

Undirected strict gammoids

bv

V. W. Bryant (Sheffield)

Abstract. In this short note we consider strict gammoids which arise from undirected graphs. We exhibit a minimal example of a strict gammoid which cannot arise in this way and we interpret Ingleton and Piff's characterisation of strict gammoids for the undirected case.

In a directed graph G = (V, E) we say that $X \subseteq V$ is linked into $Y \subseteq V$ if there exists a set of mutually disjoint paths in G whose set of initial vertices is X and whose set of terminal vertices is a subset of Y. Given $A, B \subseteq V$, the collection of all subsets of A which can be linked into B is a special type of matroid known as a gammoid: in the case when A = V the gammoid is said to be strict. This concept translates naturally to an undirected graph G: one can either replace paths by undirected paths in the definitions or one can regard G as a directed graph in which each of its edges $\{u, v\}$ is replaced by two directed edges uv and vu. This latter comment was made by Woodall in [3] and he, naturally enough, called (strict) gammoids arising from undirected graphs, undirected (strict) gammoids. In [3] Woodall gave an example of a strict gammoid which was not an undirected gammoid, and in this short note we exhibit a minimal such example and, in passing, we interpret Ingleton's and Piff's characterisation of strict gammoids for the undirected case.

Proposition 1. Any matroid of rank 2 or less is an undirected strict gammoid.

Proof. Let \mathcal{M} be the matroid in question, let V be its underlying set and let X be those points of V which form independent singletons in \mathcal{M} . Then the relation \sim defined on X by

$$x \sim y$$
 if $x = y$ or if $\{x, y\}$ is a circuit of \mathcal{M} with $x \neq y$

is easily seen to be an equivalence relation on X. Let its distinct equivalence classes be $[x_1], \ldots, [x_n]$, and let G be the undirected graph with vertex set V and edge set given by

$$E = \big\{ \big\{ x_i, \ x_j \big\} \colon \ 1 \leqslant i < j \leqslant n \big\} \cup \bigcup_{1 \leqslant i \leqslant n} \big\{ \big\{ x_i, \ x \big\} \colon \ x \in \llbracket x_i \rrbracket \big\} \big\}.$$

Then it is straightforward to check that \mathcal{M} consists precisely of those subsets of V linked into B in G, where B is any subset of $\{x_1, ..., x_n\}$ of cardinality equal to the rank of \mathcal{M} . Hence \mathcal{M} is an undirected strict gammoid.

A transversal of a family of sets $\mathfrak{U}=(A_1,\ldots,A_n)$ is a set of n elements, $\{x_1,\ldots,x_n\}$ say, with $x_i\in A_i$ for each i. A partial transversal of \mathfrak{U} is a transversal of some subfamily of \mathfrak{U} . It is well known that the set of partial transversals of \mathfrak{U} form a matroid, and one arising in this way is called a transversal matroid. In that event $\mathfrak{U}=(A_1,\ldots,A_n)$ is a presentation of the matroid, and it is well known that a transversal matroid of rank n has a presentation of a family consisting of precisely n sets. Of the many presentations of a transversal matroid \mathscr{M} , naturally enough one is called a minimal presentation if it uses the smallest number of sets possible and if none of the sets used can be replaced by a proper subset to give another presentation of \mathscr{M} . Now a family $\mathfrak{U}=(A_1,\ldots,A_n)$ will be called symmetric if there exist distinct x_1,\ldots,x_n with

(i) $x_i \in A_i$ for $1 \le i \le n$ and (ii) $x_i \in A_j$ implies $x_j \in A_i$ for $1 \le i, j \le n$; and a transversal matroid will be called *symmetric* if it possesses such a presentation. So, for example, a transversal matroid of rank 2 or less is symmetric, a minimal presentation providing the required symmetric presentation. For if (A_1, A_2) is a minimal presentation of a matroid, then it is easy to check that neither A_i is a subset of the other; hence there exist $x_1 \in A_1 \setminus A_2$ and $x_2 \in A_2 \setminus A_1$, from which the symmetry is clear.

Proposition 2. The duals of undirected strict gammoids are precisely the symmetric transversal matroids.

Proof. In [1] Ingleton and Piff show that the duals of transversal matroids are precisely the strict gammoids. More particularly, it follows from a version of their result in [2, p. 217] that if \mathcal{M} (on set V) has presentation $\mathfrak{A} = (A_1, \ldots, A_n)$ and a transversal $\{x_1, \ldots, x_n\}$ with $x_i \in A_i$ for each i, and if G = (V, E) is the directed graph given by

$$\underline{E} = \bigcup_{1 \leq i \leq n} \{ \{x_i, x\} \colon x \in A_i \setminus \{x_i\} \},$$

then $X \subseteq V$ is linked into $B = V \setminus \{x_1, \ldots, x_n\}$ if and only if $V \setminus X$ contains a transversal of $\mathfrak A$. It is therefore easy to check that in the special case when $\mathfrak A$ is symmetric (and the x_1, \ldots, x_n are chosen accordingly) the same result holds for the corresponding undirected graph. Hence the dual of a symmetric transversal matroid is an undirected strict gammoid.

Conversely, if the dual of \mathcal{M} is an undirected strict gammoid, and consists of sets linked into B in the undirected graph G = (V, E) say, then from the same result referred to above it can be deduced that $V \setminus B$ has exactly n distinct elements, x_1, \ldots, x_n say, and that \mathcal{M} is the transversal matroid with presentation $\mathfrak{A} = (A_1, \ldots, A_n)$, where

$$A_i = \{x_i\} \cup \{x \colon \{x_i, x\} \in E\} \quad (1 \leqslant i \leqslant n).$$

It is clear that A is symmetric, and the result follows.

We remarked above that transversal matroids of rank 2 or less are symmetric, and we now see that sufficiently small transversal matroids of rank 3 are also symmetric.

Proposition 3. A transversal matroid of rank 3 on a set of 6 or fewer points is symmetric.

Proof. Let \mathcal{M} be the matroid in question and let (A_1, A_2, A_3) be a minimal presentation of \mathcal{M} . Then, in particular, if $|A_1 \cup A_2 \cup A_3| = m$ (≤ 6), it follows that

(1) $|A_i| \le m-2 \le 4$ for each i and (2) $A_i \nsubseteq A_j$ if $i \ne j$.

We now, in cases, exhibit a symmetric presentation of \mathcal{M} .

Case I. $A_1 \nsubseteq A_2 \cup A_3$, $A_2 \nsubseteq A_1 \cup A_3$, and $A_3 \nsubseteq A_1 \cup A_2$.

In this case, of course, there exist $x_1 \in A_1 \setminus (A_2 \cup A_3)$, $x_2 \in A_2 \setminus (A_1 \cup A_3)$, and $x_3 \in A_3 \setminus (A_1 \cup A_2)$; and it is clear that (A_1, A_2, A_3) is symmetric.

Case II. $A_1 \subseteq A_2 \cup A_3$, $A_2 \nsubseteq A_1 \cup A_3$, and $A_3 \nsubseteq A_1 \cup A_2$ (say).

In this case there exist $x_2 \in A_1 \setminus A_3 = (A_1 \cap A_2) \setminus A_3$ and $x_3 \in A_1 \setminus A_2 = (A_1 \cap A_3) \setminus A_2$. If there exists $x_1 \in A_1 \cap A_2 \cap A_3$, then the symmetry of (A_1, A_2, A_3) is clear. So we may assume that $A_1 \cap A_2 \cap A_3 = \emptyset$ so that $|A_1| = |A_1 \cap A_2| + |A_1 \cap A_3|$. If $|A_1 \cap A_2| \ge 2$ then there exist distinct $x_1, x_2' \in A_1 \cap A_2 = (A_1 \cap A_2) \setminus A_3$ and $x_3' \in A_3 \setminus (A_1 \cup A_2)$; and again the symmetry of (A_1, A_2, A_3) is clear. So finally we may suppose that $|A_1 \cap A_2| \le 1$ and, similarly, that $|A_1 \cap A_3| \le 1$. Then, using (2), it is easy to see that there exist four elements $x_1'', x_2'', x_3'', x_4''$ such that $A_1 = \{x_1'', x_2''\}, \{x_1'', x_3''\} \subseteq A_2 \setminus A_3$ and $\{x_2'', x_4''\} \subseteq A_3 \setminus A_2$. If we now replace the element x_1'' of A_2 by x_2'' we get a symmetric presentation of \mathcal{M} with representatives x_1'', x_3'' and x_4'' .

Case III. $A_1 \subseteq A_2 \cup A_3$, $A_2 \subseteq A_1 \cup A_3$, and $A_3 \nsubseteq A_1 \cup A_2$ (say).

In this case there exist distinct x_1 , $x_2 \in (A_1 \cup A_2 \cup A_3) \setminus A_3 = A_1 \setminus A_3 = (A_1 \cap A_2) \setminus A_3$, and $x_3 \in A_3 \setminus (A_1 \cup A_2)$, and again the symmetry of (A_1, A_2, A_3) is clear.

Case IV. $A_1 \subseteq A_2 \cup A_3$, $A_2 \subseteq A_1 \cup A_3$, and $A_3 \subseteq A_1 \cup A_2$.

It is not difficult to see that, in this case, any subset of $A_1 \cup A_2 \cup A_3$ which has cardinality at most three and is dependent must be contained in two of the sets A_1 , A_2 and A_3 , and be disjoint from the third. But then (1) and (2) lead to a contradiction in this particular case. Hence every subset of $A_1 \cup A_2 \cup A_3$ of cardinality at most three is in \mathscr{M} , and so \mathscr{M} has symmetric presentation $(A_1 \cup A_2 \cup A_3, A_1 \cup A_2 \cup A_3, A_1 \cup A_2 \cup A_3)$.

It is immediate from the above results that a strict gammoid which is not an undirected gammoid must be of rank at least 3 and on a set of at least 7 elements; below we present such a gammoid of rank precisely 3 and on a set of precisely 7 elements.

Example. A minimal strict gammoid which is not an undirected gammoid.

Let \mathcal{M} be the strict gammoid of sets linked into 1, 3, 3" in the directed graph illustrated in the figure:

Then the circuits of \mathcal{M} of cardinality 3 are precisely $\{1, 2, 3\}$, $\{1, 2', 3'\}$, $\{1, 2'', 3''\}$ and $\{3, 3', 3''\}$: all other sets of cardinality 3 or less are independent. This example (and the verification below that \mathcal{M} is not an undirected gammoid) is not dissimilar to Woodall's in [3].

Assume that \mathcal{M} is an undirected gammoid consisting of the subsets of $\{1,2,3,1',2',3',1'',2'',3''\}$ ($\subseteq V$) linked into a set B of cardinality 3 in the undirected graph G=(V,E). Then since $\{3,3',3''\}$ is a circuit of \mathcal{M} it follows from Menger's theorem that there exist $x,y\in V$ such that every path from $\{3,3',3''\}$ to B in G uses at least one of X and Y. This means that, in addition, every path from $\{3,3',3''\}$ to $\{1,2,1',2',1'',2''\}$ uses at least one of X and Y (since, for example, the existence of a path from Y to Y together with the independence of Y, Y, would imply the existence of a path from Y to Y avoiding Y and Y.

Now let us call a path from v to $\{x, y\}$ which meets $\{x, y\}$ only at its terminal vertex a v-x path or a v-y path, depending upon which member of $\{x, y\}$ it uses. Then, since $\{3, 1, 2'\} \in \mathcal{M}$ but $\{3', 1, 2'\} \notin \mathcal{M}$, it follows that either there exists a 3-x path but no 3'-x paths, or that there exists a 3-y path but no 3'-y paths: let us assume the former. A similar argument applied to $\{3', 1, 2\} \in \mathcal{M}$ and $\{3, 1, 2\} \notin \mathcal{M}$ then shows that there exists a 3'-y path but no 3-y paths. Similar arguments with respect to the pairs 3, 3'' and 3', 3'' show that there exists no 3''-x path and no 3''-y path (and hence no path from 3'' to B). This contradiction shows that \mathcal{M} is not an undirected gammoid.

I am greatly indebted to Dr. Hazel Perfect for her most helpful discussions and advice during the preparation of this note.

References

- A. W. Ingleton and M. J. Piff, Gammoids and transversal matroids, J. Comb. Theory Ser. B, 15 (1973), pp. 51-68.
- [2] D. J. A. Welsh, Matroid Theory, Academic Press, London-New York 1976.
- [3] D. R. Woodall, The induction of matroids by graphs, J. London Math. Soc. 10 (1975), pp. 27-35.

DEPARTMENT OF PURE MATHEMATICS
THE UNIVERSITY OF SHEFFIELD

Accepté par la Rédaction le 7. 9. 1981