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On a diophantine equation connected
with the Fermat equation,

by

B. Brinpza {Debrecen)

1. Introduction. Let p > 2 be a prime. In 1946 Inkeri [3] proved that
there exists at most a finite number of positive integer triplets {x, v, z) which
satisfy the conditions

(1) xp+yp=zp’ (xs ¥, Z) = 15

and for which at least one of the differences |x—y|, z—x, z—y is less than a
given positive number M. That (1) has only a finite number of solutions x, y
and z with y—x = v for v a fixed positive integer, was proved by Everett [2]
by means of Roth’s famous theorem [7] on approximation of algebraic
nurnbers. Recently Stewart [8] and Inkeri and van der Poorten [5] (in the
case where n is a prime) have shown that, for any positive number C,, all
positive integer solutions x, y, z > 1, n > 2, of the equation

x"+y'=z" with |x—y <C,

satisfy max {n, x, y, z} < C, where C is an effectively computable constant
depending only on Cy. Their proofs involve the Gelfond—Baker methed.
In [47) Inkeri studied the equation

(2) P (x) +gP(x) = z°.

He proved that if & and g are distinct non-constant polynomials with integer
coeflicients which satisfy the conditions

D(g*"frh)#(] [r=0, 1,..., p'—l), R(ga h)?l:'ol

where D(-) is the discriminant, R(-, ) the resultant and { a primitive pth
root of unity, then equation (2) has at most a finite number of solutions in
rational integers x, z and all these solutions can effectively be determined. His
proofl depends also on the Gelfond-Baker method. '

In 13 we have obtained an effective version of the well-known
LeVeque's theorem [6] on the hyperelliptic equation. Our result enables us
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to prove the following improvements of the later theorems of Inkeri and of
Stewart.

Tueorem 1. Let n > 2 be a rational integer, and let Go(X) and H,(X) be
rnonproportional,(*) non-zero polynomials with rational integer coefficients.
Then all solutions x, zeZ of the equation

3) Gh(x)+HE(x) = ="
satisfy max {|x|, |z|} < C, where C; is an effectively computable constant
depending only on n, Go(X) and Hy(X}.

Tueorem 2. Let G(X) and H(X) be nonproportional, non-zere polynomials
with positive integer coefficients. Suppose that the leading_coeﬁiciem.s' of G(X),

H(X) are equal. Then all positive integer solutions n, x, z with n > 2 of the
equation.

(4) G"(x)+H"(x) = 2"
satisfy max{n, x, z} < C, where C, is an effectively computable constant
depending only on G(X) and H(X).

In the proof of Theorem 1 we shall use the following effective version of
a well-known theorem of LeVeque [6].

Lemma 1. Ler P(X)eZ[X],

k
PX)y=ap X¥+ ... +ay =ao [] (X—u)",

i=1

with ag # 0, N>0 and w, # o for i #j. Let 0% beZ, 2<meZ and define
t; = mf(m, r}). Suppose that {t,, ..., t,} is not a permutation of the k-tuples

(@) i, 1,...,1},t=1, and (b){2,2,1,..., 1}.
Then all solutions x, yeZ of the equation
P(x) = by™

satisfy max {[x|, [y]} < C3 whefe C; is an effectively computable constant
depending only on P(X), b and m.

Proof. See B. Brindza [1]. We note that the proof of this lemma is also
based on the Gelfond-Baker method.
Proof of Theorem 1. It is well known that the equation

_ iy = (%, ),z keN)
has no solutions for k > 1. If p|n, where p > 2 is a prime, then we can write
| [GY” (27 + [HE (4] = [""T".

(") ie Go(x)yHo(x)¢Q.
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Since (1) is not soluble if p=3 or p =5, we can assume that p > 5. Put
G(X) = G¥?(X), H(X) = HY?(X) and

LXy=G*(X)+H(X)=4 ﬁ (X—-Xx)",

i=1

with X; # X; for i s j. Further, put ¢, = p/(p, ;) for i = 1, ..., k. In view of
Lemma 1 it will be sufficient to show that {z, ..., t;} is not a permutation of
any of the above k-tuples (a), (b). The case (b} is impossible, because 14, ..., #,
are odd. Suppose that the case (a) holds. Then we can write

L{X) = (X —af F{ (X),

where q z0and Fi(X)eC[X]. Let g = ap+bh, where be [0,..., p—1} and a
18 a non-negative integer. We have now

L(X)=(X—a) F§(X), where F,(X)=F,(X)(X—aF.

Let K(X) be the greatest common divisor of G(X) and H(X) in C[X].
We may suppose that K(X) is a monic polynomial. Then K(X)e Q[X] and

G(X)=K(X)G(X), H(X)=K(X)H,(X), '

where G, (X), H, (X)e Q[X]. Since

KP(X)| (X —a) F3(X)
and b < p, we can write F,(X) = K(X)F(X), where F(X)e C[X]. Put
() C M(X) = GH(X)+ HE(X) = (X ~a) F?(X).
It is clear that FP~!(X)] M'(X) and

Froi (X) | M/(X) G (X)— pM(X) G (X)
= pH{™ () [ - H, (X) G (X)+ H (X) G (X]].

Since G (X) and H,(X) are relatively prime, we find that F(X) and H,(X) .
are also relatively prime. Then we get

Fem Y (X)| Hy (X) G (X)— Hy (X) G1(X) = GF(X) (H, (X)/G1 (X)) £ 0.
We may suppose without loss of generality that deg H, < deg G, = n. Then
(6) (p—1) deg F < deg(H} G, — H, G}) < 2n.
We are now going to prove that deg M = n(p—1). I
deg H, < deg Gl,
then this is trivial, because deg M = np. We may assume that

deg H, = deg G, = n.
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Then

H(X)=a,X"+...+a, X +a,
and

Gl(X) == anPT_+_ o +b1 X“I’bo,

where a, b, # 0 and g, be@ for i=0,1,..., n Let

ip= max {i}.

gt b0
If iy = n, then deg M =np > n(p~1). Let now i, <n and
AX) =a, X"+ fort,
B(X )—asz + ... +ag,
CX) = by X'+ ... +bo.
Then we have Hy = A+B and G, = — 4+ C. Further,

L TIR.

H+Gf = 407 (B+C) G)+A"“2(BZ—C2)(D+

It is easy to see that
deg {4771 (B+C

because ai~*{a,+b; ) # 0. Ifj > 1, thén

deg (AP (B £ )} <

=n(p—1)+io,

n(p—p+iof < n(p—1)+igp,
so we have
M deg M = n(p—1)+io = n(p—1).

We shall now show that deg F > 0. Supposing the contrary, we can
write -

p>bh= deg(X—-oc}"’F"(X) =deg M = n{p—1).
From this it follows that n = 1 b=p—1 and a,+b, =0. Then by (5) w
have

(1 X +apg)'+(—a, X+ by = af(X-«—oc)“"1 : (dEC).
The derivatives take now the form
pay [(a, X+ao)1’" ~(= 0, X +bo)P" ] = d{p—1)(X —a)*" 2,

Then we gct ' _

(X —a) (a1X+'ao)P~(a1X+ao)(—-a1X+bo)f'"1,
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‘Thus from (8), (7) and (6) we obtain
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and so
(X =) (a, X+ ag)f +(— a1 X + b}’ — {{a, X + ag)P —
~{m X +agi(—a X +bof ™'} = (ag+bo)(—a, X+ b))~ 1,

that is, (X ~a)| —a; X +b, and (X —a)| @y X +ao. But this is a contradiction
which proves that

deg F > 0. '

2pdeg Fzpdeg F+p>deg M = n{p—1) > 4(p—1)> deg F,

whence 2p > 3(p—1)? which is impossible if p > 5.

Consequently, we can apply Lemma 1 and we get max {[x|, [y|} <C,
where C is an effectively computable constant depending only on p, G¢(X)
and H,(X). This completes the proof of Theorem 1.

In the proofl of Theorem 2 we shall use the following lemma.

LEmma 2 (C. L. Stewart [8]). If
< ymx < Gzt

Jor some positive number C,, and if

n

xX"+y"=z" (x,y,z,neN)
then n is less than C', a number which is effectively computable in terms of C0
Proof. See C. L. Stewart [8].

Proof of Theorem 2. Let

G(X)=a, X+ ... +a; X +a,

. and

H(X) = b, X"+

with non-negative integers a,, ..., ag, by, ...,

e+ b X+ by
bo. Further, Iet‘

% = max g;.
0<jsg
We shall now distinguish the following cases:
(A) deg G # deg H;
(B) g = deg G = deg H. :
Consider first the case (A). We may suppose without loss of generality
that deg G < deg H. Then

G"(x) < [(g+ 1) X1 < [{g+ 1) %gx"" 1T

for aﬁy xeN. Let now x, z, n be an arbitrary solution of (4) with n> 2
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and write G(x)=X, H(x)= Y. Suppose that x<[(g+1)%]* and put

G([g+1)%}**) = K. Then X <K and we have
Y < (Y41 — Y7401 < (2
and z < X+Y < K- K> Moreover,

X\ Y‘"< X ?'+ Y "
L={7) ") slxrr) v

K I Kz n<21 1 n
“\g71) T\ TRk

and so n < K2+ 1. Therefore we can restrict ourselves to the case where

x > [(g+ 1) &]*.

If n < 2h, then we have only to apply Theorem 1. We may assume that »
= 2h. Then we can write

H(x) < H"(x)+G"(x) < H*{x}+ [(g+ 1) Fx""1]"
<H"( )+xn(h 1)[(g+1) ]Zh(n hy <H"( )
=Hn(x)+xh(n 1 < H”(x)+H" l(x) (H(x)+1)”,

whence H(x) <z < H(x)+1, which gives a. contradlcnon
Let us return to the case (B). Define the index iy by

ip = max i}.

a; #b;

n__ Yn)ll(nml) = XMW= 1) KZ,

x(h— 1)nxn—-h

We may suppose that b >a, and x > %+1. Then

1
+ (bxo 1~ ﬂmﬂ)"‘---‘*‘ﬁ(bo“ao))

- ao/xIO]

H(x)-G () =" (bso

‘°[(b.~o—a!0)—-af0~1/x-

> X 0(byy —ajg— Gfx— ... — G/x") > x°(1=%/(x~1)) > 0
and
Hx)—G(x) <byoy x84 . by S by + oo +bo) X071 = do? ™4,
where d =b,. + ... +bo. If
) . Cgen
and '
@ . H®)—G(x) = dz* 1,
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then
X < a,x < 4(G(x) +H(x) < [%(G" x)+H"(x)) i

-~ 1 1/(1 - 1/+n) —
=15 <i< [E (H(x)~G(x))} < XTI ¢y,

This is impossible, so g2 =n or H{(x)—G(x) <dz'~*“". By Lemma 2 we

have that

n < max{g?, C'(d)} = C(H, G)

and, by applying Theorem 1, that x, z are bounded. This proves Theorem 2.
I would like to thank K. Gyory and the referee for their valuable
remarks.
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