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A note on the Hausdorff-Besicovitch dimension
of systems of linear forms

by

M. M. Dopson (Heslington)

m
Let Z x;a;, 1 € J< n, be a system of n real linear forms in m variables.
i=1
Suppose that the function {q} is defined for integral vectors ¢ in Z™ and
satisfies '

(1) Y W< o,

gz

Then a straightforward volume estimate shows that the set of matrices (a;;)

(identified with the points (a,;, ..., @y, @3y, ..., Gy,) in R™) for which the
inequalities

m
(2 “ ¥ q:‘an‘j” <¥lges e dm)s 1 Sj<ny

i=1

have infinitely many solutions (g4, ..., 4,,) in Z™ has Lebesgue measure 0. (As
usual ||x|| = inf||x—k|: keZ}, the distance of the real number x from the
integer nearest to it). This result will be recognised as the easy part of a
*Khintchine type” theorem and is a special case of a very general theorem
due to SprindZuk ([8], p. 37. Theorem 13). In this note the problem of
determining the Hausdorff-Besicovitch or fractional dimension of this set of
measure 0'in R™ is reduced, for a class of error terms ¥, to considering the
dimension of a related set in R", corresponding to the case when m = 1. -
More precisely, when y(g) is “small on average” compared to the restriction

3 Vi(@) = ¥4, 0, ..., 0),
the Hausdorff~Besicovitch dimension of the set of matrices (a;)) is that of the
set of points (x,, ..., x,) in R” such that

max flgx] < ¥ (q)

1%5j%n

for infinitely many integers ¢, augmented by (m—1)n, the number of “degrees
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of freedom”. Note that no use is made of the convergence condition (1) but

the results are of interest only in this case. As an illustration of the result, the
function '

m

Q) ¥igy, - am =[] @)%

=1

where o > 1/n and ¥ =max{|x|, 1}, which occurs as an error term in
simultancous Diophantine approximation [9], is “small on average” com-
pared to

Wil = (@™

Now Jarnik ([7], p. 508, Satz 1) and later Eggleston ([6], p. 60, Theorem 7)
proved that when o > 1/n, the set of points (x;,..., x,) in R" satisfying

(3 max |jgxlf <g™*
1€j<€n

for infinitely many positive integers ¢ has Hausdorfi-Besicovitch dimension
n+l

. It follows that the set of matrices (q;;) which satisfy

+1
m n
(6) max |} qay| <JT @75 1<i<n,
1sjsn =1 i=1 ‘
where « > 1/n, for infinitely many (g, ..., ¢,) in Z™ has dimension
n+1 '
——+(m—1
oa-1-1+(m }n

(see Corollary 1 below).

The proof of this result does not depend on any special properties of the
supremum metric associated with the form of the approximation in (2) but
on a general boundedness condition that can be expressed simply in terms of
distance functions, A distance function F: R"— R is continuous, non-negative
and satisfies ’ '

Flax) = aF (x)

for all x in R" and non-negative numbers a. It allows different forms of
rational approximation, including the case

"

) Flxss o ) =(TT bl

Jj=1

studied by Bovey and Dodson [2] and Yu [97], to be bought together and

has the additional advantage of making the notation more concise and
simple ([4], § V.10.2). '

icm

The Hausdor{f-Besicovitch dimension of systems af linear forms 89

It is convenient to introduce some more definitions and notation. The
Hausdorff-Besicovitch dimension of a set X in R* can be defined as follows.
Let % be any countable or finite cover of X by k-dimensional hypercubes C.
For each real s, define the s-volume of a cover % of X to be

(%) =% LIC),

Ce#

where L(C) is the length of a side of the hypercube C. For each positive g
and real s write

A3 (X) = inf E(%),
vs‘fhere the infimum is taken over covers % of X with L(C)< g for all Cin %,
Clearly A3{X) cannot decrease as ¢ decreases, and if §' >, '
A:'(X] < QS'_SA;(X).
Thus if A°(X) = sulg A3(X) is finite, A¥(X) vanishes. The Hausdorff-

[
Besicovitch dimension #(X) of X is the supremum of all real s for which
A*(X) is positive. It follows from the definition that 0 < A(X) < k and that if

i=1

(8) h(X) = sup h(X)).

Note that the cover % was chosen to consist of hypercubes C for
convenience and, as is well known, a collection # of sets F, such as k-
dimensional discs, with the property that for each F in %, there exists C, ('
in % with _

CcsFc(C
and
1 € LICYL(C) €1,

could be used instead.
Next, let I ={—4%, 1]. For each vector x =(x,, ..., x,) in R", define

(x>
to be the unique vector x—p in I, where peZ”. Also define

|x| = max |xj,

1<jsn
so that

[<xy| = max [lx]l€[0, £].

1%jn
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Note that F(x) = |x| is a distance function and that (5) can be written
Kgxdl<q™®

and that the left hand side of (6) can be written

1<g4>l,

where A =(a;;) and ¢ =(q,. ..., gm) EL™.
Define

Wm, n) = AeR™ F{{gA)) < (g) for infinitely many g in Z"};
this set is symmetric and

W(l, n) = (xeR" F({gx)) <V, (q) for infinitely many ¢ in Z},

where , (g) is given by (3).

The Hausdorff-Besicovitch dimension h(W(1, n) of W(l, n) is known
for certain F when i, (q) = |g|™% where o > 1/n and g # 0. In particular
when F(x) =|x{, W(l, n) is essentially the set of well-approximable points
studied by Jarnik [7] and Eggleston [6], and has dimension A(W(1, n))

= i’—}—i— When F(x)is given by (7) it follows from [2] that the dimension is
2 :

2 , .
n-—-1+i—+—n;. However the question of a general formula for A(W (3, n)) is

not discussed here and the dimension h(W{m, n)) of W(m, n) is determined in
terms of A(W (1, n)). Indeed the first lemma gives a simple and fairly general
lower bound of this kind for h(W(m, n)); a special case is considered .in [9].
Note that for convenience ¥ (g) will often be written as r.

LemMa 1. Ler f: R"— R, : R" > R be functions and let

X, = [AeR™: [({gAD) <y /(q) infinitely often)

and
X, = {xeR" f({gx)) <, (q) infinitely often],
where
Vilg) =¥(g,0,...,0).
Then

(X2 h(X)+(m—1)n,
Proof. Since

Re= ) ("4,
jgk( 3]
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it follows from (8) and the definition of X; and X, that
X)) =mMX,AI" and h(X,) = h(X, ™).

For each x in X, nI", the m x n matrix 4 which has x as its first row and its
other entries from [ is in (X; A" x "™~ 1" and satisfies for infinitely many
g=(9,0,...,0) in Z"

Fgd)) =1 (Lqxd) <y, (q) = ¥ (9).
Thus

(Xy APy I oo X o~ pron,

whence

h{(Xy A Py I~ 9% < h(X, A ™).

For any set S in 1% it is well known that the Hausdorff-Besicovitch
dimension h(S x I} of the cartesian product §xJ in I**! is given by

A(S x 1) = h(S)+1

{a proof is given in [2], p. 216, Lemma 2) and the lemma follows from
repeated application.

COROLLARY.
R(W (1, m)+(m—1)n < H{W(m, n)).

It remains to establish the complementary inequality
rW (1, n}+(m=—1n 2= h(W(m, n)

and to do this additional restrictions need to be placed on the distance
function F and the function r =y (gq). First a cover for W(m, n)~I™ s
obtained.

For any w in R™, v in R" and positive real number p, define

B(u, v; 0) = [AcI™ F(ud— v) <, lud— v/ < 1/2}
and for any positive number u define
B(u, v; 0) = lxel" Flux— v) <o, lux— v < 1/2},
Note that for each A in B(w, p; ¢), where p is in 2",
uA—p = (uddel" '
and for each x in B(u, p; 0)
ux—p = {uxyel™
It follows that for r =y (g) and each @0 =1, 2, ...,
CT Wim, mni™< U B(g, p: 1),
i or
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where the unions are over those ¢ in Z™ with |g| = Q and over those p in Z"
with [p <|q]. Thus
(B(q. p;r): P <4l 4 = Q)

is a cover for W(m, n) n I™, though of course not by hypercubes in general.
LemMma 2. Let g be a sufficiently large integer and let %(q, p; ¢) be a
cover of B(g, p; ¢) by n-dimensional hypercubes C. Then for each q in Z™ with
l¢l =g, B(q, p; 0) has a cover #(q, p; 0) of mn-dimensional hypercubes B with
L(B) = mL{C) and
L[(Jf(q, P Q)) < E‘(m—l)n((ﬂ (q, P Q))
for any real number 1.

Proof. For definiteness take g = q,|. Define the invertible matrix T
= T(g) by

(4 dm
1 41
T =
0 1 0
0 0 1
It is easy to verify that for any real m xn matrix A
{TA] < m|d

where |A] = max |a; (recalul that A is regarded as a vector in R™). Also since
4T =(,,0,.., 0,

gTA=q, 4,, A =q,(T""' A},
where A, is the first row of A and it follows that

B(q, p; o) < T(Blgy, p; @) x ™),

Now B(qy, p; 0} has a cover %(q, p; ¢) of n-dimensional hypercubes C.
Hence B(g,, p; ¢) xJ™~"" has a cover #" of mn-dimensional hypercubes K
of length L(C), where

K=CxJyy %o XTpp X oo Xy % 0o X s
where |
Jy =Tk L(C), (ky-+ DL(CY], 2<i<m, 1 <j<n,
and where
kij=0, £1,..., [1/2L(C)] since |TA} <miA| .
([6] is the integer part of the real number 0). Hence by (9), B(q, p; 0) has a
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cover #(q, p; @) of mn-dimensional hypercubes B of length L(B) = mL(K)
= mL(C) such that B 5 TK and ’

L‘(E%(q: P; Q)) =m LAY = mt Z L(C)t(l—}—[l/L(C)]){m_“"
C

where the summation is over hypercubes C in “(q1, p; 0)- Hence for any real
number ¢

L'(#(g, p: @) < L™~ 1"(% (g4, p; 0))-

It is evident that the last estimate holds for Igl = |g,| for each i=1, ..., m.

Moreover without loss of generality g, can be taken to be positive since each
4 can be replaced by --A4 without altering the s-length of the cover, whence
the resuit. '

CoroiLary. Let Q be a sufficiently large positive integer. Then
Wim, n) 0 I"™ has a cover #y of mn-dimensional hypercubes such that

(10) Loy <3 3 L™ 0% (lql, ps7)
L 4

where the sums are over those p in Z" with |p| < |q| and over those q in Z™ with
g = Q. :
Proof. By (9

Wim,molI™<JUBg. sl LBJB,

where the right-hand union is over hypercubes B in #(q, p; r). Hence by the
lemma, '

L(#(q, p; 1)) <L % (Ig), p; 7)),
whence ' .
Ho={BecHg p:r): ol <4l g > Q)
is the desired cover for W(m, n) ™. -
Lemma 3. Let F: R"— R be a distance function which satisfies

(1) F7UI0, @) = (xeR™ F(x) <gl  I"

Jor g sufficiently small. Ler \y: Z™ — R be non-negative and satisfy

(12) Y (g <y, (aF

gl =q

for each s> h(W (1, n)). Then

h(W (m, m)< R(W (1, 'n))+(m—1)n7
Proof. Let t> h(W(1, n)+(m—1)n, so that
s=t~(m—1n>h(W(, )
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Let & be a positive number and let Q be a sufficiently large positive integer.
For each integer ¢ > Q and p in Z" with |p| < g, let %*(g, p; ¥1{q)) be a
cover of B(g, p; ¥,(g)) by n-dimensional hypercubes C*, so that

(C*e%* (g, p; Y1 (@) 1 <g,920)
is a cover of W(l, n~I" Since s> h(W(l, n)),
{13 Yy oY E{6* (g, p. by (@)} <&

q=0 [pl<q

providing each L(C*) is sufficiently small
Let v and g be positive numbers. For each u in R"

B(v, u; 9) S B(v, 0; 0)+v " 'u
whence

L(B(v, u; ¢)) < L(B(v, d; 0)).
Also if ¢ is sufficiently small,. then for each positive A,

B{v, 0; 4p) = AB(v, 0; 0)

since for each x in B(v, 0; Ao},

Flwi 'x)=A"1F(vx) <p,
which by (11) implies that [vi~" x| < 1/2, so that A~ x is in B(v,

A=y (g™ ¥ (g).

Then for each ¢ with |q| sufficiently large, B{q}, p; ¢ (q)) is contained in the
set B(|qi. p: . (lq)) shrunk by a factor A. Hence B(lql, p; 4 (¢)} has a cover
“"(iql, p: ¥ (@) of n-dimensional hypercubes of length AL(C¥), where C* is
a member of the cover “*(iql, p; v, (|q))) for B(|ql. p: ¥, (q))-

Choose C* so that L({C*) is sufficiently small to ensure that the 6 in (13)
is sufficiently small. Then by (10)

L(Ag) <3 ¥ L™t (], p: o (g))
L 4

<Y 2 AL E*(dl, pi by (D))

' .

<Y Vi@ (Y v Y (g, i)

920 lef=q Iri <4

<Y ¥ D{%*(g, p ¢i (@)

420 NSy
&d

0; ¢). Put
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by (12) and since s> h{W(1, n)). It follows that L'(.#) can be made
arbitrarily small, whence

h(W(m, n) ~I™) = h(W(m, n)) < B(W(1, n))+{m—1)n.

Note that if for a distance function F, F~1(0) = 0, then the continuity of
F implies that (11} holds or that the inverse image of a neighbourhood of the
origin is a bounded set. Evidently Lemma 1 and Lemma 3 are com-
plementary and combining their hypotheses gives the

TueorEM. Ler F: R"— R be a distance function which satisfies

(14) FoH{[0, g) & I"

for ¢ sufficiently small. Let \(q) be a non-regative function of q in Z™ with

restriction Wy {q) =W (g, 0, ..., 0), and ler the Hausdorff~Besicovitch dimension
of the set W(l, n) be h(W(i, n)). Then if

{15) Y (g < gy

4l =4

Jor each s> n{W({l, n)), the H&usdurﬁLBesicouitch dimension h(IjV(m, n) of

Wi(m, n) is given by
R(W (m, m) = h(W (1, n))+(m—1)n.

CoROLLARY 1. The set of real mxn matrices A which satisfy (6), ie.

i{qA>] = l:[1 (@)"

for infinitely many q =gy, ..., 4 in £ has Hausdor{f~Besicovitch dimension

h given by
_ (m=1)n+m+1fa+1), a>1/n,
= Imn, x < I/n.

Proof. .Since

(xeR" x| <ol =(~g, & < I"

for 0 < g < 1/2, the distance function F (x} = |x| satisfies (14). The restriction

Wy (q) of

m

yiq) = n (G "

f=

is given by
d’l(q) = l,b(q. Oa T O] =(Q—')_a-
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By [6] or [7], when a > 1/n, the dimension of the set W, say of points x in
. R satisfying
[<gx3l <y (g)

for infinitely many integers g is

n+1 1

OSSN > —_—

a+1
so that s > (n+1)/(a+1) implies «s > 1. Now

IIRICIED) H(q Tmg

lal=q lal=g i= i

mn

i

Ma

)

T
Z Zi -'oc.s

1 -q

(jj

k4

& q—zs( z k'—zs)m-—l < lh (q)s

k=1
when x5 > 1. Hence (15) is satisfied when « > 1/n and
I +1

how=(m— 1)R+'—+-i“

When « < 1/n, the dimension of W, is n and it follows from the Corollary
to Lemma 1 that
h = mn.

Other forms of approximation can also be considered. For instance:

CoroLLARY 2. Let v, w be positive real numbers and let v(q) be the number

of non-zero components of ¢ =(q,, ..., q,,). Then the set of real m x n matrices
(a;) which satisfy

> ué el <(3, lapy e

Jor infinitely many q ={q,,

oves 4) in Z™ has Hausdorff-Besicoviteh dimension
h given by

h = (m—Dn+tovn+ 1) we+v), a> v/wn,
mi, o Uwh,
Proof. Since {(x,,

. L
s X Y Xl <t o

P -0, 9" <I" for 0<yp

< 1/2, the distance function -

F(xla

s Xy = {3 [ P)
=1
sati;ﬁes (14). Moreover, for g # 0,

"l’/(q, 0, Leny 0) == '1{"'1 (q) = |ql—a‘.wju.
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The set
F(ec, g) = {xeR™ Z Ix;—ejl” < e }
j=1
satisfies
Cle, gn™'") = F(c, 9) = Cle, @)
where
Cle, g)= {xeR" |x— < g}
and

1 < L{C(c, @))/L(C(e, on™ ') = n*P ¢ 1,

It follows that the Hausdorff-Besicovitch dimension of the set

{xeR" (Y llaxI’)*™ < |gl~*" infinitely often}

i=1

is v(n+1)Awa+v) > v/wa when o« > v/wn and n otherwise. Now

m

Y v(er< Z

lgl=yq k= “l

m
q~ vi{g)aws/v & Z q-kawsju qk— 1

5 k=1

Il ”

=5

-1 Z qk(i—mws,lu) < q—zws,'u — 1}”1 (q)s

=1
when s > v/we and a fortiori when s > v(n+1){wa+v). Hence (15) is satisfied
and the result follows.

Recently Yu has shown that when F(x) is given by (7) and y(q) by (4)
the set Wim, n) has dimension mn—1+2/1+na) ([9]; the present notation
differs from Yu’s). The distance function (7) does not satisfy (11) and so the
arguments of this paper, although derived in part from [9], do not apply.
Nevertheless for a > 1/n and the distance function (7), it follows from [2]
that the dimension of the set '

n
(X1, v os Xt [T llax;I'™ < g/~ infinitely often)
i=t
2 1

1+ ———>~
n +1+mx o

so that by Corollary 1 to the theorem, (135) holds when ¥ (g) is given by (4).

Moreover

2 2
=1 4o = (M~ 1) stk 1 e,
L+nx < 1+4na
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so that the conclusion of the theorem holds, suggesting that a similar result
might hold for a large class of distance functions and might be compared
with the additivity of the Hausdorff-Besicovitch dimension for the cartesian
preduct of certain sets. However, the results of this paper and [9] rely on the
dimension being small enough to coincide with a relatively simple lower
bound. The methods of this paper will not work for functions which do not
satisfy (15) and in particular will not work for the function

(16) W(g) =g ~*

where ¢ # 0, which is a natural generalization of the right-hand side of (5).
Indeed with v (g) given by (16} and F(x) = |x{, the dimension h(W (m, n)) of
Wim, n) is given by

m-n

a+1

h(W(m, n))=(m—1)n+

when o > m/n [3].
I wouid like to thank Dr Yu Kunrui and Mr M. J. Smith for helpful
conversations and the referee for drawing my attention to [7].
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On some generalizations of the diophantine equation
26 Xt =yt
by

l§. Briunza (Debrecen)

1. Introduction. In [5] . J. Schaffer proved that for fixed integers k > 0
and z > 1 the equation

(1) 1442k 4

has an mﬁmte number of solutions in positive integers x and y only in the
cases

+x“—y=

() k=3,ze(2,4); (M) k=5 z=

M k=1,z2=2;

In all other cases the number of solutions was shown to be bounded by a
constant depending only on k. In [2] and [7] K. Gydry, R. Tijdeman and M.
Voorhoeve have extended Schiffer’s result by proving that for fixed
R{x})e Z[x], 0~ beZ and fixed k>0, k¢{1, 3, 5} the equation

2 Ty 24 4 x*+R(x) = by*

has only finitely many solutions in integers x, y > 1, z> 1. I R(x) =re Z,
then their result is effective (cf. [2]). - :

The purpose of the present paper is to give some effective generaliz-
ations and extensions of the resuits of [2] and [7]. As a special case we get
an effective version of the above-quoted finiteness theorem concerning -the
equation (2).

For brevity let us set Sy(x)=1+2%+ ...

=(k+1) J] p (pprime). Let
to= D(k+ 1)
F(y)=Q,y"+ ... +Qs y+ Qo4 y].

Consider the solutions of the equation

+x* A=Z[x] and

3 F(Su() = by*

in integers x, y, z > 1.



