ist, wenn nur f(x)—co gilt fir
x — 26 ; und ohne R, daB @(x) = x* fir ¢ > 19/77 eine solche Funktion ist. Er
bemerkt, daBl f(x) log x nicht mehr brauchbar ist, wenn tiber f(x) weniger
vorausgesetzt wird als f(x} - oo (x — o). (Der Verfasser ersucht zu ent-
schuldigen, dafl von ihm in einer FuBnote der Arbeit [9] dieser Bemerkung
unrichtigerweise eine zu weilgehende Interpretation gegeben wurde) Die
Richtigkeit dieser Bemerkung ergibt sich aus dem folgenden Satz: Fir
natirliches r und geniigend kleine positive Konstanten ¢ = ¢, (r) und
¢y = oo (1) gibt es mehr als ¢ x Zahlen n, n € x, mit

(2) n(n+(r+c;) log x}—n(n) <r;
und andererseits auch mehr als ¢ x (andere) solche n, fir die
(3) w(n+(r—cy) log x)—m(n >r

gilt. Der Beweis dieses Satzes ergibt sich schon mittels einer Methode von
Erdds [1]:aber auch mittels der Uberlegungen aus [9], und wir wollen ihn
nicht ausfiibren.

Die Konstante 19/77 ergibt sich aus der Verwendung der damals besten
Abschitzungen von Ingham iiber die Dichte der Nullstellen der Zetafunktion.
Yon Montgomery, Jutila, Huxley und anderen sind diese Abschitzungen



