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On elementary cuts in recursively saturated
models of Peano Arithmetic

by

Henryk Kotlarski (Warszawa)

Abstract. If M is a model of Peano Arithmetic, let Y={N ¢ M: N <M}; we study this
family under the assumption that M is countable and recursively saturated.

§ 1. Introduction and notation. Let PA denote Peano Arithmetic in any of
its usual formalizations. For M= PA we set Y™ = {N ¢ M: N < M}; when
no confusion arises we omit the superscript M. Clearly the properties of this
family depend on M; we shall study this family under the assumption that
M is countable and recursively saturated. In § 2 we show that M has many
cuts which have some combinatorial properties introduced by Kirby and
Paris (see [1]), in § 3 we show many non-isomorphic elements of Y and in § 4
we study the connection between elementary cuts of M and antomorphisms
of M.

We use standard terminology and notation. We assume that the reader
knows the notion of recursive saturation (see Schlipf {9] and Smorynski [10]
for a survey of recursively saturated models of PA) and knows the notion of
a satisfaction class studied in some depth by Krajewski [6] and in several
more recent papers; also some knowledge of initial segments (= cuts) in
models of PA (see e.g. Kirby [3]) is required (however, we shall define the
combinatorial properties of cuts in the body of the paper). The present paper
has grown out from our earlier paper [4], where Theorem 1.1 below was
proved. The results of [4] and the present paper were annouced in abstract
[5].

Before we state the main result of [4], we need some more notation:
Y; ={NeY: N is not recursively saturated}.

For aeM we denote M(a)= {xeM: for some parameter-free term
t) M x < t(a)}. ’

The following notion is taken from [1]. Two families 4, B of cuts of
M= PA are symbiotic iff, for all ¢, be M

@ANeda<N<bh)=@ANeBa<N<bh).
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TrroreM 1.1. Let M= PA be countable and recursively saturated. Then

(i) if ASY has no greatest element, then |)AeY\Y;,

(i) for NeY we have NeY, iff there exists an aeM such that N
= M(a),

(i) Y and Y, are symbiotic,

(iv) Y; is of the order type of 1+rationals,.

(V) Yis of the order type of Cantor set 2° with its usual ordering: for
b, b*€2° we put

S bl<b?=Im(Vr<mbl=b2) & bL=0& b =1.
Proof. See [4]. =

§2. Combinational properties of elementary cuts. In this section we show
that if M is countable and recursively saturated then M has many elemen-
tary cuts having some combinatorial properties introduced by Kirby and
Paris [1], [2]. Let us recall these properties.

DerFiNiTION. Let M= PA and let N M.

(i) @ codes N iff there exists a function fe M such that all standard
neM are in dom (f) and VxeM xeN =3neo Mk x <f(n).

(i) @ | codes N iff there exists a function fe M such that all standard
neM are in dom (f) and VxeMxeN =Vneo ME x < f(n).

(iii) Nis strong in M iff for every function fe M such that every xeN is
in dom (f) there exists'a be M\N such that

VyeNf(y) > N —f(y) > b.

This last notion has become of fundamental importance in recent results
about sentences independent of PA, cf. [8].

Our first result shows that M has many cuts coded by w.

TueorReM 2.1. Let M be countable and recursively saturated. Then

(i) for every NeY,, @ codes N,

(i) {NeY: N¢Y; and w codes N} is symbiotic with Y.

This result may be shown by constructing some recursive types; it will
be more convenient to prove this by using a non-standard satisfaction class
to get some uniformity of further a:guments The following fact has been
known to several investigators.

LemMMA 2.2. Let M=PA be countable and non-standard. Then M is
recursively saturated iff there exists a satisfaction class S on M such that
(M, S)k= induction and S decides all Z; formulas for some non-standard xe M.

Proof. —» Consider the theory:

“S is a satisfaction class” + induction in LU {8} + “S decides all Z,

formulas” + {x>n: new}.
This is a theory in Lu {S}u {x} which is recursive and consistent with
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the complete diagram of M (because any of its finite subsets can be
interpreted by Tr, — the truth definition for X, — formulae, provided n is
sufficiently large), so the result follows from the resplendency of M (cf. [9]).

« Let p be a recursive and consistent type in a variable v and
parameter be M. Let I" represent p in PA. Now we have

(M, S)E 3wV <nl'(p)—S(p, v"b)
for all new, and so by overspill
(M, 8)l= 3wV <noI'(9) = S(e, v7b)

for some ny > .,

Such v realizes p because its elements are standard formulas, and so
smaller than ny. =

From now on we shall write “a sat.cl” instead of "a satisfaction class
with the properties stated in Lemma 2.2”.

Proof of Theorem 2.1. (i) Let NeY;. By Theorem 1.1 (i), N = M(a)
for some ae M. Let S be a sat. class on M. Let {¢;(v): iew} be a recursive
enumeration of parameter-free terms of L. We define a function g by
induction in (M, S):

9(0) =
g(i+1) =
The satisfaction class S is used to define the values of terms in (M, S).

It is obvious that g has the required properties.

{ii) Let a, be M be given. Assume that INeY, a < N < b. In particular,
a<M(a) <b. Once again let § be a satcl. on M. We define a function
g(vy, v;, v3) by induction in (M, S). Let #;{v) be a recursive enumeration of
terms.

the value of ¢y, on a,
max(g(i)+1, the value of £, on a).

g(u, w, 0) the value of ¢, on u.

g(u, w, i+1) = the smallest x such that for all z<w, if S decides the
formula t,(g(u, w, 9)) < x then S(t,(g(u, w, 1)) < x).

Observe that such an x always exists because x is required to be greater than
only finitely many elements of M (finiteness in the sense of M).
Moreover, for all i,

g(u, w, i) <g(u, w, i+1), because S decides all X, terms.
Now we observe that for all new
(M, S)E= g{a, n, n) < b, because g(a, n, nje M(a).

By overspill there exists an ny > @ such that (M, S)k= g(a, no, no) <b. Let
= {xeM: for some kew, x < g(a, ny, k)} We show that N satisfies our
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demand. Clearly a < N! < b. Also it is clear that
Nt = {J M(g(a, no, k),

kew
so N'eY\Y; by Theorem 1.1 (i). Also the function f(k) = g(a, ne, k) shows
that @ codes N'. The converse implication is evident. =
Now we shall produce many cuts NeY such that w | codes N.
DermitioN. For ae M let

M[a] = {xeM: for each parameter-free term t(v), M=t (x) < a}.

For convenience we shall use this symbol only when M [a] is non-empty (ie.,
1o definable element of M is greater than a4); otherwise the symbol M [a]
will be treated as undefined.

It is easy to .show that the family {M[4]: aecM} is symbiotic with Y
and each M [a] is recursively saturated (under the assumption that M is
recursively saturated).

T:HEOREM 23. Let M= PA be countable and recursively saturated. Then

9) for every acMw | codes M [a], '

(i) Y is symbiotic with {NeY: w| codes N and N is not of the form
M[dl}.

] Proof. This argument is very similar to that of Theorem 2.1, and so we
give only a very rough sketch.

(i) Use the function g defined as follows:

9(0) =
gi+1)

maxx: the value of t, on x is <a,

[

maxx: for each j<i+1, the values of t; on x are smaller
than a.

(i) Use the following function g(v,, v,, #s):

g(u, w,0) = the greatest x such that the value of t, on x 'is smaller
than ‘u,

maxx: for all'z < w if the formula ¢, (g(u, w, i)) < x
is decided by S then S(t,(g(u, w, )) <x). m
The following fact is known from Kirby [1].'

ProposiTioN 24. We do not have (, codes N) and {w | codes N) for any
NcM.

glu, w,i+1) =

. It follows that the families considered in Theorems 2:1 and 2.3 (ii) are
disjoint. '

) Our 1.:1ext goal is to show that in a sense the family {NeY: o codes N}
is much bigger than Y; ; namely, we shall introduce the notion of a stationary
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family of cuts of M and show that the first of the above families is stationary
but the second is not.

From now on we fix a countable recursively saturated model of PA and
fix a satcl. S on M.

Derivimion. (i) A function F: M — M is normal iff F is definable in
(M, S) and is strictly increasing.

(i) A set A <Y is normal iff, for some normal F,

A={NeY: VxeNF(x)eN}.

(iii) A set B < Yis stationary iff, for all normal sets, AS Y, AnB # D.
The above notions depend not only on M but also on §, and so should
be S-normal and S-stationary, but we 'shall omit § because it will be fixed.
~ The above terminology is taken from set theory; cuts of M play the role
of limit ordinals.
Propostrion 2.5. (i) If A and B are normal in-Y then AN B contains a
normal set.
@) If A is 'stationary then A contains arbitrarily large cuts:
VaeM3INeAda <N <M.
Proof. (i) Let
A={NeY: VxeNF(x)eN}
and
B={NeY: VxeNG(x)eN}

where F and G are normal functions. We define the function H:
H(0) = max (F (0), G(0)),
H(i+1)= max (1+H(), F(i), G (i)

Clearly H is normal and if NeYis closed under H then N is closed under
both F and G. ‘

(ii) Let A = Y be stationary. Given aeM, the function F(x) =a-+x is
normal, and so there is an Ned, N <M such that ¥xeNa+xeN, In
particular, aeN. =

THeOREM 2.6. (i) Yy is not stationary.

(i) {NeY: w codes N} is stationary.

Proof. (i) First we construct a function F(a, i) by induction in (M, S):

. F(a, 0) = the value of t, on a,

F(a, i+1) = the smallest x such that for all j <i +1 if § decides
the formula #(F(a, i)) < x then S (t(F(a, 9) < x).
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Now let

_fF(a, ) if x=(a, i),
G()—{O if x is not a pair

and let H be defined by
H()=G(0) and H(i+1) =max(1+H(), G(i+1)).

Thus H is a normal function. But no NeY, is closed under H because if
ieN,i>w and N = M(a), then F(a, )¢ N so H({a, i>)¢N.

(ii) One can construct a X, and IT, hierarchy for the language LU {S} as
usual and one can also write down the truth definitions Tr, for Z, formulas of the
extended language; these formulas have the properties of truth definitions
because we work over a model (M, S)= induction.

Now let a normal function H be given ; His £, in LU {S} for some n, and the
statement Vx3y H(x) = yis IT,,, and so it is X, , ,. Thus it suffices to prove that
(M, S) has arbitrarily large X, , — elementary cuts coded by w. Let us state this
as a lemma.

Lemma 27. LetaeM, kew, k> 1. Then(M, S) has X, — elementary cuts
(N, SN N) such that aeN, and © codes N. Moreover, N < M.

Proof (cf. Lessan [7]). Let N, ={xeM: there exists a formula
@(v1, v2)€ 241y such that (M, S)F @(a, X) & Vy < x 7 0(a, y)}. Clearly
(Ny,SNN;) is a Xy — elementary submodel of (M, S5). Let
N ={yeM: there exists an xe N, such that y < x}. Clearly N is a cut of M.

We c]a%m that (N, SAN) is a %, — elementary cut of (M, S) and w
codes N. It is easy to verify that N is closed under the pairing function. Now

let a formula ¢(v,,v,)eZ, be given, let zeN and a
s ssume that
(M, S}=3v,0(z, vy).
Let ce Ny, z <c. Consider the formula ¢(vy, 13):

seq (v1) & 1h(vy)
>0 & Vi<, [(3114 @i, v3) = ofi, (vl),)) & (130, 0 (i, vy) - vy = 0)]

(vy is the Skolem function for ¢ with domain v3).
Now ¢ is X4y, and so by Z) 41 -elementarity

(N1, SO Ny = Yoy 3, £(vy, v,)
because ,
(M3 S)'——‘vvsavlé(vhvd' o
In particular, (Ny, SN )E3o, £(vy, ). Let beN; be such that (N, S

NNy (b, ¢). But now (b),eN because (b), <b and (M, S)k= o(z, (b
Now we show that w codes N. The idea is the same as'in the’ prootfp cEf ’2&)2(?)..

icm

On elementary cuts in models of Peano Arithmetic 211

but we use Tr,.., instead of S. To be more specific, let {t;} be an enumer-
ation of Z,,, terms of Lu {S} and we define g by g(0) = the value of t, on 4,

g(n+1) = max(1+g(n), the value of t,.; on a).

Once again, Tr,,, is used to define the value of the X4, term ¢ on a.
Clearly g is coded in M in fact, it is defined in (M, S). Also rng(g) is cofinal

in N, and hence N as well.

Thus it remains to show that N <M. In fact, the statement “S is a
satisfaction class™ is IT, in Lu {S}, and so it is preserved since by assumption
k>=1. Thus SA N is a satisfaction class on N. But all satisfaction classes
coincide on standard formulas, and so for aj, ..., ¢yeN and standard peL
we have

M|= (P[al, RRAE) al] = <’_(P—I: <a1: Tees al>>ES
={Tp",<ay, ..., ayyeSNN
=NEela, -] n

Now we shall prove that there are many strong cuts in Y.
TueoreM 2.8. Let Z = {NeY: N is strong in M}. Then
(i) Z is stationary,

(i) Z is symbiotic with Y,

(iii) Z is of cardinality 2%o.

Proof. We give only a sketch because the proof is long and uses ideas
which are well known from Kirby [1] and Paris [8]. One first uses the
construction of Kirby and Paris [2] to obtain a model (M, S;) > (M, S)
such that M = M, and M is strong in M,. (Their argument works for (M, S)
because this model satisfies induction). The next step is to define indicators
Z, for families {N o M: (N, SnN) <y (M, 5) and N is strong in M;}. )

This is done by defining games in which the 1% player asks two sorts of
questions: B

(a) questions which ensure that the cut produced in the usual manner is

strong, : : .
(b) questions about the truth of X, formulas of the language Lu {S}.
The definition of “2™ player wins” ensures that he produces a satisfaction
class for X, formulas of Lu {S} and that he gets no contradiction by means
of the combinatorial part of his answers. Given indicators Z,, one shows (ii)
exactly as in other constructions using indicators, (i) is proved exactly as in
the proof of 2.7; (iii) is obtained by means of the usual trick of splitting
strategies. m

§ 3. Isomorphisms of elementary cuts. The following observation is
commonly known,
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TueoREM 3.1. Let M= PA, be countable and recursively saturated, and
let Ny, NyeY\Y;. Then N, is isomorphic to N,.

Proof. See eg. Smorynski [10]. m

The question if all cuts N e Y; are isomotphic has been posed by Roman
Kossak ; the aim of this section is to answer this question negatively. For
aeM we denote H(a) = the Skolem closure of {a}.

We say that aeM is minimal iff H(a) has only two elementary sub-
models (ie, H(0) and H(a)). The main result of this section is

THEOREM 3.2. There exist two countable infinite families p,, ¢, keo, of
parameter-free recursive types of PA such that

() if T is a finite subset of some p, then

PA}-Vb3a> b )N\ I'(a);

- (i) if I' is a finite subset of some g, then
PA-Vb3a>b M\ T(a);

(ii) for every M= PA, if a realizes p, and b realizes p; in M and k # j
. then no ue M(a)\M [a] realizes the type of b;

(iv) for every M|=PA, if a realizes g, and b realizes q, in M and k # j
then no ue M (a)\M [a] realizes the type of b;

(v) for every M= PA if a realizes some q, in M then a is minimal;

(vi) for every M= PA, if a realizes some p, in M then no ue M(a)\M [a]
is minimal.

CoroLrary 3.3. (This result-was also obtained by Smorynski [11] by
other methods.) If M= PA is countable and recursively saturated then there
exists an infinite family A <Y, such that if Ny, NyeA then N, is not
isomorphic with N,.

Proof of the corollary. Let M= PA be countable and recursively
saturated ; we choose g, to be any element realizing p, in M and choose b, to
be any element realizing g, in M. Let .

A={M(gk): kew} U {M®,): kew).
To SI.IOW .that 1o distinct Ny, NyeA are isomorphic, if suffices to observe
that if g is an isomorphism of M(c) onto M(d) then glOeM(@\M[d].
Before proving Theorem 3.2 we need some auxiliary facts. For new, Tr,
denotes the natural truth definition for X, — formulac. We define the
following functions F, in PA: :

F,(0) = The Godel number of the formula v, = v; +1.
Fr(x+1) = miny: Vo < F,(x)Vu < F,(x)oe3,
~@AwTr, (¢, u™w) —3Iw < y Tr, (9, u™w)).
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Thus F,(x+1) is the maximum of all examples for all Z, formulas ¢ < F, (%)
with all parameters u < F,(x).

The simplest properties of the functions F, are

LemMA 34. (i) PA}- VaF,(a) < F,(a+1),

(ii) the formula y = F,(x) is 2,41, ‘

(iii) if t is a X, term then for some a PA}l- Vb > at(b) < F,(b).

Proof. Obvious. u

Let C, be Range (F,); formally C,(x) is the formula 3y x = F,(y) of PA.

Let I,(x) =max(C,n < x) and p,(x) =min(C, > x). The following
lemma is obvious.

Lemma. 3.5. The following sentences are provable in PA:

Vx3y[Co(x) = (L,(x) = F,(x) & pa(x) = F(x+2) &
: & 71 Cy(%) = (I,(x) = Fo(x) & po(x) = F,(x+1))]. »

The main lemma about the functions F, is
LemMa 3.6. Let M= PA and let acM be greater than any definable
element of M and such that, for all new,

MEF, (L(g)<a & F,_(a) < p,(@).
Then
M(a\M[a] = U(l.(a), p,(a)-

Proof. 2. Pick ue(l,(a), p.(@), ie, 1,(a) <u<p,(a). Now p,(a) is
definable from u(p,(a)) is either min(C, N > ) or min(C, N > u+1)), and so
ue M (a).

The same observation shows that u¢ M[a].

<. Let ue M(a)\M [a].

Casel. u < a. By the assumption there exists a term ¢ (v) such that t (1) > a
(otherwise ue M [a]); this t is Z,_; for some n. We claim that /,(a) < u. Indeed,
otherwise u<I,(a), and so F,. () € F,-;(l(@)<a. But we have
F,_i(u)>t(u) by 34 (i), and so we have a contradiction: a <t(w)
<F, ) <F,-(l{0) < a. Thus I,(a) <u <a<p,(a) so ue(l,(a), p,(a).

Case 2. a < u. There exists a term t(v) such that u < t(a) (otherwise
u¢M(a)); this t is X,-, for some n. We claim that u < p,(a). Indeed,
otherwise, p,(a) < u and we obtain a contradiction: t(a) < F,_,(a) < p,(a).
Thus /,(a) < a < u< p,(a), so ue(l,(a), p,(a). »

The following lemma shows that the functions F, increase very fast.

LemMa 3.7. For j,new, j,n>1 we have

 PAR3bVy > bF,_, (Fr- 1% < F, (y+1).
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Proof. Let b be the Godel number of the formula o(x, w): x
=F,_,(F»~1"), By 34 (i) ¢ is Z,, and so the result follows from the
definition of F,.

Proof of Theorem 3.2. We shall first construct the types p,. Let o,
be the kth prime. Let &, (x) be the formula “x is a power of o,”. We put

P = {x>F,(n): new}u 1
U{Fue 1 (1,(0) <x & Foy (%) < pa(0): new, n>0}u 2
u{3z&(2) & I,(x) = F,(2): new,n>0}u 3)
O{t(1(9) < hos (9 V £((9) > Paca (9 @

new, t is a parameter-free term}.

We shall verify that these types satisfy (i), (iii) and (vi) of Theorem 3.2,

We first verify (i). So let a finite I' < p, be given. Let M= PA. As I' is
finite, there exists and ae M such that every b > a satisfies all formulas of the
form x > F,(n) which occur in I'. Let A = {beM: a < b}. Now let n be the
greatest natural number such that some formula of the form (2), (3) or (4)
(with some term t) occurs in I'. Pick any by be4 and let z = F,(a}). If we
take b to be large enough, we can ensure that in M we have

Yy <bF, (@ 1) < F,(y+1)
by Lemma 3.7.
Consider the elements

) b
_ Fp— 1 (Fplag))
dy = Fp (o™ 170

dy= Fooy 1)

Fo_ b—r,
d,an_l(ak” 1Fnlo »).

By.tak%ng b large enough we may ensure that d, > F,_, (F,(a}) for some r
which is gfeat.er .than the number of terms ¢ such that some formula of the
form (4) with indices t, n occurs in I'. Thus, for some i < r, every x such that

Fy-1(d) <x <F,_;(d+1)

satisfies all formulas of form (2), (3), (4) with index n which occur in I.
Moreover, 3zd; = F,_ (%), and so one can repeat the construction starting
with n—1 and so on. This shows (i) of 3.2,

Now we prove (iii) of 3.2. Let M= PA be given, let a realize p, in M
and let b realize p; in M, where k # j. Let ue M (a)\M [a]. Now a satisfies all
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formulas of the form (2), and so by Lemma 3.6 there exists an n such that
(@) < # < pa(@).
By Lemma 3.5, [,(u) = I,(a). Thus, in M

Isl,(w)=F,(e) and 3zl,(b) = F,(3).

But F, is one-to-one by Lemma 3.4 (i), and so u does not realize p;.
Now we verify (vi of Theorem 3.2. Let- b realize px in M. Pick
we M (B)\M[b]. Once again, for some n I,(b) = L, (u) <u, and so, for every
term t(v), either t(l,(4)) < l—y(w) or t(},(w)> pp-y(w); thus H (L@®) is a
proper submodel of H (u).
Our next aim is to define the types g,. Let 4%(x) be the formula

32Ih(z) = n+1 & x = k+Fo(z0) & 20 = k+F1 (z1) & ... & 741 = k+F, (z)-
Let
I ={x>F,(n): neo}u{dl: new}.

The types I', have properties (i) and (iv) of 3.2; in order to ensure the
minimality condition (i.e. (vi)) we use a standard trick of constructing types
which give minimal extensions. .

Let {t,: new} be a recursive enumeration of parameter-free terms in
one free variable. For a formula y(v) and new, by a¥"(v) we denote the
formula

@b[QY (W () & t,() = b) & Ve <b QY () & t,(¥) =€) & 1, (1) = b]} v
vi{vb1Qy(W(O) & t,(0) = b) & [3w(Seq(w) & (w)o = mine: V(o) &
& Vi < Ih(w) (W) =mine: [f(e) & t,(e) > (w)] & Jiv = (W))]}-

Here Qyd(y) is an abbreviation of ¥x3y > x&(y). Thus o¥*"(v) expresses that
either there exists a b such that Qx (¥ (x) & t,(x) =b) and b is the smallest
number with this property and ¢,(v) = b or Ox ¥ (x) & t,(x)= b) for no b
and v is an element of the natural subset of (the set defined by) ¥ on which ¢,
is strictly increasing.

Now we define

Bo(®) is a*=*°,

By () is ofen L.

Let g, = I, U {B,(x): new}; we shall verify that these types have the
desired properties. We prove first (i) of Theorem 3.2, Let 4 be a finite subset
of some g, and let M= PA. . .

Let us observe that

PA}- Qx Ak(x) for all n
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and
PA|- Vx (A% (x) > AL (x)).

Pick the greatest n such that 4% is in 4. Thus unboundedly many x satisfy
A%, and so also all formulas of the form A% which occur in 4.

We may assume that all such x satisfy also all formulas of the form
x > F,(n) which occur in 4.

We may assume that fq, ..., 8, are all the other formulas which occur
in 4. By the standard trick used to construct minimal types, PA |- @xy (x)
— Qxa¥"(x) for all n.

Let B,, r < m be the following sets:

B_; = {x: A%},
All of them are defined without parameters and unbounded. But every xeB,,
realizes 4, and so 3.2 (ii) is proved.

Verification of 3.2 (iv) is similar to the case of the types p,: we give a
rough sketch. If b realizes some g, then let z be a sequence such that

b= k+F0(Zo) & Zg = k+F1 (Zl) & ...
Now one verifies that
ln(b)=zn=Fn+l(k+Zn+l) pn(b)an+1(k+1+zn+1)'

Moreover, the inequalities F,- (I.(B)) < b & F,_ (b) < p,(b} hold. Now let b
realize g, and a realize q; in M, where k 5 j. By the above inequalities and
Lemma 3.6, for ue M (a)\M [a] there exists an n such that [,(a) < u < p,(a),
and so in M

B_1,0
s

By =0 B,y =aPr.

and

Iw In(u) = Fn(j+Fn+1(w))'

But b does not satisfy this formula as k # j. Thus it remains to show 3.2 (v).
Let be M realize some g;. Let e =t(b) be any element of H(b).

By construction, either e is definable without parameters or ¢ is the
value of a term which is strictly increasing (and so one-to-one) on (the set
defined by) some formula ¥ €g,; thus there is a term s(v) such that

MEy(x) = (Vys() = x=1t(x) = y).

In the first case ec H(0), in the second be H (e), and so H(b) has only trivial
elementary submodels. Thus Theorem 3.2 is proved. m

_ § 4. Automorphisms and elementary cuts. For any model M we denote
by Aut (M) the group of all automorphisms of M. The following notidn is
tal_cen from the Galois Theory. X < M is closed iff for each be M\X there
exists a g e Aut(M) such that g(b) # b and, for all xeX, g(x) = x.

Clearly if M= PA and X = M is closed then X is (the universe of) an
elementary submodel of M. ’ ‘
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The aim of this section is to give some information about closed
elementary cuts. The results which we have in mind are the following.

Tusorem 4.1. If M is countable and recursively saturated and N €Y is not
closed then there exists a be M such that N = M [b]. It follows that all NeY
except countably many are closed. The natural question if models of the form
M[b] are closed is settled in the following way.

 Tueorem 4.2. There exists a recursive consistent type q such that, for
every M}=PA and every beM which realizes g, M[b] is not closed.

TuroreM 4.3. There exists a recursive consistent type p such that, for
every countable and recursively saturated M= PA and every b realizing p in
M, M[b] is closed.

We first prove Theorem 4.2. Let ¢ be the type go defined in the proof of
Theorem 3.2, (in fact, the type I, suffices here). Consistency of g was proved
in §3;s0 let M|=PA and let b realize g in M, we show that M [b], is not
closed.

Cram. For each ce M(D\M[b], if ¢ and b realize the same parameter-
free type, then c=b. i

Indeed, if ce M(b\M [b] then, for some n, 1,(b} < c < p,(b) and I, (b)
=Fyp1(@nes) = Lu(). » (

Now if b#c then ¢ does not satisfy the formula x = F,oFj0...
vo. 0F, (I, (x)) but b satisfies this formula, and so the claim is proved.

Theorem 4.2 follows from the above claim, because if geAut(M) is such
that VxeM[b]g(x) = x then g(b)e M(b\M [b], and so g(b)=b by the
claim. m )

We define the term t(v) = max {y: Vz<[0, y]z < v} (we freely use the
>, formula € in PA; this gives the notion of inclusion; thus t(v) is the
greatest y such that (codes of) all subsets of {x: x < y} are smaller then v).
We also put t°(r) = v and t"**(v) =t (t"(v)). Clearly, for each n, 1" is Zy.

LemMMA 44. (A similar result for models of Alternative Set Theory
has also been obtained by Alena Vencovska in Prague). Let M= PA be
countable and recursively saturated. Let a, b, c, deM be such that

(i) Ml=t"(b)> a for all n,

(i) M= Vx <b @(x, ) = o¢(x, d) for all formulas .

Then there exists an automorphism g of M such that g(c) =d and, for all
x < a, g(x) = x.

Proof. Let S be a satcl on M (cf. Lemma 2.2). We claim that, for every
new and every two finite sequences k T of elements of M, if ‘

max {r: Vx < "(b)) Vo <rS(p, x"c°k) = S(o, x"d"h}
is non-standard, then for each ee M there exists 'an fe M such that
max {r: Vx <"1 (b)Vo <rS(o, x"ck"e) = 8 (o, x"d°T7f)}
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is non-standard. Indeed, let k, T satisfy the assumption and let e M. Assume
that, for every feM, '

max {r: Vx <" '(B)Vo < rS(p, xc"k"e) = S(¢, x"d"T°f)}
is standard. It follows that '
max {r: I Vx <"1 (B) Vo <rS(p, x"ck"e) = S(p, x"c¢"Tf)} =r,

is standard. Let ¢, ..., ¢, be all formulas <r,. Thus we have
MEYfax <t"'(®) \/ T[eix, ¢, k, ) = ou(x, d, T, )]
i=1

Fori=1, ..., m we define in M
wy={x <t""1(b): ¢;(x, ¢, k, e)}.
Obviously Mk w; < t"(b). But now we have

m
ME3zVx <t b) A\ [o(x, i k, 2) = xew]
' i=1
namely z = e has this property, but

MEVfax < :"“(b)'f/1 oi(x, d,T,f) = xew,].

Thus we have distinguished the sequence c, k from the sequence d, T by
means of a standard formula with parameters w; and "*1(b) < ¢"(b) which
contradicts the assumption of the claim, and so the claim is proved.

Clearly the claim allows us to construct an automorphism g of M as
desired by the standard back and forth argument. w

LemMma 4.5. If M is countable and recursively saturated and NeY is not
closed then w | codes N.

We first derive Theorem 4.1 from Lemma 4.5. Let beM\N be such that,
for every geAut(M), if VxeNg(x)=x then g(b) =b; we show that N
= M[b]. The inclusion < is obvious, and so assume that N & M[b]. By
Theorem 1.1 there exists an N, €Y such that N ¢ N, ¢ M[b] (cuts of the
form M[b] are unions of smaller elementary cuts). Pick ce N 1\ and
consider the cut M(c). By Theorem 2.1 » codes M(c), and so it is not true
that @ | codes M(c); by Lemma 4.5 M(c) is closed, ie., there exists a
geAut(M) such that g(b) # b and, for all aeM(c), g(a) =a. But N < M(c),
and so this g is an identity on N. We have got a contradiction and Theorem
4.1 follows.

Proof of Lemma 45. Let NeY be such that it is not true that o)

codes N; let be M\N be given. We shall find a g e Aut(M) such that gb)#b
. and, for all aeN, g(a) =a.
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We claim first that for each new and ueN
(M, S)Edc#b Vx<u Yo <n S(p, x"b)=S(p, x"c),

where S is a sat.cl. on M.
Assume that the claim does not hold, let new and ue N be such that

(M, S)E= Ve # b3x <udep < n 71[S(p, x"b) = S(p, x"c)].

Exactly as in the proof of Lemma 44, let ¢4, ..., ¢,, be all formulas < n;
thus

M Ve # bax < u_\:/1 Lo (x, b) = @y(x, O]

Let w; = {x <u:g(x, b)}. Clearly w;e N because N is an elementary cut of
M. But now b is defined in M with parameters from N; namely, the formula

N Vx <ul[;(x, 2) = xew,] defines b and has parameters u, wy, ..., Wa€N.
i=1

We have a contradiction: be N because N < M, and so the claim follows.
For new we define :

u, =max{u: Ic #bVx <uVe <nS(p, x"b) = S(¢, x"c)}.

By the claim, for each new, u, > N, and so there exists a we M such that
wé¢N and, for ‘all new, w <u, (otherwise w| codes N). We define the
sequence w, as follows: wo=w was chosen above and w,,; =t(w,).
Obviously, for all new, w,¢N, and so once again by assumption, there
exists a ye M\N such that, for all new, y <w,. )

For these y and w we have

@i t"(w) >y and

(i) there exists a ceM, ¢ # b such that M= Vx <we(x, b) = @(x, ¢)
for each formula ¢ because w <u, for all n. .

By Lemma 4.4 there exists a g € Aut (M) such that g (b)) = c(so g (b) # b)and
Vx < wg(x) = x, and so in particular ¥xe& N g(x) = x because N is a cut and
w>N. u

Now we prove Theorem 4.3. The idea is similar to that of § 3 but now
we need a type with a somewhat stronger property than the types p, from
Theorem 3.2, because we must allow parameters in the construction.

The idea is the following. The type p(v) will ensure that if b realizes p in
M then .

(i) every ce M (b)\M [b] satisfies some inequality of the form I,(b) < ¢
<pa(b),

(ii) there exists a z such that I, (b) <z < p,4(b) and z realizes the
same type as I,(b); this will allow us to find an automorphism g of M which
moves. 1,(b), but Vx < l,.;(b) g(x) = x.

In this situation it is obvious that for ce M such that I,(b) < ¢ < p,(b)
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we have g(c) # c and g | M[b] is the identity. Now we define the type p. For
a natural number n, let 4,(w) be the formula

Fn(ln+1(w)) <w & F”(W) < pn+1(w)'

For a natural number n and a sequence ¢, ..., ¢, of formulas in two

variables, by Bg,, ., We denote the formula

3z # 1,(0) Vx < Fy (a1 (w))j/;\1 [9,(x 2) = @y (%, LW)].

We define

={4,W): n>1}U{B,  _,: n>1, ¢ .., 0 is a finite sequence
of parameter-free formulas in two free variables}.

Clearly p is a recursive set of formulas. Now we show that for any finite
I =p we have PAL Vx3w > x AN\ T (w).

We need a lemma.

LemMMA 4.6. Let r be a natural number. Then for n>2 there
exists ‘a natural number a -such that PA| Vb>a “Card [C,,_1 N
A(Fy-1 (1u(5)), max{e: F,_(e) < pa(b))] is greater than 2"Fn— 1),

Intuitively Lemma 4.6 states that between I,(b) and p,(b) (in fact,
between F,; (1,(b)) and max {e: F,_;(e) < p,(b)} there are very many values
of the function F,_,).

Proof of Lemma 4.6. Consider the formula o(u, w):

30 {Seq (h) & Ih(k) > 2Fr=1® & h(0) > F,_, (u) &
& (Vi < h())—1h(i) < h(i+1) &

& (Vi < (W) C,—1 (h())) & w = F,—; (h(th(B)~1))}.

It is easy to verify that g is Z,(F, is Z, by Lemma 34, and so C,_, isa X,
formula, whence also exponentiation 2"Fr-1® js X'). Let a be the value of F,
on the G&del number of g; we show that this a satisfies our demand. Let
b > a be given. We apply the definition of F, to the parameter u. = I,(b) and
the Z, formula ¢ and find that there exists a w < p,(b) such that g(u, w) (in
fact, if 1,(b) = F,(z) then p,(b) = (z+1)). For this w there exists an h as
above, but then all values of h are in C,_y, all of them are in the interval
(F,,,l(l,,(b)), max {e: F,_(¢) <p,(b)}) and there are more than 2"Fn—10s®»
such values. m

Now we observe that if ¢, .
for each n, PA} B"y,, .. ,l//,—»B e

Let I' be any finite subset of p Pick the greatest n such that some
formula .of the form Bg,,...e, 18 in I'. By the remark above we may assume
that B}, _,, is the only formula of this form with index n which oceurs-in I

., ¢, is a subsequence of V,, ..., ¥,, then,
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Let any x be given. By Lemma 4.6 if x is sufficiently big there are more
than 2"+ 1) elements of C, N(F,(Fy+1(x), max{e: F,{e) < F,.y (x+1)}).
Thus at least two of them cannot be distinguished by means of r
formulas ¢, ..., ¢, with parameters smaller than F,(F,. (%)) because there
are only 27 FnFa+109) gets of pairs of the form (formula, parameter). Let two
such elements be x, and z,. Thus we see that any b such that F,(x,) <b
< F,(x,+1) satlsﬁes B Cledrly such a b satisfies, also A4,.

Now we iterate this procedure ie., apply it to n—1, n—2 and so on.
This shows 3w > x /\(\I“ (w); in fact, we have shown a non- empty interval of
such elements w. Hence I' is consistent(!). Thus it remains to show that p
has the required property, ie., for any countable and recursively saturated
M PA and b realizing p in M, M[b] is closed. So let M, b satisfy the
above assumptions. Let c¢ M [b].

We consider two cases: c¢ M(b) and ce M(b\M [b].

If ¢ > M(b), then, as M(b) is not of the form M [x], by Theorem 4.1
there exists a geAut(M) such that g(c) # ¢ and for all xeM(b) g(x) = x.

But M[b] < M(b), and so this g has the desired properties.

If ce M(b)\M[b] then there exists an n such that I,(b) <c < p,(b)
because M= A,(b).

Now the type 4(z) = {Vx < F,(L.;(B)o(x,2) =(x, L,(}): ¢ is a
parameter-free formula in two variables} with one parameter ,(b) is consist-
ent because b satisfies all formulas of the form By . By recursive
saturation of M, 4 is realized by an element which we denote by z as well as
the variable; we claim that there exists a geAut(M) such that g(I,(b) =z
and, for all x <1I,,,(b) g(x) = x. By Lemma 4.4 it suffices to observe that
Fo(ls 1 (B)) > %(b) for all k; this follows from the fact that there exist I,
terms s* such - that PA}-3aVb > as*(t*(b))>b. Hence there exists a
geAut(M) with the properties stated in the claim. This g must move c;
indeed, z < ¢ < p,(2) and the intervals (I,(b), p,(b)) and (z, p,(z)) are disjoint.

Moreover, I, (b)¢ M [b] because p,.,(b) > b and p,,,(b) is definable
from I, (b) as the next element of C,..,. It follows that Vxe M [b]g(x) = x
and the proof of Thcorem 4.3 is finished. m»

§ 5. Problems and remarks.

5.1. Let M= PA be countable and recursively saturated What is the
structure of the lattice of all elementary submodels of M and of the group

Aut(M)?
In particular, do they depend on M’?

5.2. Conjecture. If M= PA is countable and recursively saturated

(*) We may work so freely in PA because, as I' is finite, I' < X for some k, and so we may
use the truth definition Tr,(-, -) to formalize this argument.
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then {NeY: Va> w3l <al codes N} is the complement of a set of first
category in the Cantor set Y.

5.3. What is the exact distribution of the values of the functions F,? In
particular, is the type {x > F,(n): new}u{C,(x): ncw} consistent?

54. For X M= PA we define the closure of X in the usual way:
becl(X) iff, for each geAut(M), if VxeXg(x) = x then g(b) =b.

Conjecture. There exist two consistent extensions 4y, 4, of the type
Iy (cf. the proof of Theorem 3.2) such that, for each countable and
recursively saturated M= PA, if b, realizes 4, in M then cl(M[b]) = the
Skolem closure of (M [b]u {b}) and if b, realizes 4, in M then cl(M[b]) 2
the Skolem closure of (M [b]u {b}).

5.5. Conjecture (Smorynski [11]). Let. M= PA be countable and
recursively saturated, and let by, b, M. If (M, M [b,]) is elementary equivalent
to (M, M [b,]) then M(b,) is isomorphic with M (b,).

The author would like to thank Roman Kossak for fruitful discussions.
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On locally contractive fixed-point mappings

by
~ Ljubomir Cirié¢ (Beograd)

Abstract. Let (M, d) be a metric space and T a selfmapping on M. Suppose that for each
ueM there exists a sphere S(u, r(u)) such that x, yeS(u, r(v) with x #y implies a(Tx, T))
<d(x,y) and Tx, TyeS(v, r(v)) for some ve M. Furthermore, suppose that {T"x} contains a
convergent subsequence for some x & M. Under these assumptions our main result states that the
set of fixed or periodic points of Tis non-void. This generalizes one result of M. Edelstein for &-
contractive mappings. A fixed point theorem for corresponding mappings on Hausdorfl uniform
spaces is stated also.

Introduction. Let (M, d) be a metric space and T a selfmapping on M. A
mapping Tis said to be locally contractive on M if for each ue M there exists
a sphere S(u, r()={x: d(u, x) <r(w}, r()>0, such that d(Tx, T})
< d(x, y) holds for all x, yeS (1, r(u)) with x # y. If there exists ¢ > 0 such
that r(u) > ¢ for all ue M, then Tis called e-contractive. M. Edelstein in [3]
proved that if lim T"x =ueM for some x&M, then an g-contractive map-
ping has fixed or periodic points. On compact spaces locally contractive
mappings are s-contractive, and therefore have fixed or periodic points.
However, M. Edelstein in [3] and S. Naimpally in [4] have constructed
examples which show that if M is not compact, then locally contractive
mappings may be without fixed or periodic points, even though lim T"x

. i~+o0
=ueM for some xeM.

Our aim is to present a subclass of locally contractive mappings which
need not be s-contractive, but still have fixed or periodic points in the case
that {T"x} contrains a convergent subsequence for some xeM.

DeFNTION. A mapping T of a metric space M into itself is said to be
well locally contractive if for each ueM there exists S(u, r(u) such that
x, yeS(u, r(u)) with x # y implies

d(Tx, Ty) <d(x,y)
for some veM.

and Tx, TyeS(v, r(v)

1. Now we shall prove the following result. ‘
TueoreM 1. Let T be a well locally contractive selfmapping on a metric
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