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Distributive partially ordered sets
by

R.C. Hickman and G.P. Monro* (Sydney)

Abstract. In this paper we introduce a definition of “distributive” which applies to
arbitrary partiaily ordered sets. We give several characterizations of this notion, one of which is
the following: a partially ordered set P is distributive in our sense if and only if the lattice of
lower ends of P closed under existent finite suprema is distributive. The definition and the
characterizations extend to a notion of x-distributivity, where 3 is a regular cardinal. However
our notion has the property that if 1 and p are two regular cardinals, with 4 < g, then there
exists a partially ordered set which is p-distributive but not A-distributive. This destroys another
potential characterization, and provides strong evidence that no single good notion of distributi-
vity exists for arbitrary partially ordered sets.

Introduction. In this paper we give a notion of distributivity which
applies to arbitrary partially ordered sets. Our starting point is the following
notion of distributivity for (lower) semilattices: a lower semilattice S is
distributive if for any finitt number n and any ay, ..., a, beS, if
a,Vv...va, exists, then (baa)v..v(bnaa,) exists and equals
b Afa, v...v a). This notion has been studied under the name “weak
distributivity” by Cornish and Hickman [2]. It extends straightforwardly to
a notion of x-distributivity for semilattices, where x is any regular cardinal.
We introduce a notion of x-distributivity for arbitrary partially ordered sets
which generalizes the notion of x-distributive semilattice.

Cornish and Hickman characterize distributive semilattices through the
lattice of ideals of a semilattice (where an ideal is a lower end closed under
existent finite suprema): a semilattice is distributive if and only if the lattice
of ideals is distributive. In Section 2 we extend their results to arbitrary
partially ordered sets by looking at the lattice of x-ideals (a »-ideal is a lower
end closed under existent suprema of sets of size less than ). In particular
we show that a partially ordered set is x-distributive if and only if its lattice
of x-ideals is a locale (ie. complete Heyting algebra).

In Section 3 we study a different construction which associates to a
partially ordered set P a locale we call ¥Z,(P), where x is a regular
cardinal. We show that Pis x-distributive if and only if #%2, (P) coincides

* While part of the work for this paper ‘was done, the second author held a Fellowship at
the University of Heidelberg from the Alexander von Humboldt Foundation of West Germany.
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with the lattice of »-ideals of P, By letting » be sufficiently large we obtain a
locale we call #@, (P), which is the smallest join-completion of P which is a
locale.

In Section 4 we study another result from Cornish and Hickman: they
show that a semilattice S is distributive if and only if there is a semilattice
morphism preserving existent finite suprema which embeds S in a distributive
lattice. We define a notion of strong embedding of a partially ordered set to
replace the notion of semilattice morphism. We show that if a partially
ordered set P is x-distributive then there is a strong embedding preserving
suprema of sets of size less than x» of P into a x-distributive lattice. The
converse however fails, and the reason is that for regular cardinals A and u,
A < u, it is possible to have a partially ordered set which is y-distributive but
not A-distributive. This indicates to us that there is no single notion which
extends to arbitrary partially ordered sets the concept “x-distributive
semilattice”.

1. Preliminaries. Throughout the paper P will denote an arbitrary
partially ordered set, and » an arbitrary regular cardinal or co (where oo
may be thought of as exceeding every cardinal). A subset of P of cardinality
less than »x is called x-small. (Every set is co-small) A subset 4 < P is called
a lower end of P if ae A and b < a implies be A. The empty set is considered
to be a lower end. We write Z(P) for the collection of all lower ends of P. If
B = P then (B] denotes the lower end generated by B: thus

(Bl = {peP: @beB)(p < h)}.

If B.= {b} is a one-element set, we write (b] instead of ({b]; such a lower
end is cal.led principal. f A < P and beP, we write b= Aif b>a for all a
€A.If I is a lower end and acP, by I|a we mean the lower end {b: bel
and b < a).

If P and Q are partially ordered sets, by an embedding of P into Q we
mean a function ¢: P—Q such that a<b if and only if ¢(a) < o(b). (It
follows that ¢ is 1:1) h yie@s (p(‘ - ¢

Lattices. A complete lattice L is called »-distributive if for each x-small
A <L and any belL,

(V) nb=

A complete lattice which is oc-distributive is called a locale. (Locales are also
called complete Heyting "algebras, but in this context we avoid the term
“complete Heyting algebra” because we do not consider implication
operators.)

J.oin extensions. Let P be a partially ordered set and E an extension of P
(that is the identity mapping is an embedding of P in E). E is called a join
extension of P if every element of E is the supremum in E of some subset of

{a Ab: acd).
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P. It is known (see Schmidt [3]) that each join extension of P is isomorphic
to a subset of .#(P) which contains all the principal lower ends of P; we
therefore assume that all join extensions of P are subsets of £ (P). A join
extension of P which is a complete lattice is called a join completion.

Closure operations. A closure operation % on P is an operation which
assings a lower end %(4) to each subset 4 of P such that

i) A= %(A),

ii) A = B implies % (4) € 6(B),

iii) € (%(4)) = €(4).

It should be noted that this definition is non-standard: usually % (4) is
only required to be a subset of P, not necessarily a lower end.

A lower end of the form % (A) is called %-closed. An arbitrary intersec-
tion of %~closed lower ends is again é-closed; conversely if & is a family of
lower ends which is closed under arbitrary intersections, then &/ determines
a closure operation %, where

% (4) =N {Ieol: 24}

From now on we require that if- % is a closure operation then each
principal lower end is %-closed; with this requirement there is a one-to-one
correspondence between closure operations on P and join completions of P
(see Schmidt [3]). We write % (P) for the complete lattice of #-closed lower
ends of P (so ¥%(P) is the join completion of P which corresponds to %).
For any family {A4;: iel} of elements of ¥%(P),

\VA;=€(4) and A4 =NA4

There is a canonical embedding of P into £%(P) given by the map which
takes aeP to (a]. It is easy to see that this embedding preserves all infima
which exist in P. However in general it does not preserve even finite
suprema.

We note a condition which implies that % (P) is a locale.

ProPOSITION 1.1. Let % be a closure operation on P such that if A< P is
arbitrary and B = P is ~closed then €(An B) = %(A)nB. Then £%6(P) is a
locale.

Proof.

\/(4;nB)=6(J(4nB) =4(()4) " B)=(Y 4) " B. =

Ideals. A lower end I < P is called a x-ideal if I is closed under existent
suprema of x-small sets, that is if A ST is x-small and \/ 4 exists in P, then
\/A eI. An N,-ideal is simply called an ideal. For a fixed % the collection of
all x-ideals is a join completion of P; the ¢corresponding closure operation is
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denoted by .#,. We write # instead of #,, and we note that .# is the
closure operation corresponding to lower ends closed under arbitrary exis-
tent suprema.

ProrosiTION 1.2. Let I be any lower end. Define

I'={b: @ASD(A <x and b<\/A)}. -
For an arbitrary lower end J, #,(J) can be described as follows. Set
Jo=J,
Jper =g
J, = ,ggyJ” for v a limit ordinal.

for any ordinal B,

Then S,(J)=J,. n
Figure 1 shows a partially ordered set P. If we take the lower end J to

Fig. 1

consist of the three dark elements, we see that J, # P but J, = P. So in this
case the process of Proposition 1.2 takes two steps for completion. Examples
can be considered for which A steps are needed, for any fixed regular cardinal 1.

ProrosiTioN 1.3. The canonical embedding of P into ¥.#,(P) preserves
existent suprema of x-small sets.

. Proof. Suppose that AP is x-small and that in P, b="\/A.
Evidently (5] 2 \/ (a]. For the reverse inclusion, set I = |J (a]. Then, in the
agd

. aed
terminology of Proposition 1.2, beI'. Hence -

Vi@l=2,0=20] =
acd

Semilattices. For us “semilattice” will always mean lower semilattice.
There are already several different concepts of distributivity for semilattices;
we are concerned with the following.

DeFmvTION 14. A semilattice S is x-distributive if for any x-small 4 € §
and any beS, if \/A exists then \/{bAa: acd} exists and equals
b A (\/ A). An Ry-distributive lattice will be called distributive.

We note that if L is-a complete lattice then L is x-distributive according
to Definition 1.4 if and only if L is »-distributive according to the definition

on page 152.
The following theorem about distributive semilattices is proved in
Cornish and Hickman [2]. e
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THEOREM 1.5. For every semilattice S, the following are equivalent.

i) S is distributive.

ii) For every lower end A of S, #(A)={\/B: BS A, B finite}.

ili) For every pair of ideals I, J of S the supremum of I and J in £S5 (S)
is given by I vJ ={\/B: B€1UJ, B finite}.

iv) LF#(S) is a distributive lattice.

v) The map @: Z(S)—~ LI (S) given by o(I) = F(I) for I an arbirrary
lower end is a lattice homomorphism. m :

In the next section Theorem 1.5 is generalized to arbitrary partially
ordered sets.

2. A definition of “distributive” for partially ordered sets.

DerintTion 2.1. A lower end I is x-descending if \/I exists and for each
b< \/I there exists a x-small set B =1 such that \/B =b.

DerFNrTIoN 2.2, A partially ordered set P is called x-distributive if
whenever A < P is x-small and \/A exists, then (4] is x-descending.

This definition extends that of x-distributive semilattice, as follows.

PROPOSITION 2.3. A semilattice is x-distributive in the sense of Definition
14 if and only if it is w-distributive in the sense of Definition 2.2.

Proof. Suppose S is »-distributive in the sense of Definition 14, 4 = S
is x-small and \/ A exists. Set I = (47; clearly \/I =\/ 4. Suppose b < VI
Then b< \/ 4,50 b=b A (\/4)=\/{b Aa: ac4]}. Since {b A a: acd} is
x-small, I =(A] is x-descending as required.

Conversely suppose that § is »-distributive in the sense of Definition 2.2,
AcS is x-small and \/ A exists. Take beS, and set b'=b A(\/4). By
distributivity in the sense of Definition 2.2 there is a x-small set B < (4] such
that b =\/B. We wish to show that b =\/{b Aa: acA}. Now, if ceB
there is some aeA such that ¢ < a, and also ¢ < b < b, 50 ¢ < b A a. Thus
b =\/B<\/{bAa: acd}. But clearly b'>\/{b A a: ac4}, so we are
filished. m

The concept of »-distributivity is not self-dual. This is well-known for:

lattices with x > N,. The two partially ordered sets in Figure 2 are x- -

Fig. 2 4
distributive for all , but their duals are not x-distributive for any x. We also
note that an unordered set is x-distributive for all x. .
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If % = oo the definition of x-descending lower end and x-distributive
partially ordered set simplify a little, leading to the following very easy
propositions.

PROPOSITION 2.4. A lower end I is oo-descending if and only if \/I exists
and for each b<\/I, b=\/(I]b).

ProrosiTioN 2.5. A partially ordered set P is co-distributive if and only if
for every A < P such that \/ A exists, (A] is co-descending.

We now proceed to our generalization of Theorem 1.5.

Lemma 2.6. Let I be a lower end. Then be #,(In(b]) if and only if
b=\/B for some x-small B<1I.

Proof. Let J be an arbitrary lower end. Recall from Proposition 1.2 the
definition of the sequence J,, for « < x. If xe£,(J) =J,, then xeJ, for
some o < . Let a, be the least « such that xeJ, (note that o, is either 0 or
a successor ordinal). To each xeJ, we associate a set Q, = J, defined by
induction on a,, as follows.

) Ifa,=0, 0, = {x}.

ii) If o, = f+1, then there is some x-small Ye Jy such that x < \/ Y.
Set Q. = Ur Q,.

ye!

Note that in step ii) there is some arbitrariness in the choice of Y. This
does not matter.

It is easy to establish by induction on «, that |Q,] <x and also that if
ceP and ¢ > Q, then ¢ > x. Suppose that be S, (I N (b]). Set J = I n(b] and
construct Q, < J as above. Our last observation shows that if ¢ > Q, then ¢

>b. But b>Q,, so b=\/Q,, and thus b is the supremum of a x-small
subset of I.
The converse is trivial. =

THEOREM 2.7. The following are equivalent.

i} P is x-distributive.

ii) For every lower end I, £, (I)={\/4: A=1,|4] < ).

iii) Let {I;: icX} be a family of lower ends, |X| < x. Then in L.4,(P),
VI={VA: ASUL and 14| <x}. ”

iv) L.5,(P) is a locale.

v) Z.£,(P) is a x-distributive lattice.

vi) The map ¢: L(P)—%5,(P) given by ()= 2,(I) is a lattice
homomorphism.

Proof. We argue in the
) = vi) =iv) = v) =1i).

i)=>ii). It follows from i) that {\/4: A<, |A] <x} is a lower end.
Since it is clearly closed under existent suprema of x-small sets, it is .7,-
closed. So S, (Nc{\/4: A<, |4 < x}. The reverse inclusion is trivial

circles i) =1i) =iii) =v) =i) and
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ii) =iii). Let {I;: ie X} be an arbitrary family of lower ends (without any
restriction on the cardinality of X). Then

VI=5,(UL)={V4: A=Y and |4] <x}
by ii).

iii) =v). Let {4;: ie X} be a family of elements of &.#,(P), where |X|
<, and Be %5, (P). We wish to show that B A (\/4;)=\/(B A 4) in
£F.(P); it is enough to show that Br\(\/ A;) _C_l\/(Bn;li)‘ Suppose
beBn(\/4;) Then beB and by iii) there is slome %-s;nall D)4 such
that b=\/D. Since beB, D<B and hence D& U(Bf;Ai): 50
be\/(Bn 4).

v)=>1i). We show that if i) is false, so is v). Suppose P is not x-
distributive. Then there is a x-small set A such that a = \/ 4 exists and there
is some b < a such that b is not the supremum of any x-small set B < (4].
By Proposition 1.3 the canonical embedding of P into £, (P) preserves
existent suprema of x-small subsets of P, so (a] = \/ (x]. Thus

xed
(VA(’“]) A (b1 =(a] A (b1 = (b].
On the other hand,

V(61 A (1) = £ (U (<1 0 (0])) = £ (410 B),

xed xed
and b¢.#, (41N (b]) by Lemma 2.6. Hence Z.%,(P) is not »-distributive.

This completes the circle i) = ii) = iii) = v) =1).

i) = vi). All closure operations preserve arbitrary suprema, so it remains
to show that ¢ preserves finite infima. Let I and J be lower ends. It suffices
to prove that .
LI ) s I Ind),

so let be s, (I)n.#,(J). By ii) (we have already shown i) =>ii)) there are x-
small sets A < I and B < J such that b =\/ A = \/B. For each a4, a<b,
so by i) there is a x-small set B, <(B] such that a=\/B,. Let K
= {B,: aeA}. Then K is x-small, K =InJ and

VK=V {\VB. acd}=\/A=b.
Hence be s, (InJ).
vi) = iv) and iv)=>v) are trivial, while v) =) was part of the first circle.
Thus the second circle is complete. m
Theorem 2.7 generalizes Theorem 15, from “distributive” to “x-
distributive” and from semilattices to partially ordered sets.
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3. Another characterization of distributivity. Theorem 2.7 shows that a
partially ordered set P is x-distributive if and only if £.#, (P) is a locale. We
now introduce another closure operation &, which is such that 2, (P) is
always a locale; it turns out that P is »-distributive if and only if Z.7, (P)
= %9, (P). :

DerINITION 3.1, A lower end A4 is x-distinguished if 1 = A and I a x-
descending lower end implies \/IeA.

Clearly an arbitrary intersection of x-distinguished lower ends is again
»-distinguished, so we have a closure operation Z,.

ProrosiTiON 3.2..Let A be a lower end. Then
2,(4)={\/I: 1 A, 1 a n-descending lower end}.

‘Proof. Set A" ={\/I: I =4, I a x-descending lower end}. It is easy
to check that A™ is a lower end containing 4. Suppose J = 4% is a »-
descending lower end. For each jeJ there is a x-descending lower end I; = A
such that j = \/I;. Then J* = U I; is a lower end contained in 4 and

= \/J We claim that J* is x-descendmg If x< \/J* then since J is -
descending there is B < J, [B| <x such that \/B = x. Also each I; is x-
descending so there is B; S1I;, |Bjl < such that \/B; =\/I,=}]. Set K,

= {J B;. Then K, c J*, ]Kx{ <x and \/K, = x. This shows that J* is -

jeB
descending, as claimed. It follows that \/J =\/J*e A", and this establishes
that A* is x-distinguised. Since A* is obviously contained in any -

distinguished lower end containing 4, we have that 4" = &, (4).

Lemma 3.3. If A and B are lower ends and B is x-distinguished then
2,(A)nB =2, (AnB).

Proof. It suffices to show that Z,(4) "B < Z,(4 N B). Suppose then
that xe Z,(4) n B. By Proposition 3.2 there is a x-descending lower end
JcA with \/J=x. Since xeB, JSB. Hence JSANB and so
x€Z,(ANB). u

THeOREM 34. 1) XZ,(P) is a locale.

i) ¥4, (P)c LZ,(P).

i) For each A S P such that \/A exists in P, the embedding P
— %2, (P) preserves \/ A if and only if (4] is x-descendmg

Proof. i) is immediate from Lemma 3.3 and Proposition 1.1.

11) is trivial.

iii) (a) Let a = \/ 4 where (4] is x-descending. Clearly (a] is the sma]lest

x-distinguished lower end containing (4]. So in £9,(P), (¢] = \/(b]
(b) Suppose a=\/ A where (4] is not %-descending. Then there exists

xeP such that x < a and yet x is not the supremum of any x-small subset of -
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(A]. Hence (by Proposition 3.2) x¢Z,{(4]) =
L2,P). »

THEOREM 3.5. The following are equivalent,
i) P is x-distributive.

i) LS, (P)= %2, (P).

ili) The embedding P — £ %, (P) preserves all existent suprema of x-small

\/(b] Thus (a] # \/(b] in

sets.

Proof. i) =ii). If P is x-distributive it follows trivially from the defin-
itions that £<, (P) € £, (P). The result now follows from Theorem 3.4 ii).

ii) =>iii). This follows immediately from Proposition 1.3.

iii) =1i). From ii) and Theorem 3.4 iii) it follows that if 4 < P is x-small
and \/ 4 exists in P then (4] is x-descending. This is just the definition of -
distributivity. =

Theorem 3.5 provides a characterization of »-distributive partially orde-
red sets additional to that given in Theorem 2.7. We give two examples to
illustrate these characterizations. Figure 3 shows a partially ordered set P

10 ¢ 0

P LI(P) 29y, (P) L(P)
Fig. 3
0 LIQ) = L, (Q) Z£(Q)
Fig. 4
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together with the lattice of ideals #.#(P), the lattice of No-distinguished
lower ends #%,(P) and the lattice of all lower ends % (P). The embedding
of P into each of the three lattices is shown by black dots. P is not
distributive: we see that ¥ (P) is not distributive (Theorem 2.7),
S (P)# L7y, (P) and the embedding of P into &y, (P) does not pres-
erve all the suprema existing in P (Theorem 3.5). Figure 4 shows a distribut-
ive partially ordered set Q: here #.#(Q) is distributive, 5 (Q) = L% (Q)
and the embedding of Q into ,?QNO(Q) does preserve all the suprema
existing in Q.

At any rate when x = oo, the notion of x-distinguished lower end has
another use apart from its r6le in Theorem 3.5. We will show that, for any
partially ordered set P, %, (P) is the smallest join completion of P which

is a locale. In what follows %' is any closure operation on P such that .#% (P)

s a locale.

Lemma 3.6. Let A < P be a lower end. If pe%(A) then \/(A|p) exists
and equals p.

Proof. Certainly 4 = |J (a], so in #%(P) we have that % (4) = \/(a].
aed acd
If pe® (A). (p] = V/(al, so since L€ (P) is a locale we have that ’

aed

(r1=(V @)@l =V (@l n @)

asd aed

Let xe P be such that x > A|p. Then (x] 2(a]N(p] for each ac A4, so in
L%(P), (x1= \/ (@ n(p]). Thus (x]>(p], whence x>p and \/(4]|p)

aeAd
=p. u

THEOREM 3.7. 7, (P) = L% (P).

‘ Proof. Let 4 < P be an co-distinguished lower end. We will show that
%(4)= A and hence Ae %% (P). Take pe%(A). Then, in P, p = \/(4|p) by
Lemma 3.6. It remains to show that A|p is co-descending. Let g < p. Then
ge%(A) so

a=\ (419 =\/(4iplq),

whence A|p is oc-descending. Since A is co-distinguished, PeA. u

In the subject of this paper there is often difficulty with the question of
whether the empty set should be admitted as a lower end. For us the empty
set @ is a lower end, and we note the following:

i) @ has a supremum if and only if P has a zero.

ii) @ is co-descending if and only if P has a zero.

iii) @ is cc-distinguished if and only if P does not have a zero.

Thus #%2, (P) introduces a new zero if and only if P does not already
have a zero. The same is true of #9,(P), £.5,(P) and .5 = (P).
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4. A failed characterization. Section 2 of this paper was devoted to
generalizing Theorem 1.5, which was taken from Cornish and Hickman [2].
In the same paper Cornish and Hickman prove the following theorem.

Turorem 4.1. The following conditions on a semilattice S are equivalent.

i) S is distributive.

i) There is a semilattice monomorphism preserving existent finite suprema
which embeds S into a distributive lattice.

iii) There is a semilattice monomorphism preserving existent finite suprema
which embeds S into a ring of sets. m

In this section we investigate some possible extensions of Theorem 4.1 to
»-distributive partially ordered sets.

In order to extend Theorem 4.1 we need a suitable replacement for the
concept of “semilattice monomorphism”™. A first thought is to replace it by
“embedding of partially ordered sets preserving existent finite infima”, but
the following example shows that this is unsatisfactory.

ExampLE 4.2. Figure 5 exhibits a partially ordered set which is not
distributive embedded into a Boolean algebra by an embedding preserving
existent infima and suprema.

Fig. 5

In order to block this sort of example we make the following definition.

DeriniTiON 4.3. Let P be a partially ordered set, L a complete lattice. An
embedding ¢: P— L is called strong if for every finite n and every
ay, ..., a,€P

@) A ... Aolay=\{e(): zeP and z<ay, ... 2 < ay).

(Note that if {zeP: z<ay, ..., 2< a,] is empty, then
\{e@): zeP and z<ay, ..., 2 < a4y

is taken to be the zero of L.
The following three facts are easily seen.
(i) A strong embedding preserves existent finite infima.
(i) If S is a semilattice and L a complete lattice, an embedding of
partially ordered sets ¢: S — L is strong if and only if it is a semilattice
monomorphism.
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(iti) The embedding in Example 4.2 is not strong.

We now apply the theory of prime ideals, developed by Balbes for
semilattices (see [1]) to partially ordered sets. Recall that by “ideal” we mean
Ng-ideal, that is lower end closed under existent finite suprema.

DEerNITION 44. An ideal J of a partially ordered set P is called prime if

for every finite n and every ay, ..., a,€P, (4] N...Nn(a,] &J implies that
a;eJ for some i. ‘ '

DerFiNiTION 4.5. A partially ordered set P is said to have enough prime
ideals if for each a, be P with a b there is a prime ideal J of P~with aeJ
and b¢J.

Tueorem 4.6. If P has enough prime ideals then there is a strong
embedding preserving existent finite suprema of P into a ring of sets.

Proof. For aeP, set

Z,={J: J a prime ideal and ag¢J}.

Our embedding ¢ is given by ¢(a) = %, for ae P. We note that a < b if and

only if #,< %, (since P has enough prime ideals), and thus ¢ is an
embedding of partially ordered sets. It remains to show that ¢ is strong and
preserves existent finite suprema. ‘

To show that ¢ is strong. Let ay, ..., a,eP. I claim

Xy .0, =U{%,: zeP and z< ay, ..., 2 < a,}.
f:lcarly the left-hand side coritains the right. If equality does not hold, there
is a prime ideal J containing every z < a, ..., a, but not containing any of
ay, ..., 4, This contradicts the definition of primality.

To show that ¢ preserves existent finite suprema. Suppose b
=a V..va, in P. Clearly 2,2%, U...U%, If equality does not
hold, there is a prime ideal J such that a,eJ for each i but b¢J. Since J is
an ideal (closed under existent finite suprema) this is impossible. w

THEOREM 4.7. A distributive partially ordered set has enough prime ideals.

Proof. Let P be a distributive partially ordered set and suppose that
a,beP and a*b. Set

& ={I:I is an ideal, ael and b¢l}.

Let J be maximal; we claim J is prime. Indeed suppose @]ln...n@lsJ
and yet a;¢J for each i. Then for each i the ideal (¢] v J (in the lattice
& F(P)) contains b, since J is maximal in Z. Thus beN((a] v J). But
Z#(P) is distributive (by Theorem 2.7(v)), so i

O((ai] vi)=(a]n ... Ny vJ=J.

Thus beJ, a contradiction. m
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TueoreM 4.8. If P is a distributive partially ordered set then there is a
strong embedding preserving existent finite suprema of P into a ring of sets.

Proof. Immediate from Theorems 4.6 and 4.7. = .

This is the only result we have extending the equivalence of Theorem 4.1
parts (i) and (iii) to arbitrary partially ordered sets. We will show later that
the converse of Theorem 4.8 is false, but we now turn our attention to the
question of embedding distributive partially ordered sets in distributive
lattices. A

THEOREM 49 Let P be a x-distributive partially ordered set. There is a
strong embedding, preserving existent suprema of x-small sets, of P into a x-
distributive complete lattice.

Proof The embedding is the canonical embedding ¢: P> 2% (P)
(given by ¢(a) = (a]). Since P is x-distributive, ¢ preserves existent suprema
of x-small sets, by Theorem 3.5. It remains only to show that ¢ is strong.

Suppose 4y, ..., a,€P. Since (a;], ..., (a,] are »-distinguished lower
ends, it follows from Lemma 3,3 that
1) Z (@10 ... n(a)) = 2, (@) ... 0 2,((a.])-
Now

Z (a1 ... n@l) =2z 20, .., 2 < a,})

=2,(U{: z<S ay, .-, 25 a))
=\V{l: z<ay, ..., 2 4} in L2, (P).

So

2 2, (a1 ... n@)=Vi{e@: z<a;, ...,z < a,}.

Also

D (@) ... 0 Zy((@]) =(@dn ... 0@l =e@) A ... Aelay).
This last result together with (1) and (2) shows that ¢ is strong. =

After Theorem 4.9 it seems reasonable to make the following conjecture.

ConsecTURE. Let P be a partially ordered set,  either a regular cardinal
or co. P is x-distributive if and only if there is a strong embedding,
preserving existent suprema of x-small sets, of P into a x-distributive
complete lattice.

This conjecture is false, because of the following example.

ExampLE 4.10. Let A be a regular cardinal, X a set of cardinality 1, & a
non-principal ultrafilter on X. Let ¢ denote an object not in X. We describe
a partially ordered set P. P has underlying set # u {{x}: xeX}ulg}; the
ordering on P is given by the following conditions.

i) #u{{x}: xeX} is ordered by set inclusion.
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i) g < X.

iii) g > {x} for each xeX.

iv) g is unrelated to every other element of P.

It is fairly easy to check that P is p-distributive for every u> A.
However P is not A-distributive. For let Ae % be such that |[A] = 4 and [X —
—A| =2, take be X— A and set B = X —{b}. Consider the supremum A4 v g
=X. If I is the lower end ({4, q}] then \/I =X and

I={Fe#: FeA}u{{x}: xeX}ulq}.

Now B < X but X is not the supremum in P of any A-small subset of I. m
THEOREM 4.11. The conjecture is true for at most one value of x.

Proof. Suppose the Conjecture is true for x = A and for » = u, with 4
< u. Consider the set P of Example 4.10. P is p-distributive, so there is a
strong embedding, preserving existent suprema of y-small sets, of P into a u-
distributive lattice. A fortiori there is a strong embedding, preserving existent
suprema of A-small sets, of P into a A-distributive lattice. Since P is not A-
distributive, the conjecture fails for x = 1.

As well as destroying the Conjecture, Example 4.10 can be used to show
that the converse of Theorem 4.8 is false, as follows.

THEOREM 4.12. There is a partially ordered set P which is not distributive,
but such that there is a strong embedding preserving existent finite suprema of
P into a ring of sets.

Proof. We take P to be the set of Example 4.10, with 1 = N,, and we
use the terminology of that example. P is not distributive. However it is
readily verified that (4] is a prime ideal and also, if we set ¥, = X —{x} for
xeX, that (Y] is a prime ideal. It now follows that P has enough prime
ideals {in the sense of Definition 4.5), and so by Theorem 4.6 there is a strong
embedding preserving existent finite suprema of P into a ring of sets. w

We now return to the Conjecture. We know that it holds for at most one
value of », and in fact it is true for % = 0.

THEOREM 4.13. A partially ordered set P is oo-distributive if and only if
there is a strong embedding preserving all existent suprema of P into a locale.

Proof. After Theorem 4.9 it suffices to prove that if there is a strong
embedding ¢ of P into a locale L such that ¢ preserves existent suprema,
then P is co-distributive. Suppose then that 4 < P, that \/ 4 exists in P and
equals x, and that b < x. We have to show that in P \/(4|b) = b, that is if
deP and d > ¢ for every ceA|b, then d >b. Now in L

@(B) =0 () A () = () A (\E/Afp(a)),
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the last equality holding because ¢ preserves existent suprema. Since L is a
locale we then have

ey o) =\ (90 A ¢(a).

asd

Now since ¢ is strong, ¢(b) A @(a) = \/{(p(c): ¢ < a, b}. Thus
Vie® re@)=V 'V o=V 0.
acd aed c<a,b cedlb

This together with (1) gives us
@ e =V ¢
ceAlb

Since d=c for every cedlb, p(d) > \/ ¢(c). From (2) ¢(d) = o(b), so
cedlb

since ¢ is an embedding d > b as required. =

It is easily checked that the Conjecture is true (for all values of x) for
semilattices, so when we move from semilattices to partially ordered sets the
situation with respect to the Conjecture changes completely.

We close this section by remarking that for finite partially ordered sets
the concepts “distributive” and “oo-distributive” coincide, so we obtain the
following result.

TreoREM 4.14. The following conditions on a finite partially ordered set P
are equivalent.

i) P is distributive.

ii) There is a strong embedding preserving existent finite suprema of P
into a distributive lattice.

iii) There is a strong embedding preserving existent finite suprema of P
into a ring of sets.

Proof. We show i)=>iii)=>1ii)=>i). Theorem 4.8 shows that 1)=>1iii)
holds, while iii) = ii) is trivial. The proof of Theorem 4.13 shows that ii) =1i);
since P is finite the various suprema appearing in the proof are all over finite
sets, so the locale L in the proof can be replaced by a mere distributive
lattice. w

Thus we recover Theorem 4.1 for finite partially ordered sets.

5. Discussion. The purpose of this paper has been to introduce a new
notion, that of x-distributive partially ordered set. We think that the results
of Sections 2 and 3 show that this notion is worth investigation. However in
Section 4 we saw that there are properties of x-distributive semilattices which
do not extend to arbitrary x-distributive partially ordered sets. It seems to us
that the important new occurrence in the move from x-distributive semilat-
tices to x-distributive partially ordered sets is the possibility of partially
ordered sets like Example 4.10 (where p-distributivity does not imply A-
distributivity even though u > 4). It may be that the notion “strong embed-
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ding” introduced in Section 4 is not the correct replacement for “semilattice
monomorphism”, but the reasoning of Theorem 4.11 is quite general, and
should go through with other notions of strong embedding. We conclude
that Example 4.10 is a fundamental obstacle to finding a single concept of x-
distributivity which will extend both Theorem 1.5 and Theorem 4.1 to
arbitrary partially ordered sets. As a final remark, we note that if we restrict
ourselves to finite partially ordered sets, all the difficulties just mentioned
disappear.
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Axiomatization of the forcing relation with an
application to Peano Arithmetic

by

Zofia Adamowicz (Warszawa)

Abstract. In the paper we describe those formal properties of forcing which set theoretical
forcing and the method of indicators in Peano Arithmetic have in common.

Introduction. We describe a formal similarity between forcing in set
theory and the indicator method in Peano Arithmetic.

Let P be a set of forcing conditions, (%, @) a topological space in 14
which is V-codable, ie. such that there is a set <0, <) and an isomorphism
@ in V’ of <0, <> and <0, <) such that the relation “ye ()" for a ge0
is an absolute relation of y and g w.r.t. Vand V* (see [1]). We shall always
assume that q; 9,6 0& g, NG, # Y = g1 Nq2€0.

Let yeVF be an element of #. Let us identify in VP 0, <) with’

(0, . ‘

We formulate two systems of axioms characterizing, respectively, the
following relations:

R(p, q) defined as pl—(y€q)
and
R'(p, q) defined as p Allyedll # 9.

Then R satisfies the first system of axioms iff there is a ye V? such that R is
the relation p|i (y€g) and R’ satisfies the second system iff there is a ye V"
‘such that R’ is the relation p A ||lyeg]| # @. We call relations of the first type
forcing relations and those of the second type consistency relations.

" We show that the Kirby—Paris indicator for models of PA defined by
means of a game where questions are Godel numbers of formulas naturally
determines a relation satisfying the second group of axioms, ie., a consis-
tency relation.

We also show that there is a strict correspondence between consistency
and forcing relations.

A consistency relation canonically determines a forcing relation and
conversely. Thus the Kirby-Paris indicator determines a forcing relation. This
explains certain analogies between the forcing and the indicator method.

The forcing relation determined by the indicator is not definable within
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