On symmetric words in nilpotent groups
by
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Abstract. An r-ary word w(x,, ..., %) is called symmetric in a group G if for any elements
g1s -2 gy in G, and any permutation ¢ of indexes: w(gy, ---, 4,) = W(Goq)s -+ -» Gon). Symmetric
r-ary words build a group S"(G). We shall show that $*(G) and 5¢*"(G) are isomorphic for G '
nilpotent of the class n and r = n—1.

Introduction. Let X be the free group on the set of free generators
{x;, ie N}, where N denotes the set of natural numbers, and let V be a verbal
subgroup of X. A word w from X is called an r-ary word if the re-
duced form of w involves r generators, say X; , Xy, ---s X, W then write

w=w(x,, ..., x;). For any permutation o of N we denote
Wo =W (Xeq,)s - o> Xatip)s and say that the words w and wo are equivalent
under o.

DerFiNiTioN 1. A word s(X;, ..., X;) from X is called symmetric modulo
V if for every permutation aq of [iy, ..., i}, S6p =smodV.

We can see that the symmetry of s(xy, ..., X,) implies the symmetry
of all equivalent words s = 5(x;,, ..., X;). Indeed if o, is a permutation of
the set {ij, ..., i,}, then ooa0™! is a permutation of R=1{1,2, ..., r} and
because of the symmetry of s, s(cooo~')=smodV. This implies (s7)ao
= so mod V, which proves the symmetry of so. ]

According to [3] the set of all cosets sV, where 5 = s(xq, ..., X,) is an r-
ary word symmetric modulo ¥, written on x;, ieR=1{1,2,...,r} forms a
group $” (V). We shall suppose V fixed and write S®. 1t will be shown that
if r #¢, then SY NS =1mod V. Let sVeS, tVeS@, g <r, and for some

VEV 5(Xg,y ees X)) = 1(Xq, -ons X)Xy, ooty x,). Then for any y;, ie R, because
of the symmetry of s we have
S(Xg, wves Xp) = E(Xg, coes X O(Xgs oees %) E5(Xg5 0y X1, 1)

= 5(V1s X1 -es Xpmg) = E(V1s X1y -e0s Xg= ) 0(V1s X5 oo Xy—1)
=51, X1, o X2, Y2} =815 Y2s X1, Xe-2)
=1 (V1) Vs X1s ++vs Xg=2) V(Y15 Y25 X15 -o0s Xpm2) = oo
.. =501, Y2, --0s Yeymod V.
Put y, =1, ieR, then s(x;, ..., ) = V which was required.

~
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Since V is a fully invariant subgroup of X, the mapping

.
5r+1: S(x1> veey Xy x,+1)—>s(x1, sy Xy 1)

determines a homomorphism &*!: $¢* — S®, In [3] it is shown that the
homomorphism @*! is an isomorphism if ¥= X", and r > n—1. Here XV
=X, XW =[X® D Xx]. In [4] the same result is proved for V2 X,
n<4,r>n—1, and the problem is formulated whether the mapping &*! is
an isomorphism for every n, V2 X™, r = n—1.

We give here an affirmative solution of the above problem.

Definitions and lemmas. In X we introduce an endomorphism §, (k > 0)
given by x,8, =1, x;8, = x; for i # k. Clearly

0] 8.6, =0;6, &} =6,

Any permutation o of the set N induces an automorphism of X such that
(2 0;0 =00,;, 0= 6“_1(,.) .
We shall write D; = Kerd; and Dg = () D;.

ieR

DeriniTION 2. A word w(xy, ..., x,) is called neutral if wo; =1, ieR

=1{1,2,...,r}
tls &5 0ees Py
The set of all r-ary neutral words on generators x;, ieR, obviously
coincides with Dy.
LemMa 1. If w(xy, ..., Xx,) is a neutral r-ary word then we X,
Proof. weDy < X follows from ([2], 33.38).
Lemma 2. If s(xy, ..
XU then se X**D,
Proof. Denote by S, a group of permutations of R, and by A4, its
alternating subgroup. We shall consider the word s, = H co, where ¢

) a&s,
=[x, X3, X3, ..., X,] is the left-normed commutator, and the product is

taken for some fixed order of factors. Obviously s, is a neutral r-ary word,
symmetric modulo X, If we denote by o, the cycle (I, 2) then s,
=[] (ccopy.5)0'mod XU+ Y, With the use of a commutator calculus
o'eA,
modulo X“*1 we have
ccoy, = [X1, X3, X3, ..., x,] [[xn X178 x5, o, xr]
=cc”'mod Xt e X+,
This implies s, X** ", which will be used later.

Now since s(x;, ..., %) is a neutral r-ary word, by Lemma 1 seX®,
and by ([2], 34.21) 5 is a product modulo X"+ of commutators co for some
oeS,, say s =[] comod X+ V. Now, since s is symmetric modulo X+ b for

s X,) Is a neutral r-ary word, symmetric modulo .
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every oy€S,, [[co =]]cloog)mod X", By Hall's basis theorem ([1],
11.24) we conclude that s is a power of s, and hence se X**!), which was
required.

Now let w # 1 be an element of X. We write

(3) w(l—5,) =wws;)™ .
Then by (1)
4) (1-8)8, =8,(1—8), (1—8)8,=1.

DerINrTION 3. For a word w(xy, ..., x,) and k <r, we define the k-ary

X 1, ., y=w T[] &. The neutral part of w

i=k+1

we define as w =w [] (1—4,). The word W is neutral by ([2], 3342).
i=1

image of w as w, = w(xy, ..

For a set M = {i;, i,, ..., ;) © N we shall always suppose i; <i, <...
... <i,. We denote now K = |1, 2, ..., k| and introduce a permutation o of
the set M UK such that oy() =i, j<k. Then oy: K—-M. If MSR
='1,2,...,r}, then o) can be considered as a permutation of R, since
MUK cR. In case k=r, g, is obviously the identical permutation. If
s(xy, ..., X;) is a k-ary word then so, is an equivalent word written on
generators with indices form M.

DermvITION 4. We shall define a special order (%) for subsets in N. There
exists on-to-one correspondence between subsets M = {iy, i, ..., ], iy < i,
<...<i, of N and formal sequences iy, iy, ..., i, @, @, ...». We assume
> i for every ie N. The lexicographical order for the sequences induces the
order for subsets in N. We shall refer to it as to the order (#).

LeMMA 3.-Every symmetric word s(xy, ..., X,) is a product (modulo V) of
the neutral parts 5, of its k-images, k <r, and the equivalent words. More
precisely s =H§k oy is a product of 2" factors corresponding to the subsets
M c R, for k=|M)|, taken in order (*).

Proof. We introduce an algorithm that allows us to write any word

s(x;, ..., %) as a product [Juy of 27 factors corresponding to the subsets
M < R in order (¥), where uy =s[] (1—8) H &;. According to (3) for any
: ieM jeR\M

word s and any ieN
(5) s =s(1—5;)56;.
So for i=1, s=s(1—8,)sd;. Nov‘v apply (5) for i=2 to each factor
separately. We get
s=5(1=08)(1—65)s(1~6;)5,56,(1~0,)50,6;.

Apply (5) for i =3 to each factor separately and so on. The result will be
achieved in r steps with the use of (4). See ([2], 33.44).


GUEST


122 O. Macedoniska-Nosalska

We can see that for the case r = 2 the factors correspond to the subsets
{1,2} < {1} < {2} < {@}.
Suppose that for the (r—1)-st step the factors correspond to the subsets
My <M,<..<M, <{d],

then by applying (5) for 6, we get a product of 2" factors corresponding to
the sequence of subsets

My, r} <My <{M,,r} <My <..<{M, 7} <M, ,<ir} <{d}
which was required.
To prove the lemma we shall show that if s is a symmetric word, then

Uy =5, 0. Indeed, since ,;: R - R, s = soy,mod V. Then by using (2) and

@
uM=so'MH(l-5,-) H dj=s H (1-0) H 0;0n

ieM JeR\M ieMoypt jeR\Mojgt
r k
=s[10A~68) T] S;om=(s T] ) (1—8)oum =50y
ek jeR\K i=k+1 =1 '
as required.
For M = {i;, i, ..., 5} and K ={1,2,...,k} we have defined o,: K

—M.If take My ={1,2,...,ip—1,is+1,...,r+1}, and R={1, 2,...,7r}
then o3,: R — M, is a cycle ap = (ig, ip+1, ..., 7, r+1) which is a permu-
tation of J = {1, 2,..., r+1}. Here in the case iy =r+1 o, is the identical
permutation. °

Lemma 4. For a symmetric word w(xy, ..., X,4,) denote wé,,, =s, then

6) Wiy, = soy,mod V' for iy <r+1.
) W, =5 for k<r.
For any neutral word w(x,, x,, ..., %)
®) WOy 6 = {WGM Foio¢M,
1 if i,eM.

Proof. Because of the symmetry of w and (2) wdyy = woy, 6
_ . . ! ° !
=Wb,41 Oy, = 504y, Which gives (6). By Definition 3 and )]
r+1 k r k !
Wy =w & [T(1—~6)=(ws . —8)=5%
i=1k1-1 j1=_[1 _1) (W ’+1)i=];£151j1;11 (1 6]) - Sb
gives (7). Itloyv by (2) Tu iy = 5aﬁ1 i) TM The index o (i,) belongs to K if
and only if ioe M. Since w is neutral, we have (8). The lemma is proved.
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Theorems on the homomorphism #*!: SC+1 — 50,

TueorReM 1. If V=2 X then &*Y is an epimorphism for r > n—1.

Proof. A coset sVeS® has a contraimage under &*! if and only if
there exists an (r+1)-ary symmetric word w such that wVeS“*1) and wé, ,
=s. By Lemma 3, w = [ W, 04, where k =[M| and M runs over all non-
empty subsets of the set J = {1, 2, ...,r+1} in order (). In this order the
first factor of the product corresponds to M =J and coincides with the
neutral part of w, namely % =w[[(1—8). Then w=w][][W,0, where

isl
McJ, ie. k<r+1. We shall denote wy=[][W,0y, k<r+1. Since by
Lemma 1 we XV < V, we have w = wymod ¥ and w, is completely defined
by the word s because of (7).

Let s(xi,...,X,) be a symmetric word. We construct wy = HE,‘ Oy
where M runs over the proper subsets of J = {1, 2, ..., r+1} in order (*).
We shall show that wy V is a contraimage of sV under &*!. We shall first
check the equality

9 Wod;, =soy,mod ¥V for ip< r+1.

By (8) we have wo8;, = ] Siomd;, = [] Sion with factors in order (). )
My McSM,y
We now comsider say,. Notice that oy : R — M, gives a one-to-one cor- |
respondence for subsets of M, and R, preserving the order (). So if M runs
over the subsets of M,, then M’ = Ma;,; runs over the subsets of R and
s= [] Sow. Since oy: K—>M cR and oy, R—>M, we have
M'ESR oM .
KM Moyl —> Moy 0y, = M, which means that oy oy, coincides
with o, on K and hence SUMO:MHREI(O-M'UM():MI—L S0 So (9) is
= =M,
proved. We notice that o, = (g, ip+1, -.er T, r+1) = (i, io+1, ..., Nlig, 7 +1)
= 00q,,+1)- Thecycleoisa permutation of R and because of the symmetry of s
equality (9) can be written as

(10 Woy = 504,41, kST+L

We have shown that wq is an (r+ 1)-ary word and by (10) wo9d,4; =S5.
Now we have to check the symmetry of w, modulo V. Since every permu-
tation is a product of cycles it is enough to show wyoq, =Wo mod ¥,
for i<j<r+1. We denote v =wq0,;wy " and show first that for every
k <r+1 v5,eV. For this purpose we shall consider seven cases:

Li=k#j; a j=r+l, b j#r+l.
2 i#tk=j; a j=r+l, b j#r+l.
3oigks#j; a k=r+l, b.j=r+l, c.j#r+1+#k.
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By (2) and (10) we have
S - -1 — =1 — _
L 08y = Wo Gy, 0 Wo ' O = Wo 004y Wo ' O = S0(irs 1) Oty S Tt 1)
In case la. j=r+1, 06, = 04,415 ' 04,41 = 1.
In case 1b. j#r+1,
- -1
W0y = S0(jps )OS Otir1)

_ -1 _ -1
= S0 Oper+ 1)5 Ot 1) = (504 8™ ) Oger+ 1) €V,

because of the symmetry of s, since k,j < r+1.
2. b8y = Wo 0119 0 W ' 8 = Wo 8 010 Wo ' O = S0(141) Ty S~ T 1)-
In case 2a. k=j=r+1, 5, =ss" ' =1.
In case 2b. k=j#r+1,

- ~1
U0y = 50(;+1)O(iy S Olke,r+1)

- -1 _ -1
= 800k Olhyr+ )8~ Ohyrs 1) = (So'(i,k)S YOursny€V.
3 5 = 15 _ -1 -
3. 00y = Wo 05 0 Wo Ok = Wo Ok 0ty Wo O = 500ep4 1) 01y S~ O 1)-
In case 3a. k=r+1, v6, =soz s *eV.
In case 3b. j=r+1,

- -1
vy = SOur+1)Oir+ 1S~ O+ 1)

— e -1 _ -1
5064 Okr+1)S Opirt1y = (504198~ )0y ,11,E V.

In case 3c. j#r+1=k, v, = (6.35 Y oy,+1€V. We have shown
that vd,e€V, k<r+1. By Definition 2 this implies the neutrality of v
modulo ¥ and by Lemma 1,0eX**2 V<V, since X*+*) < X < V. Now
veV implies the required symmetry of w, modulo V. So wo V is a con-
traimage of s¥ under &*! and the proof is complete.

TuroreM 2. If V2 X', then &*' is an isomorphism for r > n—1.

Proof. If wVeKer &;** then wé,.; = 1 mod V and by (6) wé; = 1 mod V
for i <r+1. Hence w is a neutral (r+ 1)-ary word modulo Vandl by Lemma
1, weX"* YV < V. This means that &*! is a monomorphism ’which com-
pletes the proof because of Theorem 1. ,

THEOREM 3. If V= X, then **'is q monomorphism for r = n—2, and is
not a monomorphism for r < n—2. ’

Proof. For r > n—1 the statement follows from Theorem 2. If r = n—2
and wVeKer &7™1, then w is an (r+ 1)-ary word neutral modulo V= X+2
and by Lemma 2 weX**? = V. This means that Ker &t is trivial ’

Let r <n—2. Denote by d = [x,, x,, x4, ..., X1s X35 Xgy oves X,pq] 2 left-
normed commutator of the weight k, with X, repeated at least twirce. If x; is
{'epeated.twice then k =r+2 < n. We shall also suppose In < k <n repéat-
ing x; if necessary. The word d, = H do is obviously an (r+ 1)-ary

oS,

N r+1
neutral word symmetric modulo X < X® — ¥ hence doVeKer &*!. We
f A
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have to check that dy¢ V. By the use of the commutator calculus (see [1J)
modulo X**¥ and the identity which follows from ({17, 10.2.L.4): [[x, ¥]. z]
=[x, [y, =1][[x, z], y]mod X, we can write dy as a product of basic
commutators (see [1]) modulo X**3. The process is based on the typical
step: t = [X;, Xj. ..., X, X] is a basic commutator, i >j<.... < k <1, and
I>m, then [t, Xp] = [[Xs Xj, .os X, D%t Xal] X5 X5 <ces Xies Xy %] It C2D
be shown by induction that do written as a product of basic commutators
involves d if and only if ¢(1) =1, ¢(2) = 2. Then d, written as a product of
basic commutators modulo X“*? contains d to the power (r—1)!, hence
do¢ X3 and d, ¢V, which completes the proof.
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