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so that the conclusion of the theorem holds, suggesting that a similar result
might hold for a large class of distance functions and might be compared
with the additivity of the Hausdorff-Besicovitch dimension for the cartesian
preduct of certain sets. However, the results of this paper and [9] rely on the
dimension being small enough to coincide with a relatively simple lower
bound. The methods of this paper will not work for functions which do not
satisfy (15) and in particular will not work for the function

(16) W(g) =g ~*

where ¢ # 0, which is a natural generalization of the right-hand side of (5).
Indeed with v (g) given by (16} and F(x) = |x{, the dimension h(W (m, n)) of
Wim, n) is given by

m-n

a+1

h(W(m, n))=(m—1)n+

when o > m/n [3].
I wouid like to thank Dr Yu Kunrui and Mr M. J. Smith for helpful
conversations and the referee for drawing my attention to [7].
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On some generalizations of the diophantine equation
26 Xt =yt
by

l§. Briunza (Debrecen)

1. Introduction. In [5] . J. Schaffer proved that for fixed integers k > 0
and z > 1 the equation

(1) 1442k 4

has an mﬁmte number of solutions in positive integers x and y only in the
cases

+x“—y=

() k=3,ze(2,4); (M) k=5 z=

M k=1,z2=2;

In all other cases the number of solutions was shown to be bounded by a
constant depending only on k. In [2] and [7] K. Gydry, R. Tijdeman and M.
Voorhoeve have extended Schiffer’s result by proving that for fixed
R{x})e Z[x], 0~ beZ and fixed k>0, k¢{1, 3, 5} the equation

2 Ty 24 4 x*+R(x) = by*

has only finitely many solutions in integers x, y > 1, z> 1. I R(x) =re Z,
then their result is effective (cf. [2]). - :

The purpose of the present paper is to give some effective generaliz-
ations and extensions of the resuits of [2] and [7]. As a special case we get
an effective version of the above-quoted finiteness theorem concerning -the
equation (2).

For brevity let us set Sy(x)=1+2%+ ...

=(k+1) J] p (pprime). Let
to= D(k+ 1)
F(y)=Q,y"+ ... +Qs y+ Qo4 y].

Consider the solutions of the equation

+x* A=Z[x] and

3 F(Su() = by*

in integers x, y, z > 1.
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TaeoreM 1. If Q,{—1} is odd and k > 1, then all solutions of the equation
(3) in integers x, y, z>1 satisfy z<Cy, where C; =C,(F, k,b) is an
effectively computable constant.

THeOREM 2. Ifk > 1, Q;(x) =q;6Z (i=0, 1, ..., n) and the polynomial F
has simple zeros, then all solutions of the equation (3) in integers x, y, z with
x, y>1,2¢01,2, 3,4,6} satisfy max |{x, y, z} < C,, where C, = C,(F, k, b)
is an effectively computable constant.

Qur Theorem 2 is a generalization of the main result of [2]. Indeed let
b, r, s and k> 1 be fixed rational integers, and consider the special case

rts(l4254 ..+ x4 = by*

of the equation (3). It was proved in [2] that if s is square-free, then this
equation has only finitely many solutions in integers x, y, z with x, y > 1 and
z¢{1,2,3,4,6} and all these can be effectively determined. Our above
theorem implies this result without any assumption concerning s.

Traeorem 3. If Q;(x) = 0{mod »") for i=2, ... n; Q,(x) = 41 (mod 4)
and k¢ {1, 2, 3, 5), then all solutions of the equation (3) in integers x, y, z > |
satisfy max{x, y, z} < C,, where C5 is an effectively computable constani
depending only on F, k and b.

Let in particular Q,{x}) = ... =Q,(x) =0, and let @, (x) =5, where s is
an odd integer. If k¢{1 2,3, 5} then by Theorem 3 all solutions of the
equation

s 424 439+ Qo (x) =

»

in integers x, y, z > 1 satisfy max{x, y, z} < C,, where C, is an effectively
computable constant depending only on s, Qg{(x), k and b. This is an effective
version of the above-cited main result of [7].

The ineffective character of the results of [7] is due to the application of
an ineffective theorem of LeVeque [3] concerning the hyperelliptic equation.
All other arguments of [7] are effective. In proving our results we shall use a
recent effective version (cf. [17]) of LeVeque’s theorem and some arguments of

[71.

2. Auxiliary results. For ¢ =0, 1, 2, ...,

the Bernoulli polynomials B, (x)
arc defined by

e 2 B (x)z!

e—1 B q=0 q!
Their expansion around the origin is given by

Bq(x).= i (?) B, ,?q—i,

i=0

s |zl < 2m.
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where B, =B,(0) (n==0,1,2,..) are the Bernoulli numbers. For the fol-

lowing properties of Bernoulli polynomials we refer to Rademacher [4]. We
have

(4) sz+1=0, k=1,2,...,
5 B (x-+1) = By (x)+ kx* 1,
(6) _ B, (x) = kBy_ { (x),
1
(7 424 X = P I(Bk+1(x+1) B o)

Further, by Staudt-Clausen theorem

1
sz=sz“ Z -
P 12k

(p prime)}

where G, e Z.

Lemma 1 (A. Schinzel and R. Tijdeman). Ler 0+£belZ, and let
P(x)eZ[x] be a polynomial with at least two- distinct zeros. Then the equation

P(x) = by*

in integers x, y > 1, z implies that z < C, where C = C(P, b) is an effectively
computable constant.’

Proof. See A. Schinzel and R. Tijdeman {6].

LemMa 2. Let F(y) = Z 0,¥' be a non-zero element of A[y]. Suppose
that Q,(0) is odd and g > 2 Then the polynomial

G(x) = F((1/g) (B,(x)—B,)

has at least two distinct zeros.

Proof. Supposing the contrary, we can write

q"G(x) = a{x—x)',

with some non-zero a € Z and some xy,€ Q. Put x, = a/b, where a, be Z and
(a, by = 1. Then :
bq"G(0)=bq"Qe(0) =a(—af
ahd | _
b'q"G(1) =b'q"Qo(1) = a(b~—a).

It is easy to see that

b q'|(xd', a(b~af) =



102 B. Brindza

By using this relation we get

G(x)—Qolx) = TP o (bx—af — Qo ()€ Z [x].

We can write
G)—Qo(x) =l x+Lx*+ ...,
where

-1
bh=T""B,_,0,(0+B,_,0O)+Q;(0) B,

h =B, 0;(0) and 5

By the Staudt-Clausen theorem the denominators of By, By (j=1,2,..)
are even. If g is odd then , ¢Z, and if g is even then l,¢Z. This is a
contradiction.

The following lemma is an effective version of a well-known theorem of
LeVeque [3].

LemMma 3. Let G(x)e Q[x],

G(xy = aox”+ oo tay =ag n (x—oz,-)"}
i=1

with ag# 0 and o; #a; for i#j Let 0#beZ, 2<meZ and define 1,
= m/(m, r;). Suppose that {t,, ..., t,} is not a permutation of the n-tuples
(@ {t,1,...,1}, t=1; (b){2,2,1,...,1}.
Then all solutions (x, y)e Z® of the equation
' G(x) =
satisfy max {|x], [y} < C’, where C' is an effectively computable constant
depending only on G, b and m.
Proof. See B. Brindza [1].
LemMma 4 (M. Voorhoeve, K. Gyory and R, T:_;deman) Let g=2,
R*(x)e Z[x] and set
P(x) =B, (x)~ B, +qR*(x).
Then
(i) P(x} has at least three zeros of odd multiplicity, unless ge {1, 2, 4, 6}.

(i) For any odd prime p, at least two zeros of P(x) have multiplicities
relatively prime to p.

Proof. See M. Voorhoeve, K. Gyory and R. Tijdeman [7].
Lemma 3. Let g2 2 and Q*(x), R*(x)c Z[x], and set
V(x) = (B, (x) ~ B) @* (x) +qR*(x).
Suppose that Q*(x) = +1.(mod 4). Then
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) Vix) has at least three
gell,2,3,4,6).

(iiy For any odd prime p, at least two zeros of V(x) have multiplicities
relatively prime to p.

Proof. We shall follow the proof of Lemma 4 of [7]. Choose d& N such
that d (B, (x)—B,) is a primitive polynomial in Z[x]. It is easy to see (sec
the proof of Lemma 4 in [7]) that 4 is odd if and only if ¢ = 2* for some 1
= 1. Further, if ¢ # 2* for any 4> 1, then 4 = 2 (mod 4).

We distinguish three cases:

A, Let g >3 be odd, Then d =2 (mod 4) and

dV (x) = d (B, (x)~ B,) 0* (x} - dgR* (x) = d (B, (x)— B,)
@ x4~ (mod 2).

zeros unless

of odd multiplicity,

g~ 1)/2
= x4 Z
i=1

Hence,

(g~ 12
gxi~ e Y

iw= 1

d(V(x)+xV' (%) = (;)(l—i-q——Zi)x‘f“” =x1~! (mod 2).

Any common factor of dV(x) and dV’(x) must therefore be congruent to a
power of x (mod 2). Since

dV'(0) = dgB,, 0* (0)+dgR*'(0) = 1 (mod 2)

we find that dV(x) and dV'(x) are relatively prime (mod 2). So any common
divisor of dV(x) and dV'(x) in Z[x] is of the shape 25(x)+ 1. Write dV(x)
= T{x}Q(x), where T(x) = H T* (x)e Z [x] contains the multiple factors of

dV and QeZ[x] contains 1ts simple factors. Then T(x) is of the shapc
2R{x)+1 with R(x)eZ[x], so

Q) =dV(y)=x""+ .. (mad 2)

Thus the degree of Q(x) 15 at least g—1, proving case A.

In cases B and C we suppose that Q*(x)=1(mod 4). Il Q*(x)
= —1(mod 4) then we write from first to last —dV{x) instead of dV(x)
and however the proof is completely similar.

B. Suppose g = 2* for some 4 > 1, so d is odd. We may assume that 4

> 3. Now (;‘k) is divisible by 4 unless 2k =4¢ =21, Similarly, (;’k) is
divisible by 8 unless 2k is divisible by 242 We have therefore for some odd
d', writing v = g/4 .

(8) AV (%) = d( dx® +2x3+d'x? +2x° (mod 4).

Bq (x)”Bq) =

2 — Acta Arithwmetics XLIV.2
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Write dV (x} = T2(x)Q (x}, where T(x), Q{(x)cZ[x] and Q(x) contains each
factor of odd multiplicity of V(x) in Z[x] exactly once. Assume that
deg Q(x) < 2. Since

T2 (x) Q(x) = x*' +x2* = x¥(x*"+ 1) (mod 2),
T*(x) must be divisible by x**~2 (mod 2). So
' T(x) = x""1 T, (%) +2T5(x),

T?(x) = x¥ 7 ? T (x)+4 T3 (x),

for certain T,, T;, TheZ[x]. If g > 8, then v> 2 so the last identity is
incompatible with (8) because of the term 2x". Hence deg Q (x) 2= 3, which
proves (i). If g =8, then d =3 and

dV(x) =3x8+ 2x5+ x* + 2x? = —x* (x+ 1) (x~ D (x> + 1) (x*+2) (mod 4),

All these factors — except x* — are simple, so deg @ 26> 3 if g =8,
proving (i) in case B.
. To prove (i), let p be an odd prime and write 4V (x) = T7(x) Q (x), where
Q, TeZ[x] and all the roots of muitiplicity divisible by p are incorporated
in T7(x). We have, writing g = 2*77,
dV(x) = TP(x) O (x) = x* (x*+ 1) = x*(x+ 1)* (mod 2).

Since p is relatively prime to p, @ has at least two different zeros, proving (ii)
in case B. _

C. Suppose g is even and g # 2* for any 1> 1. Then d = 2 (mod 4) and
hence

9 dV{x)=d(B,(x)-B,)
= 2x”f—qx‘1“1+%d(;)x“"2+ ..+dB,_, @xl (mod 4).

In order to prove part (i) we may assume that ¢ > 10, because ¢ = 2, 4, 6 are
the exceptional cases and ¢ =8 is treated in Section B. Write dV (x)
=T*x)Q(x), where T QeZ[x] and Q(x) contains each factor of odd
multiplicity of V' exactly once. Then deg Q(x) > 3. The assertion casily

foliows by repeating the corresponding part of the proof of Lemma 4. This
proves part (i) of the lemma.

Consider the case (ii). Write ¢ _y r. where r > 1 is odd. Then

. (g=2y/2 q=1
dVix) =d —-B)= T\ x2 = 7
=d =)= % (1) =F (1)
=(x+1f—xt1 = ((x+ 1y =X~ 11" (mod 2).

Since r > 1 is odd, (x+1¥—x—1 has x and x+1 as simple factors {mod 2),
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Thus
dV(x) = x> {x+ 1)** H(x) (mod 2},

where H is neither divisible by x nor by x+1 (mod 2). As in the preceding
case, V(x) must have two roots of multiplicity prime to p. The proof of
Lemma 5 is thus complete.

Lemma 6 (K. Gyory, R. Tijdeman and M. Voorhoeve). Each zero of T(x) -
= B,(x}— B, is of multiplicity less than 3.
Proof If g =3 then

2T(x) = 2x* +x = 2x(x+ 1) (x—1) (mod 3),

showing that T'(x) has three simple roots. First suppose g > 3 is odd. Then,
following the proof of Theorem 2 in [2], we have

d(T(x)+xT'(x)} = x*"* (mod 2).

Since dT"(0) = qdB,_; = 1 (mod 2) we find that dT(x) and dT'(x) are relati-
vely prime (mod 2). So any irreducible common divisor of dT(x) and dT'(x)
in Z[x] must be of shape 2§(x)+1. Then dT(x) is divisible by (2S(x)-+1)?
and the leading coefficient d of dT(x) is divisible by the leading coefficient of
(28(x)+1)*. Since 4.rd, this is impossible unless S(x) is a constant. All the
zeros of T(x) are therefore simple. Next suppose that g is even. Since then
T'(x) = g¢B,._;{x) hence each zero of T{(x) is multiplicity less than 3,

3. Proof of the theorems.
Proof of Theorem 1. Putting Q¥ (x) = Q;(x~1) (i=0, 1, ..., n), we

have Q¥(0) = Q,(~1). Let x, y, z>1 be an arbitrary solution of (3) in
rational integers. Then ‘

n 1 I
F(8,(x) = _;0 Q?'(x-i'l)[(BHI(x—H)-BHl) m:] ,

and we get an effective bound for z by applying Lemmas 1 and 2.
Proof of Theorem 2. Let y, be a simple zero of F(y), and write

F()=q,y"+ ... +4q1¥+40 = (y—yo) H(y),
where H(yg) # 0. Put
1 u
M (x} = i1 (By+1 (x+1)—Bk+1)-‘"J/o = Gy H (x—a)"
+1 =1

(>0, 0y # a; if i 5 )
and

LG = H(-l—(Bm(xH)'-—Bm)) = b [T (4"

k+1 :
(d; > 0_: B # Biif i),
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Clearlﬁr w; = fB; for ie{l, ..., u}, jell,...,v}. From (6) we get M'(x)
= B,(x+1). So by Lemma 6 we can write v, <4fori=1, ..., u Ifk+1>3
then u> 2; if k=2 then

M'(x) = By(x+1) = (x+ 1) —(x+ D) +& = (x—x}(x~x3)  (x; # xp)

and again u = 2.

let now X, y, z be an arbitrary integer solution of (3) under the
assumptions of the theorem, with x, y > 1, z¢ {1, 2, 3, 4, 6}. Then Lemma 1
gives z < Cy with an effective C,. Since y, <4 and z¢{l, 2,3, 4,6} so
iz, )= 3fori=1, ..., u. Using Lemma 3 we have max {x, y} < C, where
C is an effectively computable constant depending only on F, k and b. This
completes the proof of Theorem 2.

Proof of Theorem 3. Write Q;(x) = ' K;(x), where K,(x)& Z [x] for
i=2,...,n By using the Staudt-Clausen theorem we have

. [(k+1)/2]
(10) - (Bk+1(x+l_)‘“3k+1) H peZ[x],
s=1 (p— 1} 2s,{p— 1) 2jforj <s
p prime
and

[+ 1}/2)

pJ x/(k+1).

Cos=l (p- 1|28 (p~ LhFZflerj <s
. P prime
From (10) we get
1 FENL
Qi(x){m(Bkn(x‘!'l)—Bkﬂ)} th(x){

(Bk+1(x+l)—Bk+l)}!ez[x]

A<
k+1
fori=2,...,n Putting

k41

U(X+1)_= (k‘*"l)F(”*“l*”(Bkﬂ(x'i' 1)= By 1))

we have
UCeH1) = 0F (x4 1)(Bey s (0 1) = By )+ (k+ D) W+ 1),

where WeZ[x] and 0F(x) = Q, (x—1), Q¥ (x+1) = +1 (mod 4). By apply-
ing Lemmas 5 and 1 we see that z is bounded, ie. z < C, with an effectively
computable C,. Write

N
Ulx)y=c [] {x~x)"
i=1
where ¢ # 0, x, 3 xpif i f and, for a fixed z let 1, = z/(z, r). Iz is even,

then by Lemma 5 at least three zeros have odd multiplicity, say r, r,, r; are
odd. Consequently, ¢,, ¢, and t; are even. If z is odd and piz for an odd
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prime p, then by Lemma 5 at least two zeros of U(x) have multiplicities
prime to p. We may assume that (r;, p) = (r,, p} = 1, so plt; and pjt,. Using
Lemma 3 we have max {x, y] < C,(z) with an effectively computable C,(z)
which depend on z. Finally z < C, implies the required assertion.

Remark. In Theorem 3 it is necessary to assume that (,{(x} = +1
(mod 4). Indeed, let Q,(x)=...=Q,(x}=0, and if Q,(x)# +1 (mod 4},
choose d, ke N such that d(B,,,{x+1)—B,,,) is a primitive polynomial in
Z(x] and Q,(x)=d(k+1)# +1(mod 4). If this is the case, there are
infinitely many choice for Qo (x) and b such that (3) has an infinite number of
solutions. We may take for example

Qo(x) = x—d(Bysy (x+1)= By q)
when the number of solutions of the corresponding equation
F(Sux)) = x = by*

is obviously infinite. _
I would like to thank K. Gy®ry for his valuable remarks.
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