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Undirected strict. gammoids
by
V. W. Bryant (Sheffield)

Abstract. In this short note we consider strict gammoids which arise from undirected
graphs. We exhibit a minimal example of 2 strict gammoid which cannot arise in this way and
we interpret Ingleton and Piffs characterisation of strict gammoids for the undirected case.

In a directed graph G = (V, E) we say that X < V is linked into Y < V if
there exists a set of mutually disjoint paths in G whose set of initial vertices
is X and whose set of terminal vertices is a subset of Y. Given 4, B < ¥, the
collection of all subsets of A4 which can be linked into B is a special type of
matroid known as a gammoid: in the case when A = ¥V the gammoid is said
to be strict. This concept translates.naturally to an undirected graph G: one
can either replace. paths by undirected paths in the definitions or one can
regard G as a directed graph in which each of its edges {u, v} is replaced by
two directed edges uv and vu. This latter comment was made by Woodall in
[3] and he, naturally enough, called (strict) gammoids arising from undirec-
ted graphs, undirected (strict) gammoids. In [3] Woodall gave an example of a
strict gammoid which was not an undirected gammoid, and in this short note -
we exhibit a minimal such example and, in passing, we interpret Ingleton’s
and Piff's characterisation of strict gammoids for the undirected case.

PROPOSITION 1. Any matroid of rank 2 or less is an undirected strict
gammoid. ‘ :

Proof. Let .# be the matroid in question, let V be its underlying set
and let X be those points of ¥ which form independent singletons in .#.
Then the relation ~ defined on X by

x-~y if x =y orif {x, y} is a circuit of .# with x # y
is easily seen to be an equivalence relation on X. Let its distinct equivalence
classes be [x;], ..., [x,], and let G be the undirected graph with vertex set V'
and edge set given by
E={{x,x}: 1<i<j<n}u 1<U< {{x:, x}: xe[x]}.
. [1xn
Then it is straightforward to check that .4 consists precisely of those subsets

of V linked into B in G, where B is any subset of {x,, ..., x,} of cardinality
equal to the rank of .#. Hence .# is an undirected strict gammoid. m
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A transversal of a family of sets W = (44, ..., 4,) is a set of n elements,
X1, ..., X,} say, with x,ed; for each i. A partial transversal of U is
a transversal of some subfamily of 2L It is well known that the set of partial
transversals of U form a matroid, and one arising in this way is called
a transversal matroid. In that event U = (4, ..., 4,) is a presentation of the
matroid, and it is well known that a transversal matroid of rank n has
a presentation of a family consisting of precisely n sets. Of the many
presentations of a transversal matroid .#, naturally enough one is called
a minimal presentation if it uses the smallest number of sets possible and if
none of the sets used can be replaced by a proper subset to give another
presentation of .#. Now a farnily A= (A4, ..., A,) will be called symmetric if
there exist distinct x,, ..., x, with

(i) x;€4; for 1<i<n and (i) x;€A; implies x;€ 4; for 1<i,j<n
and a transversal matroid will be called symmetric if it possesses such
a presentation. So, for example, a transversal matroid of rank 2 or less
is symmetric, a minimal presentation providing the required symmetric
presentation. For if (4, 4,) is a minimal presentation of a matroid, then
it is easy to check that neither A4; is a subset of the other; hence there exist
x,€4,\A4, and x,€4,\A,, from which the symmetry is clear.

ProrosiTioN 2. The duals of undirected strict gammoids are precisely the
symmetric transuersal matroids.

Proof. In [1] Ingleton and Piff show that the duals of transversal
matroids are precisely the strict gammoids. More particularly, it follows from
a version of their result in [2, p. 217] that if .# (on set V) has presentation
U =(4, ..., 4,) and a transversal {x,, ..., x,} with x;e 4; for each i, and if
G =(V, E) is the directed graph given by

E={ {{x, x}: xed\ {x}})
1<i<n
then X < V is linked into B = V\{x,, ..., x,} if and only if ¥\ X contains a
transversal of 9L It is therefore easy to check that in the special case when 2
is symmetric (and the X, ..., x, are chosen accordingly) the same result
holds for the corresponding undirected graph. Hence the dual of a symmetric
transversal matroid is an undirected strict gammoid.

Conversely, if the dual of .# is an undirected strict gammoid, and
consists of sets linked into B in the undirected graph G = (V, E) say, then
from the same result referred to above it can be deduced that V\B has

exactly n distinct elements, xi, ..., x, say, and that . is the transversal
matroid with presentation U = (Al, -y Ay), where

A ={xtuix: {x, x}eE} (1<i<n).

It is clear that % is symmetric, and the result follows. m
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We remarked above that transversal matroids of ‘rank 2 or less are
symmetric, and we now see that sufficiently small transversal matroids of
rank 3 are also symmetric.

PROPOSITION 3. A transversal matroid of rank 3 on a set of 6_or fewer
points is symmetric.

Proof. Let .4 be the matroid in question and let (A,,Az, A;) be
a minimal presentation of .#. Then, in particular, if [A; VA, UAdsl=m
(< 6), it follows that

(1) 4] K m—2<4 for each i and (2) 4; EA4;if i)

We now, in cases, exhibit a symmetric presentation of ..

Case I Ay § A;Udy, Ay & A, UAy, and Ay & 4, Ud;.
In this case, of course, there exist x, 4, \(4, U 43), X, €4, \(4; U A43),
and x3eAd;\(4; UA,); and it is clear that (4,, A,, 4;) is symmetric.

Case IL. A; S A, Ud;, A; & 4, UAs, and A3 & A; U A, (say).
In this case there exist x,€d;\A; =(4; N A,)\4; and x3€A;\ A4,
=(A; N A;3)\A4,. I there exists x,€A4, N A4, A;, then the symmetry of
(A4, Ay, A3) is clear. So we may assume that A4, N4, N A; = @ so that |4,] .
=|A;NA,|+|A;nAs]. K |4, nA4,]>2 then there exist distinct
xy, xbe Ay N Ay =(A; " A)\A; and xjed;\(4; UA4,); and again the
symmetry of (A;, A,, A;3) is clear. So finally we may suppose that
|41 N4, <1 and, similarly, that |4; n4;] < 1. Then, using (2), it is
easy to see that there exist four elements xY, x3, x5, x; such that
= {x{, x5}, {x], x3} S A4,\4; and {x},xi} S 4;\4,. If we now
replace the element xi of A, by x7 we get a symmetric presentation of
A with representatives x7, xj and xJ.
Case IIl. 4; € A, U A3, A, & A; UA,, and A; ¢ A, UA, (say).
In this case there exist distinct x,, x,e(d; UA, UAds)\A; = A,\A4;
=(A; N A;)\ A3, and Xx3€A;\(4; UA,), and again the symmetry of
(A5, A,, A3) is clear.

Case IV. A, € A, UA;, A, S A; UA;, and A3 € 4; UA,.

It is not difficult to see that, in this case, any subset of 4, UA, U A,
which has cardinality/at most three and is dependent must be contained in
two of the sets 4;, 4, and A3, and be disjoint from the third. But then (1)
and (2) lead to a contradiction.in this particular case. Hence every subset of
Ay UA, U A; of cardinality at most three is in .#, and so . has symmetric
presentation (4; UA, UAs, A, UA,UAs, A{UA, UA4;).

It is immediate from the above results that a strict gammoid which is
not an undirected gammoid must be of rank at least 3 and on a set of at
least 7 elements; below we present such a gammoid of rank precisely 3 and
on a set of precisely 7 elements.
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ExaMpLE. A minimal strict gammoid which is not an undirected
gammoid. -

Let .# be the strict gammoid of sets linked into I, 3, 3" in the directed
graph illustrated in the figure: - .

Then the circuits of .# of cardinality 3 are precisely {1, 2, 3}, {1, 2, 3},
{1,2",3"} and {3, 3', 3"}: all other sets of cardinality 3 or less are indepen-
dent. This example (and the verification below that . is not an‘undirected
gammoid) is not dissimilar to Woodall’s in [3]. )

Assume that .# is an undirected gammoid. consisting of the subsets of
{1,2,3,1,2,3,1",2", 3"} (S V) linked into a sét B of cardinality 3 in the
undirected graph G = (V, E). Then since {3, 3, 3"} is a circuit of .4 it
follows from Menger’s theorem that there exist x, ye ¥V such that every path
from {3, 3, 3"} to B in G uses at least one of x and y. This means that, in
addition, every path from {3, 3, 3"} to {1, 2, I', 2, 1", 2} uses at least one
of x and y (since, for example, the existence of a path from 3 to 1 avoiding x
and y, together with the independence of 1, 3, 3", would imply the existence
of a path from 3 to B avoiding x and y). S

Now let us call a path from v to {x, y} which meets {x, y} only at its
terminal vertex a v~x path or a v—y path, depending upon which member
of {x, y} it uses. Then, since {3, 1, 2’} e # but {3/ 1, 2} ¢ H, it follows that
either there exists a 3—x path but no 3'—x paths, or that there exists a 3 — y
path but no 3'—y paths: let us assume the former. A similar argument
applied to {3, 1,2}e# and (3,1, 2}¢.# then shows that there exists
a 3'—y path but no 3~y paths. Similar arguments with respect to the pairs
3,3" and 3', 3" show that there exists no 3"—x path and no 3"— y path
(and hence no path from 3" to B). This contradiction shows that .# is not
an undirected gammoid. ’

I am greatly indebted to Dr. Hazel Perfect for her most helpful
discussions and advice during the preparation. of this note,
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