On a diophantine equation connected with the Fermat equation.

bу

B. Brindza (Debrecen)

1. Introduction. Let p > 2 be a prime. In 1946 Inkeri [3] proved that there exists at most a finite number of positive integer triplets (x, y, z) which satisfy the conditions

(1)
$$x^p + y^p = z^p$$
, $(x, y, z) = 1$,

and for which at least one of the differences |x-y|, z-x, z-y is less than a given positive number M. That (1) has only a finite number of solutions x, y and z with y-x=v for v a fixed positive integer, was proved by Everett [2] by means of Roth's famous theorem [7] on approximation of algebraic numbers. Recently Stewart [8] and Inkeri and van der Poorten [5] (in the case where n is a prime) have shown that, for any positive number C_0 , all positive integer solutions x, y, z > 1, n > 2, of the equation

$$x^n + y^n = z^n$$
 with $|x - y| < C_0$

satisfy $\max\{n, x, y, z\} < C$, where C is an effectively computable constant depending only on C_0 . Their proofs involve the Gelfond-Baker method.

In [4] Inkeri studied the equation

$$(2) h^p(x) + g^p(x) = z^p.$$

He proved that if h and g are distinct non-constant polynomials with integer coefficients which satisfy the conditions

$$D(g-\zeta^r h) \neq 0 \quad (r=0, 1, ..., p-1); \quad R(g, h) \neq 0,$$

where $D(\cdot)$ is the discriminant, $R(\cdot, \cdot)$ the resultant and ζ a primitive pth root of unity, then equation (2) has at most a finite number of solutions in rational integers x, z and all these solutions can effectively be determined. His proof depends also on the Gelfond-Baker method.

In [1] we have obtained an effective version of the well-known LeVeque's theorem [6] on the hyperelliptic equation. Our result enables us

359

to prove the following improvements of the later theorems of Inkeri and of Stewart.

Theorem 1. Let n > 2 be a rational integer, and let $G_0(X)$ and $H_0(X)$ be nonproportional, f(x) non-zero polynomials with rational integer coefficients. Then all solutions $x, z \in Z$ of the equation

(3)
$$G_0^n(x) + H_0^n(x) = z^n$$

satisfy $\max\{|x|, |z|\} < C_1$ where C_1 is an effectively computable constant depending only on n, $G_0(X)$ and $H_0(X)$.

Theorem 2. Let G(X) and H(X) be nonproportional, non-zero polynomials with positive integer coefficients. Suppose that the leading coefficients of G(X), H(X) are equal. Then all positive integer solutions n, x, z with n > 2 of the equation

$$G^{n}(x) + H^{n}(x) = z^{n}$$

satisfy $\max\{n, x, z\} < C_2$ where C_2 is an effectively computable constant depending only on G(X) and H(X):

In the proof of Theorem 1 we shall use the following effective version of a well-known theorem of LeVeque [6].

LEMMA 1. Let $P(X) \in \mathbb{Z}[X]$,

$$P(X) = a_0 X^N + ... + a_N = a_0 \prod_{i=1}^k (X - \alpha_i)^{r_i},$$

with $a_0 \neq 0$, N > 0 and $\alpha_i \neq \alpha_j$ for $i \neq j$. Let $0 \neq b \in \mathbb{Z}$, $2 \leq m \in \mathbb{Z}$ and define $t_i = m/(m, r_i)$. Suppose that $\{t_1, \ldots, t_k\}$ is not a permutation of the k-tuples

(a)
$$\{t, 1, ..., 1\}, t \ge 1$$
, and (b) $\{2, 2, 1, ..., 1\}$.

Then all solutions $x, y \in \mathbb{Z}$ of the equation

$$P(x) = by^m$$

satisfy $\max\{|x|, |y|\} < C_3$ where C_3 is an effectively computable constant depending only on P(X), b and m.

Proof. See B. Brindza [1]. We note that the proof of this lemma is also based on the Gelfond-Baker method.

Proof of Theorem 1. It is well known that the equation

$$x^{2^k} + y^{2^k} = z^{2^k}, \quad (x, y, z, k \in N)$$

has no solutions for k > 1. If $p \mid n$, where p > 2 is a prime, then we can write

$$[G_0^{n/p}(x)]^p + [H_0^{n/p}(x)] = [z^{n/p}]^p.$$

Since (1) is not soluble if p=3 or p=5, we can assume that p>5. Put $G(X)=G_0^{n/p}(X)$, $H(X)=H_0^{n/p}(X)$ and

$$L(X) = G^{p}(X) + H^{p}(X) = A \prod_{i=1}^{k} (X - X_{i})^{r_{i}},$$

with $X_i \neq X_j$ for $i \neq j$. Further, put $t_i = p/(p, r_i)$ for i = 1, ..., k. In view of Lemma 1 it will be sufficient to show that $\{t_1, ..., t_k\}$ is not a permutation of any of the above k-tuples (a), (b). The case (b) is impossible, because $t_1, ..., t_k$ are odd. Suppose that the case (a) holds. Then we can write

$$L(X) = (X - \alpha)^q F_1^p(X),$$

where $q \ge 0$ and $F_1(X) \in C[X]$. Let q = ap + b, where $b \in \{0, ..., p-1\}$ and a is a non-negative integer. We have now

$$L(X) = (X - \alpha)^b F_2^p(X)$$
, where $F_2(X) = F_1(X)(X - \alpha)^a$.

Let K(X) be the greatest common divisor of G(X) and H(X) in C[X]. We may suppose that K(X) is a monic polynomial. Then $K(X) \in Q[X]$ and

$$G(X) = K(X)G_1(X), \quad H(X) = K(X)H_1(X),$$

where $G_1(X)$, $H_1(X) \in \mathbb{Q}[X]$. Since

$$K^p(X) \mid (X-\alpha)^b F_2^p(X)$$

and b < p, we can write $F_2(X) = K(X)F(X)$, where $F(X) \in C[X]$. Put

(5)
$$M(X) = G_1^p(X) + H_1^p(X) = (X - \alpha)^b F^p(X).$$

It is clear that $F^{p-1}(X) \mid M'(X)$ and

$$F^{p-1}(X) \mid M'(X) G_1(X) - pM(X) G_1'(X)$$

$$= pH_1^{p-1}(X) \left[-H_1(X) \, G_1(X) + H_1'(X) \, G_1(X) \right].$$

Since $G_1(X)$ and $H_1(X)$ are relatively prime, we find that F(X) and $H_1(X)$ are also relatively prime. Then we get

$$F^{p-1}(X)|H_1'(X)G_1(X)-H_1(X)G_1'(X)=G_1^2(X)(H_1(X)/G_1(X))\neq 0.$$

We may suppose without loss of generality that deg $H_1 \leq \deg G_1 = n$. Then

(6)
$$(p-1) \deg F \leq \deg(H_1' G_1 - H_1 G_1') < 2n.$$

We are now going to prove that deg $M \ge n(p-1)$. If

$$\deg H_1 < \deg G_1,$$

then this is trivial, because deg M = np. We may assume that

$$\deg H_1 = \deg G_1 = n.$$

⁽¹⁾ i.e. $G_0(x)/H_0(x) \notin Q$.

Then

$$H_1(X) = a_n X^n + \ldots + a_1 X + a_0$$

and

$$G_1(X) = b_n X^n + \ldots + b_1 X + b_0,$$

where $a_n \cdot b_n \neq 0$ and $a_i, b_i \in Q$ for i = 0, 1, ..., n. Let

$$i_0 \doteq \max_{a_i + b_i \neq 0} \{i\}.$$

If $i_0 = n$, then deg M = np > n(p-1). Let now $i_0 < n$ and

$$A(X) = a_n X^n + ... + a_{i_0+1} X^{i_0+1},$$

$$B(X) = a_{i_0} X^{i_0} + \ldots + a_0,$$

$$C(X) = b_{i_0} X^{i_0} + \ldots + b_0.$$

Then we have $H_1 = A + B$ and $G_1 = -A + C$. Further,

$$H_1^p + G_1^p = A^{p-1}(B+C)\binom{p}{1} + A^{p-2}(B^2-C^2)\binom{p}{2} + \dots$$

It is easy to see that

$$\deg \{A^{p-1}(B+C)\} = n(p-1)+i_0,$$

because $a_n^{p-1}(a_{in}+b_{in})\neq 0$. If j>1, then

$$\deg \{A^{p-j}(B^j \pm C^j)\} \le n(p-j) + i_0 j < n(p-1) + i_0,$$

so we have

(7)
$$\deg M = n(p-1) + i_0 \ge n(p-1).$$

We shall now show that deg F > 0. Supposing the contrary, we can write

$$p > b = \deg(X - \alpha)^b F^p(X) = \deg M \geqslant n(p-1).$$

From this it follows that n = 1, b = p-1 and $a_1 + b_1 = 0$. Then by (5) we have

$$(a_1X + a_0)^p + (-a_1X + b_0)^p = d(X - \alpha)^{p-1} \quad (d \in \mathbb{C}).$$

The derivatives take now the form

$$pa_1 \left[(a_1 X + a_0)^{p-1} - (-a_1 X + b_0)^{p-1} \right] = d(p-1)(X-\alpha)^{p-2}$$

Then we get

$$(X-\alpha)(a_1X+a_0)^p-(a_1X+a_0)(-a_1X+b_0)^{p-1}$$

and so

$$(X-\alpha)|(a_1X+a_0)^p+(-a_1X+b_0)^p-\{(a_1X+a_0)^p-(a_1X+a_0)(-a_1X+b_0)^{p-1}\}=(a_0+b_0)(-a_1X+b_0)^{p-1},$$

that is, $(\dot{X} - \alpha)|-a_1X + b_0$ and $(X - \alpha)|a_1X + a_0$. But this is a contradiction which proves that

$$\deg F > 0.$$

Thus from (8), (7) and (6) we obtain

$$2p \deg F \ge p \deg F + p > \deg M \ge n(p-1) > \frac{1}{2}(p-1)^2 \deg F$$
,

whence $2p > \frac{1}{2}(p-1)^2$ which is impossible if p > 5.

Consequently, we can apply Lemma 1 and we get $\max\{|x|, |y|\} < C$, where C is an effectively computable constant depending only on p, $G_0(X)$ and $H_0(X)$. This completes the proof of Theorem 1.

In the proof of Theorem 2 we shall use the following lemma.

LEMMA 2 (C. L. Stewart [8]). If

$$0 < y - x < C_0 z^{1 - 1/\sqrt{n}}$$

for some positive number C_0 , and if

$$x^n + y^n = z^n \quad (x, y, z, n \in \mathbb{N})$$

then n is less than C', a number which is effectively computable in terms of C_0 .

Proof. See C. L. Stewart [8].

Proof of Theorem 2. Let

$$G(X) = a_g X^g + \ldots + a_1 X + a_0$$

and

$$H(X) = b_h X^h + \ldots + b_1 X + b_0$$

with non-negative integers $a_q, \ldots, a_0, b_h, \ldots, b_0$. Further, let

$$\mathscr{G} = \max_{0 \le j \le q} a_j.$$

We shall now distinguish the following cases:

- (A) deg $G \neq \deg H$;
- (B) $g = \deg G = \deg H$.

Consider first the case (A). We may suppose without loss of generality that deg $G < \deg H$. Then

$$G^{n}(x) < [(g+1) \mathcal{G}x^{g}]^{n} \leq [(g+1) \mathcal{G}x^{h-1}]^{n}$$

for any $x \in \mathbb{N}$. Let now x, z, n be an arbitrary solution of (4) with n > 2

and write G(x) = X, H(x) = Y. Suppose that $x \leq [(g+1)\mathcal{G}]^{2h}$, and put $G([(g+1)\mathcal{G}]^{2h}) = K$. Then $X \leq K$ and we have

$$Y < \lceil (Y+1)^n - Y^n \rceil^{1/(n-1)} \le (z^n - Y^n)^{1/(n-1)} = X^{n/(n-1)} < K^2,$$

and $z < X + Y < K + K^2$. Moreover,

$$1 = \left(\frac{X}{z}\right)^n + \left(\frac{Y}{z}\right)^n \le \left(\frac{X}{X+1}\right)^n + \left(\frac{Y}{Y+1}\right)^n$$
$$< \left(\frac{K}{K+1}\right)^n + \left(\frac{K^2}{K^2+1}\right)^n < 2\left(1 - \frac{1}{K^2+1}\right)^n,$$

and so $n < K^2 + 1$. Therefore we can restrict ourselves to the case where

$$x > [(g+1) \mathcal{G}]^{2h}.$$

If n < 2h, then we have only to apply Theorem 1. We may assume that $n \ge 2h$. Then we can write

$$\begin{split} H^{n}(x) &< H^{n}(x) + G^{n}(x) < H^{n}(x) + \left[(g+1) \mathcal{G}x^{h-1} \right]^{n} \\ &< H^{n}(x) + x^{n(h-1)} \left[(g+1) \mathcal{G} \right]^{2h(n-h)} < H^{n}(x) + x^{(h-1)n} x^{n-h} \\ &= H^{n}(x) + x^{h(n-1)} \leqslant H^{n}(x) + H^{n-1}(x) < \left(H(x) + 1 \right)^{n}, \end{split}$$

whence H(x) < z < H(x) + 1, which gives a contradiction.

Let us return to the case (B). Define the index i_0 by

$$i_0 = \max_{a_i \neq b_i} \{i\}.$$

We may suppose that $b_{i_0} > a_{i_0}$ and $x > \mathcal{G}+1$. Then

$$\begin{split} H(x) - G(x) &= x^{i_0} \left(b_{i_0} - a_{i_0} + \frac{1}{x} \left(b_{i_0 - 1} - a_{i_0 - 1} \right) + \dots + \frac{1}{x^{i_0}} \left(b_0 - a_0 \right) \right) \\ &\geqslant x^{i_0} \left[\left(b_{i_0} - a_{i_0} \right) - a_{i_0 - 1} / x - \dots - a_0 / x^{i_0} \right] \\ &> x^{i_0} \left(b_{i_0} - a_{i_0} - \mathcal{G} / x - \dots - \mathcal{G} / x^{g_0} \right) > x^{i_0} \left(1 - \mathcal{G} / (x - 1) \right) > 0 \end{split}$$

and

$$H(x) - G(x) < b_{g-1} x^{g-1} + \dots + b_0 \le (b_{g-1} + \dots + b_0) x^{g-1} = dx^{g-1},$$
 where $d = b_{g-1} + \dots + b_0$. If

$$(i) g^2 < n$$

and

(ii)
$$H(x) - G(x) \ge dz^{1-1/\sqrt{n}},$$

then

$$\begin{split} x^g &\leqslant a_g \, x^g \leqslant \tfrac{1}{2} \big(G(x) + H(x) \big) \leqslant \left[\tfrac{1}{2} \big(G^n(x) + H^n(x) \big) \right]^{1/n} \\ &= \sqrt[n]{\frac{z^n}{2}} < t \leqslant \left[\frac{1}{a} \left(H(x) - G(x) \right) \right]^{1/(1 - 1/\sqrt{n})} < x^{(g - 1)/(1 - 1/\sqrt{n})} < x^g. \end{split}$$

This is impossible, so $g^2 \ge n$ or $H(x) - G(x) < dz^{1-1/\sqrt{n}}$. By Lemma 2 we have that

$$n < \max\{g^2, C'(d)\} = C(H, G)$$

and, by applying Theorem 1, that x, z are bounded. This proves Theorem 2.

I would like to thank K. Györy and the referee for their valuable remarks.

References

- [1] B. Brindza, On S-integral solutions of the equation $f(x) = y^m$, Acta Math. Acad. Sci. Hungar, to appear.
- [2] C. J. Everett, Fermai's conjecture, Roth's theorem, Pythagorean triangles and Pell's equation, Duke Math. J. 40 (1973), pp. 801-804.
- [3] K. Inkeri, Untersuchungen über die Fermatsche Vermutung, Ann. Acad. Sci. Fenn. Ser. AI, 33 (1946), pp. 1-60.
- [4] A note on Fermat's conjecture, Acta Arith. 29 (1976), pp. 251-256.
- [5] K. Inkeri, A. J. van der Poorten, Some remarks on Fermat's conjecture, ibid. 36 (1980), pp. 107-111.
- [6] W. J. Le Veque, On the equation $v^m = f(x)$, ibid. 9 (1964), pp. 209-219.
- [7] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), pp. 1-20.
- [8] C. L. Stewart, A note on the Fermat equation, ibid. 24 (1977), pp. 130-132.

MATHEMATICAL INSTITUTE KOSSUTH LAJOS UNIVERSITY 4010 Debrecen 12, Hungary