

On symmetric words in nilpotent groups

by

Olga Macedońska-Nosalska (Gliwice)

Abstract. An r-ary word $w(x_1, ..., x_r)$ is called symmetric in a group G if for any elements $g_1, ..., g_r$ in G, and any permutation σ of indexes: $w(g_1, ..., g_r) = w(g_{\sigma(1)}, ..., g_{\sigma(r)})$. Symmetric r-ary words build a group $S^{(r)}(G)$. We shall show that $S^{(r)}(G)$ and $S^{(r+1)}(G)$ are isomorphic for G nilpotent of the class n and $r \ge n-1$.

Introduction. Let X be the free group on the set of free generators $\{x_i, i \in N\}$, where N denotes the set of natural numbers, and let V be a verbal subgroup of X. A word w from X is called an r-ary w ord if the reduced form of w involves r generators, say $x_{i_1}, x_{i_2}, \ldots, x_{i_r}$. We then write $w = w(x_{i_1}, \ldots, x_{i_r})$. For any permutation σ of N we denote $w\sigma = w(x_{\sigma(i_1)}, \ldots, x_{\sigma(i_r)})$, and say that the words w and $w\sigma$ are equivalent under σ .

Definition 1. A word $s(x_{i_1}, ..., x_{i_r})$ from X is called symmetric modulo V if for every permutation σ_0 of $\{i_1, ..., i_r\}$, $s\sigma_0 \equiv s \mod V$.

We can see that the symmetry of $s(x_1,...,x_r)$ implies the symmetry of all equivalent words $s\sigma=s(x_{i_1},...,x_{i_r})$. Indeed if σ_0 is a permutation of the set $\{i_1,...,i_r\}$, then $\sigma\sigma_0\,\sigma^{-1}$ is a permutation of $R=\{1,2,...,r\}$ and because of the symmetry of s, $s(\sigma\sigma_0\,\sigma^{-1})\equiv s\,\mathrm{mod}\,V$. This implies $(s\sigma)\,\sigma_0=s\sigma\,\mathrm{mod}\,V$, which proves the symmetry of $s\sigma$.

According to [3] the set of all cosets sV, where $s = s(x_1, ..., x_r)$ is an rary word symmetric modulo V, written on x_i , $i \in R = \{1, 2, ..., r\}$ forms a group $S^{(r)}(V)$. We shall suppose V fixed and write $S^{(r)}$. It will be shown that if $r \neq q$, then $S^{(r)} \cap S^{(q)} = 1 \mod V$. Let $sV \in S^{(r)}$, $tV \in S^{(q)}$, q < r, and for some $v \in V$ $s(x_1, ..., x_r) = t(x_1, ..., x_q)v(x_1, ..., x_r)$. Then for any y_i , $i \in R$, because of the symmetry of s we have

$$s(x_1, ..., x_r) = t(x_1, ..., x_q)v(x_1, ..., x_r) \equiv s(x_1, ..., x_{r-1}, y_1)$$

$$\equiv s(y_1, x_1, ..., x_{r-1}) = t(y_1, x_1, ..., x_{q-1})v(y_1, x_1, ..., x_{r-1})$$

$$\equiv s(y_1, x_1, ..., x_{r-2}, y_2) \equiv s(y_1, y_2, x_1, ..., x_{r-2})$$

$$= t(y_1, y_2, x_1, ..., x_{q-2})v(y_1, y_2, x_1, ..., x_{r-2}) \equiv ...$$

$$... \equiv s(y_1, y_2, ..., y_r) \mod V.$$

Put $y_i = 1$, $i \in R$, then $s(x_1, ..., x_r) = V$ which was required.

Since V is a fully invariant subgroup of X, the mapping

$$\delta_{r+1}$$
: $s(x_1, ..., x_r, x_{r+1}) \rightarrow s(x_1, ..., x_r, 1)$

determines a homomorphism $\partial_r^{r+1}: S^{(r+1)} \to S^{(r)}$. In [3] it is shown that the homomorphism ∂_r^{r+1} is an isomorphism if $V = X^{(n)}$, and $r \ge n-1$. Here $X^{(1)} = X$, $X^{(k)} = [X^{(k-1)}, X]$. In [4] the same result is proved for $V \supseteq X^{(n)}$, $n \le 4$, $r \ge n-1$, and the problem is formulated whether the mapping ∂_r^{r+1} is an isomorphism for every n, $V \supseteq X^{(n)}$, $r \ge n-1$.

We give here an affirmative solution of the above problem.

Definitions and lemmas. In X we introduce an endomorphism δ_k (k > 0) given by $x_k \delta_k = 1$, $x_i \delta_k = x_i$ for $i \neq k$. Clearly

(1)
$$\delta_i \delta_i = \delta_i \delta_i, \quad \delta_i^2 = \delta_i.$$

Any permutation σ of the set N induces an automorphism of X such that

(2)
$$\delta_i \sigma = \sigma \delta_{\sigma(i)}, \quad \sigma \delta_i = \delta_{\sigma^{-1}(i)} \sigma.$$

We shall write $D_i = \text{Ker}\delta_i$ and $D_R = \bigcap_{i=R} D_i$.

Definition 2. A word $w(x_1, ..., x_r)$ is called *neutral* if $w\delta_i = 1$, $i \in R$ = $\{1, 2, ..., r\}$.

The set of all r-ary neutral words on generators x_i , $i \in R$, obviously coincides with D_R .

LEMMA 1. If $w(x_1, ..., x_r)$ is a neutral r-ary word then $w \in X^{(r)}$.

Proof. $w \in D_R \subseteq X^{(r)}$ follows from ([2], 33.38).

LEMMA 2. If $s(x_1, ..., x_r)$ is a neutral r-ary word, symmetric modulo $X^{(r+1)}$ then $s \in X^{(r+1)}$.

Proof. Denote by S_r a group of permutations of R, and by A_r its alternating subgroup. We shall consider the word $s_0 = \prod_{\sigma \in S_r} c\sigma$, where $c = [x_1, x_2, x_3, ..., x_r]$ is the left-normed commutator, and the product is taken for some fixed order of factors. Obviously s_0 is a neutral r-ary word, symmetric modulo $X^{(2r)}$. If we denote by $\sigma_{(1,2)}$ the cycle (1, 2) then $s_0 = \prod_{\sigma \in A_r} (c \, c \, \sigma_{(1,2)}) \, \sigma' \, \text{mod } X^{(r+1)}$. With the use of a commutator calculus modulo $X^{(r+1)}$ we have

$$c \, c\sigma_{(1,2)} = [x_1, x_2, x_3, \dots, x_r] [[x_1, x_2]^{-1}, x_3, \dots, x_r]$$
$$= cc^{-1} \, \text{mod } X^{(r+1)} \in X^{(r+1)}.$$

This implies $s_0 \in X^{(r+1)}$, which will be used later.

Now since $s(x_1, ..., x_r)$ is a neutral r-ary word, by Lemma 1 $s \in X^{(r)}$, and by ([2], 34.21) s is a product modulo $X^{(r+1)}$ of commutators $c\sigma$ for some $\sigma \in S_r$, say $s = \prod c\sigma \mod X^{(r+1)}$. Now, since s is symmetric modulo $X^{(r+1)}$, for

every $\sigma_0 \in S_r$, $\prod c\sigma \equiv \prod c\left(\sigma\sigma_0\right) \mod X^{(r+1)}$. By Hall's basis theorem ([1], 11.2.4) we conclude that s is a power of s_0 and hence $s \in X^{(r+1)}$, which was required.

Now let $w \neq 1$ be an element of X. We write

$$(3) w(1-\delta_i) = w(w\delta_i)^{-1}.$$

Then by (1)

(4)
$$(1 - \delta_i) \, \delta_i = \delta_i (1 - \delta_i), \quad (1 - \delta_i) \, \delta_i = 1.$$

DEFINITION 3. For a word $w(x_1, ..., x_r)$ and $k \le r$, we define the k-ary image of w as $w_k = w(x_1, ..., x_k, 1, ..., 1) = w \prod_{i=k+1}^{i=r} \delta_i$. The neutral part of w we define as $\overline{w} = w \prod_{i=r}^{i=r} (1-\delta_i)$. The word \overline{w} is neutral by ([2], 33.42).

For a set $M = \{i_1, i_2, \ldots, i_k\} \subseteq N$ we shall always suppose $i_1 < i_2 < \ldots < i_k$. We denote now $K = \{1, 2, \ldots, k\}$ and introduce a permutation σ_M of the set $M \cup K$ such that $\sigma_M(j) = i_j$, $j \le k$. Then $\sigma_M : K \to M$. If $M \subseteq R = \{1, 2, \ldots, r\}$, then σ_M can be considered as a permutation of R, since $M \cup K \subseteq R$. In case k = r, σ_M is obviously the identical permutation. If $s(x_1, \ldots, x_k)$ is a k-ary word then $s\sigma_M$ is an equivalent word written on generators with indices form M.

DEFINITION 4. We shall define a special order (*) for subsets in N. There exists on-to-one correspondence between subsets $M = \{i_1, i_2, ..., i_k\}, i_1 < i_2 < ... < i_k$, of N and formal sequences $\langle i_1, i_2, ..., i_k, \omega, \omega, ... \rangle$. We assume $\omega > i$ for every $i \in N$. The lexicographical order for the sequences induces the order for subsets in N. We shall refer to it as to the order (*).

Lemma 3. Every symmetric word $s(x_1, ..., x_r)$ is a product (modulo V) of the neutral parts \bar{s}_k of its k-images, $k \leq r$, and the equivalent words. More precisely $s = \prod \bar{s}_k \sigma_M$ is a product of 2^r factors corresponding to the subsets $M \subseteq R$, for k = |M|, taken in order (*).

Proof. We introduce an algorithm that allows us to write any word $s(x_1, ..., x_r)$ as a product $\prod u_M$ of 2^r factors corresponding to the subsets $M \subseteq R$ in order (*), where $u_M = s \prod_{i \in M} (1 - \delta_i) \prod_{j \in R \setminus M} \delta_j$. According to (3) for any word s and any $i \in N$

void's and any lelv

$$(5) s = s(1 - \delta_i) s \delta_i.$$

So for $i=1,\ s=s(1-\delta_1)s\delta_1.$ Now apply (5) for i=2 to each factor separately. We get

$$s = s(1 - \delta_1)(1 - \delta_2)s(1 - \delta_1)\delta_2 s\delta_1(1 - \delta_2)s\delta_1\delta_2.$$

Apply (5) for i=3 to each factor separately and so on. The result will be achieved in r steps with the use of (4). See ([2], 33.44).

O. Macedońska-Nosalska

We can see that for the case r = 2 the factors correspond to the subsets

 $\{1, 2\} < \{1\} < \{2\} < \{\emptyset\}.$

Suppose that for the (r-1)-st step the factors correspond to the subsets

$$M_1 < M_2 < \ldots < M_{2r-1} < \{\emptyset\},$$

then by applying (5) for δ_r we get a product of 2^r factors corresponding to the sequence of subsets

$$\{M_1, r\} < M_1 < \{M_2, r\} < M_2 < \ldots < \{M_{2r-1}, r\} < M_{2r-1} < \{r\} < \{\emptyset\},$$

which was required.

To prove the lemma we shall show that if s is a symmetric word, then $u_M = \overline{s}_k \, \sigma_M$. Indeed, since $\sigma_M \colon R \to R$, $s \equiv s \sigma_M \mod V$. Then by using (2) and (4)

$$\begin{aligned} u_{M} &= s\sigma_{M} \prod_{i \in M} (1 - \delta_{i}) \prod_{j \in R \setminus M} \delta_{j} = s \prod_{i \in M} \sigma_{M}^{-1} (1 - \delta_{i}) \prod_{j \in R \setminus M} \delta_{j} \sigma_{M} \\ &= s \prod_{i \in K} (1 - \delta_{i}) \prod_{j \in R \setminus K} \delta_{j} \sigma_{M} = \left(s \prod_{i = k+1}^{r} \delta_{j} \right) \prod_{i=1}^{k} (1 - \delta_{i}) \sigma_{M} = \overline{s}_{k} \sigma_{M} \end{aligned}$$

as required.

For $M = \{i_1, i_2, \ldots, i_k\}$ and $K = \{1, 2, \ldots, k\}$ we have defined σ_M : $K \to M$. If take $M_0 = \{1, 2, \ldots, i_0 - 1, i_0 + 1, \ldots, r + 1\}$, and $R = \{1, 2, \ldots, r\}$ then σ_{M_0} : $R \to M_0$ is a cycle $\sigma_{M_0} = (i_0, i_0 + 1, \ldots, r, r + 1)$ which is a permutation of $J = \{1, 2, \ldots, r + 1\}$. Here in the case $i_0 = r + 1$ σ_{M_0} is the identical permutation.

LEMMA 4. For a symmetric word $w(x_1, ..., x_{r+1})$ denote $w\delta_{r+1} = s$, then

(6)
$$w\delta_{i_0} \equiv s\sigma_{M_0} \bmod V \quad \text{for} \quad i_0 \leqslant r+1.$$

(7)
$$\overline{w}_k = \overline{s}_k \quad \text{for} \quad k \leqslant r.$$

For any neutral word $w(x_1, x_2, ..., x_k)$

(8)
$$w\sigma_{\mathbf{M}}\delta_{i_0} = \begin{cases} w\sigma_{\mathbf{M}} & \text{if } i_0 \notin M, \\ 1 & \text{if } i_0 \in M. \end{cases}$$

Proof. Because of the symmetry of w and (2) $w\delta_{i_0} = w\sigma_{M_0}\delta_{i_0} = w\delta_{r+1}\sigma_{M_0} = s\sigma_{M_0}$ which gives (6). By Definition 3 and (4)

$$\overline{w}_{k} = w \prod_{i=k+1}^{r+1} \delta_{i} \prod_{j=1}^{k} (1 - \delta_{j}) = (w \delta_{r+1}) \prod_{i=k+1}^{r} \delta_{i} \prod_{j=1}^{k} (1 - \delta_{j}) = \overline{s}_{k},$$

gives (7). Now by (2) $\sigma_M \delta_{i_0} = \delta_{\sigma_M^{-1}(i_0)} \sigma_M$. The index $\sigma_M^{-1}(i_0)$ belongs to K if and only if $i_0 \in M$. Since w is neutral, we have (8). The lemma is proved.

Theorems on the homomorphism $\partial_r^{r+1}: S^{(r+1)} \to S^{(r)}$.

THEOREM 1. If $V \supseteq X^{(n)}$ then ∂_r^{r+1} is an epimorphism for $r \ge n-1$.

Proof. A coset $sV \in S^{(r)}$ has a contraimage under \mathcal{E}_r^{r+1} if and only if there exists an (r+1)-ary symmetric word w such that $wV \in S^{(r+1)}$ and $w\delta_{r+1} = s$. By Lemma 3, $w = \prod \overline{w}_k \sigma_M$, where k = |M| and M runs over all nonempty subsets of the set $J = \{1, 2, ..., r+1\}$ in order (*). In this order the first factor of the product corresponds to M = J and coincides with the neutral part of w, namely $\overline{w} = w \prod_{i \in J} (1 - \delta_i)$. Then $w = \overline{w} \prod \overline{w}_k \sigma_M$ where

 $M \subset J$, i.e. k < r+1. We shall denote $w_0 = \prod \overline{w}_k \sigma_M$, k < r+1. Since by Lemma 1 $\overline{w} \in X^{(r+1)} \subseteq V$, we have $w \equiv w_0 \mod V$ and w_0 is completely defined by the word s because of (7).

Let $s(x_1, ..., x_r)$ be a symmetric word. We construct $w_0 = \prod \bar{s}_k \sigma_M$ where M runs over the proper subsets of $J = \{1, 2, ..., r+1\}$ in order (*). We shall show that $w_0 V$ is a contrainage of sV under ∂_r^{r+1} . We shall first check the equality

(9)
$$w_0 \delta_{i_0} = s \sigma_{M_0} \mod V \quad \text{for} \quad i_0 \leqslant r + 1.$$

By (8) we have $w_0 \, \delta_{i_0} = \prod_{M \subseteq J} \overline{s}_k \, \sigma_M \, \delta_{i_0} = \prod_{M \subseteq M_0} \overline{s}_k \, \sigma_M$ with factors in order (*). We now consider $s\sigma_{M_0}$. Notice that $\sigma_{M_0} \colon R \to M_0$ gives a one-to-one correspondence for subsets of M_0 and R, preserving the order (*). So if M runs over the subsets of M_0 , then $M' = M\sigma_{M_0}^{-1}$ runs over the subsets of R and $s = \prod_{\substack{M' \subseteq R \\ M' \to M}} \overline{s}_k \, \sigma_{M'}$. Since $\sigma_{M'} \colon K \to M' \subseteq R$ and $\sigma_{M_0} \colon R \to M_0$ we have $K \xrightarrow{\sigma_{M'}} M\sigma_{M_0}^{-1} \xrightarrow{\sigma_{M_0}} M\sigma_{M_0}^{-1} \sigma_{M_0} = M$, which means that $\sigma_{M'} \, \sigma_{M_0}$ coincides with σ_M on K and hence $s\sigma_{M_0} = \prod_{M' \subseteq R} \overline{s}_k \, \sigma_{M'} \, \sigma_{M_0} = \prod_{M \subseteq M_0} \overline{s}_k \, \sigma_{M'}$. So (9) is proved. We notice that $\sigma_{M_0} = (i_0, i_0 + 1, \dots, r, r + 1) = (i_0, i_0 + 1, \dots, r)(i_0, r + 1) = \sigma\sigma_{(i_0, r + 1)}$. The cycle σ is a permutation of R and because of the symmetry of s equality (9) can be written as

(10)
$$w_0 \, \delta_k = s \sigma_{(k,r+1)}, \quad k \leqslant r+1.$$

We have shown that w_0 is an (r+1)-ary word and by (10) $w_0 \, \delta_{r+1} = s$. Now we have to check the symmetry of w_0 modulo V. Since every permutation is a product of cycles it is enough to show $w_0 \, \sigma_{(i,j)} \equiv w_0 \, \text{mod} \, V$, for $i < j \leqslant r+1$. We denote $v = w_0 \, \sigma_{(i,j)} \, w_0^{-1}$ and show first that for every $k \leqslant r+1 \, v \, \delta_k \in V$. For this purpose we shall consider seven cases:

- 1. $i = k \neq j$; a. j = r+1, b. $j \neq r+1$.
- 2. $i \neq k = j$; a. j = r+1, b. $j \neq r+1$.
- 3. $i \neq k \neq j$; a. k = r+1, b. j = r+1, c. $j \neq r+1 \neq k$.

By (2) and (10) we have

1.
$$v\delta_k = w_0 \, \sigma_{(k,j)} \, \delta_k \, w_0^{-1} \, \delta_k = w_0 \, \delta_j \, \sigma_{(k,j)} \, w_0^{-1} \, \delta_k = s \sigma_{(j,r+1)} \, \sigma_{(k,j)} \, s^{-1} \, \sigma_{(k,r+1)}$$
. In case 1a. $j = r+1$, $v\delta_k = s\sigma_{(k,r+1)} \, s^{-1} \, \sigma_{(k,r+1)} = 1$. In case 1b. $j \neq r+1$, $v\delta_k = s\sigma_{(j,r+1)} \, \sigma_{(k,j)} \, s^{-1} \, \sigma_{(k,r+1)}$

$$v\delta_k = s\sigma_{(j,r+1)}\sigma_{(k,j)}s^{-1}\sigma_{(k,r+1)}$$

= $s\sigma_{(k,j)}\sigma_{(k,r+1)}s^{-1}\sigma_{(k,r+1)} = (s\sigma_{(k,j)}s^{-1})\sigma_{(k,r+1)} \in V$,

because of the symmetry of s, since k, j < r+1.

2.
$$v\delta_k = w_0 \sigma_{(i,k)} \delta_k w_0^{-1} \delta_k = w_0 \delta_i \sigma_{(i,k)} w_0^{-1} \delta_k = s\sigma_{(i,r+1)} \sigma_{(i,k)} s^{-1} \sigma_{(k,r+1)}$$
. In case 2a. $k = j = r+1$, $v\delta_k = ss^{-1} = 1$. In case 2b. $k = j \neq r+1$.

$$v\delta_k = s\sigma_{(i,r+1)}\sigma_{(i,k)}s^{-1}\sigma_{(k,r+1)}$$

= $s\sigma_{(i,k)}\sigma_{(k,r+1)}s^{-1}\sigma_{(k,r+1)} = (s\sigma_{(i,k)}s^{-1})\sigma_{k,r+1} \in V.$

3. $v\delta_k = w_0 \, \sigma_{(i,j)} \, \delta_k \, w_0^{-1} \, \delta_k = w_0 \, \delta_k \, \sigma_{(i,j)} \, w_0^{-1} \, \delta_k = s \sigma_{(k,r+1)} \, \sigma_{(i,j)} \, s^{-1} \, \sigma_{(k,r+1)}$. In case 3a. k = r+1, $v\delta_k = s\sigma_{(i,j)} \, s^{-1} \in V$. In case 3b. j = r+1.

$$v\delta_{k} = s\sigma_{(k,r+1)}\sigma_{(i,r+1)}s^{-1}\sigma_{(k,r+1)}$$

= $s\sigma_{(i,k)}\sigma_{(k,r+1)}s^{-1}\sigma_{(k,r+1)} = (s\sigma_{(i,k)}s^{-1})\sigma_{(k,r+1)} \in V.$

In case 3c. $j \neq r+1 \neq k$, $v\delta_k = (s\sigma_{(i,j)}s^{-1})\sigma_{(k,r+1)} \in V$. We have shown that $v\delta_k \in V$, $k \leq r+1$. By Definition 2 this implies the neutrality of v modulo V and by Lemma 1, $v \in X^{(r+1)} V \subseteq V$, since $X^{(r+1)} \subseteq X^{(n)} \subseteq V$. Now $v \in V$ implies the required symmetry of w_0 modulo V. So $w_0 V$ is a contrainage of sV under ∂_r^{r+1} and the proof is complete.

THEOREM 2. If $V \supseteq X^{(n)}$, then i_r^{r+1} is an isomorphism for $r \ge n-1$.

Proof. If $wV \in \operatorname{Ker} \partial_r^{r+1}$ then $w\delta_{r+1} = 1 \mod V$ and by (6) $w\delta_i = 1 \mod V$ for $i \leq r+1$. Hence w is a neutral (r+1)-ary word modulo V and, by Lemma 1, $w \in X^{(r+1)} V \subseteq V$. This means that ∂_r^{r+1} is a monomorphism, which completes the proof because of Theorem 1.

THEOREM 3. If $V = X^{(n)}$, then \hat{c}_r^{r+1} is a monomorphism for $r \ge n-2$, and is not a monomorphism for r < n-2.

Proof. For $r \ge n-1$ the statement follows from Theorem 2. If r = n-2 and $wV \in \operatorname{Ker} \ell_r^{r+1}$, then w is an (r+1)-ary word neutral modulo $V = X^{(r+2)}$, and by Lemma 2 $w \in X^{(r+2)} = V$. This means that $\operatorname{Ker} \ell_r^{r+1}$ is trivial.

Let r < n-2. Denote by $d = [x_2, x_1, x_1, \ldots, x_1, x_3, x_4, \ldots, x_{r+1}]$ a left-normed commutator of the weight k, with x_1 repeated at least twice. If x_1 is repeated twice then k = r+2 < n. We shall also suppose $\frac{1}{2}n \le k < n$ repeating x_1 if necessary. The word $d_0 = \prod_{\sigma \in S_{r+1}} d\sigma$ is obviously an (r+1)-ary neutral word symmetric modulo $X^{(2k)} \subseteq X^{(n)} = V$, hence $d_0 V \in \operatorname{Ker} \mathcal{C}_r^{r+1}$. We

have to check that $d_0 \notin V$. By the use of the commutator calculus (see [1]) modulo $X^{(k+3)}$ and the identity which follows from ([1], 10.2.1.4): $[[x, y], z] = [x, [y, z]][[x, z], y] \mod X^{(4)}$, we can write d_0 as a product of basic commutators (see [1]) modulo $X^{(k+3)}$. The process is based on the typical step: $t = [x_i, x_j, ..., x_k, x_l]$ is a basic commutator, i > j < < k < l, and l > m, then $[t, x_m] = [[x_i, x_j, ..., x_k], [x_l, x_m]][x_l, x_m][x_l, x_j, ..., x_k, x_m, x_l]$. It can be shown by induction that $d\sigma$ written as a product of basic commutators involves d if and only if $\sigma(1) = 1$, $\sigma(2) = 2$. Then d_0 written as a product of basic commutators modulo $X^{(r+3)}$ contains d to the power (r-1)!, hence $d_0 \notin X^{(r+3)}$ and $d_0 \notin V$, which completes the proof.

References

- [1] M. Hall, The theory of groups (Russian translation), Moskwa 1962.
- [2] H. Neumann, Varieties of groups (Russian translation), Moskwa 1969.
- [3] E. Plonka, On symmetric words in free nilpotent groups, Bull. Acad. Polon. Sci. 18 (8) (1970), pp. 427-429.
- [4] Symmetric words in nilpotent groups of class ≤ 3, Fund. Math. 97 (1977), pp. 95-103.

INSTYTUT MATEMATYKI, POLITECHNIKA ŚLĄSKA ul. Zwyciestwa 42, Gliwice 44-100

Accepté par la Rédaction le 12. 11. 1981