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One can easily check that %, and 2, belong to K, whence S(%) belongs to
R(K). Theorem III of [5] guarantees that S() is a semilattice of groupoids
which belong to K, and one may check that the semilattice decomposition of
S(2) into Ay and A, is the only semilattice decomposition of S(A) into
groupoids which belong to K. Therefore S(2) cannot be a Plonka sum of
groupoids which belong to K. This also provides an example of an equ-
ational class K where R(K) properly contains the class of all algebras which
are Plonka sums of algebras in K.
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Fixed points and nonexpansive retracts in
locally convex spaces*

by

S. A. Naimpally, K. L. Singh and J. H. M. Whitfield
(Thunder Bay, Canada)

Abstract. Locally convex topological vector spaces can be normed over a topological
semifield. Using this norm, Banach operators and nonexpansive mappings are defined and
several fixed point theorems are proven. Also, it is shown for strictly convex spaces that, under
suitable conditions, the fixed point set of a nonexpansive map is a nonexpansive retract.

0. Introduction. The concept of a topological semifield was introduced
by Antonovskii, Boltyanskii and Sarymsakov [1]. They observed that it is
possible to define a semifield valued “norm” for certain topological vector
spaces ; in particular the class of Hausdorff locally convex spaces. The aim of
the present paper is to prove fixed point theorems in this class of spaces for
Banach operators and nonexpansive mappings. Also we show that for strictly
convex spaces, under suitable conditions, the fixed point set of a nonexpans-
ive mapping is a nonexpansive retract.

These results extend those of Bahtin [2], Cain and Nashed [5], Hicks
and Kubicek [9], Chandler and Faulkner [6], Bruck [3], [4] and others.

Let A be a nonempty set and R4 =[] R, be the product of the real line

aed

with the product topology. Addition and multiplications in R* are defined
pointwise. A partial ordering is defined by the cone R% ={f:f(2)
>0,xed}. A general introduction to the space R4 may be found in [1].

If E is a real locally convex space, whose topology is generated by
a family {g,: a4} of continuous seminorms, then the function g: E - R4
defined by [e()](x) = g,(x), x€E, a €4, satisfies

1 o(x) =0,
(2) o(dx) =14 e(x),
3 e(x+y)<ex)+e(

* This research supported in part by grants from NSERC (Canada).
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where “<” denotes the natural order induced by R4. In case E is a T, space,
(1) becomes

1y o(x) =0 if and only if x =0,

and we see that g satisfies the axioms of a norm. The topology 1, generated
by ¢ is the original topology, where a 1, neighbourhood of x is of the form
Q(x, U)={y: o(x—y)eU}, where U is a neighbourhood of zero in R*.

1. Banach operators. We prove fixed point theorems for Banach oper-
ators, which is a variant of a concept introduced by Cheney and Goldstein
[7, Theorem 1]. These results extend those of Cain and Nashed [5] and of
Taylor [14].

Dermnrrion 1.1, Let K be a nonempty subset of E. A mapping T:
K — K is said to be a Banach operator if there exists a constant k such that
0<k <1 and for xeK, o(T*x— Tx) < ko(Tx—x). T is said to be a contrac-
tion if there exists a constant k such that 0<k<1 and for each
x, yekK, o(Tx—Tj) < ko(x—y).

Remark 1.2. Every contraction mapping is a Banach operator (in fact,
let y = Tx) but not conversely. This is easily seen by letting E = R and K
a nonempty subset of R. Define T: K—~K by T(x)=x% Then T is
a contraction on any closed interval [a, b] = (4, — %), but a Banach operator
on any [a, b] = (-1, 1).

Remark 1.3. A Banach operator need not be continuous nor need its
fixed points be unique. For if E=R and K =[0, 1], define T K - K as
follows: T'(x) =0, xe[0,4), T(x) =%, xe[4, 1]. Then clearly T is a dis-
continuous Banach operator with fixed points 0 and 2.

Dermnirion 1.4. A sequence (x,} is said to be a Cauchy sequence if for
each neighbourhood U of 0 in R there exists an integer M such that
e(x,—x,)eU, for all n, m> M. We say that E is sequentially complete if
every Cauchy sequence converges in E. E is said to be quasicomplete if
closed bounded sets are complete.

LemMa 1.5. Let E be Hausdorff and sequentially complete. Let T: E - E
be a continuous Banach operator, then T has a fixed point.

~Proof. Let x,eE. It follows by induction that

T 1 xy—T"xg) < k" o (xo— Txo).

Let m and n be two positive integers such that m > n, then

m—=n

o(T"xo=T"x0) < 37 k™17 g(xg — Tico).

i=1

=<
Y. k' converges, since 0 < k < 1, so, given ¢ > 0, we can find n such that for

i=1

icm
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all mzn, 3 k" o(xe—Txy) <& Thus o(T"xo—T™xg) <& for all m>n
i=0
and {T"x,} is a Cauchy sequence which converges to some point y. Using
the continuity of T and Hausdorff property of E, we have that Ty = y.
From Remark 1.2 and Lemma 1.5 we have the following

CoroLLarY 1.6. [5, Theorem 2.2]. Suppose D is a sequentially complete
subset of E and the mapping T: D — D is a contraction. Then T has a unigque

fixed point in D.

DeriniTion 1.7. A subset K of E is starshaped provided there is a point
peK such that for each xeK, the segment joining x to p is contained in K.
Such a point p will be called a star centre of K.

Clearly if K is convex, then every point in K is a star centre of K.

TreoreEM 1.8. Let K be a compact subset of E and T: K —K be
a conrinuous mapping. Suppose

(i) there exists qe K and a fixed sequence of positive real numbers k,
(k, <~ 1) converging to 1, such that (1—k,)q+k,T{(x)eK for each xK: further

for each xeK and k,, Q(T((I —k)g+k, T ()= Tx) < ({1 —k,) g +k, T(x)—x);

or,

(ii) K is starshaped with reference to qe K ; further, there exists ¢ > 0 such
that for all x, yeK, g(x—y) <e implies o(Tx—Ty) < g(x—}).

Then T has a fixed point.

Proof. Define the mapping T, by T,(x)=(1—-k)g+k,T(x), xeK. If
condition (i) obtains it is easily checked that each 7, is a continuous Banach
operator, which by Lemma 1.5 has a fixed point y,eK. By the compactness
of K, there is a subnet {y,},., which converges to ye K. The corresponding
net {k,},p converges to 1. Now y, = Ty, = (1~k,)g+k,T{y,); so by con-
tinuity of T, Ty = y.

If condition (ii) holds, the result follows from [12, Theorem 2].

Remark 1.9. If K is starshaped about g, then the result [14, Corollary
2.3] follows from Theorem 1.8. Hypothesis (i) above weakens the starshaped
assumption as can be seen from the following example.

ExampLe 1.10. Let K be the set [(0, y): ye[~—1, 1]} u {(1—1/n, 0):
neN}ul(1,0)) with the metric induced by the norm [|(x, y)|| = |x|+¥].
Definethe map T! K — K asfollows: T(0, y) =(0, —y), T(1—1/n, 0) = (0, 1—
—1/n), T(1, 0) =(0, 1). We can apply Theorem 1.8 with condition (i) to T
with the choice g = (0, 0), k, = 1—1/n, n =1, 2, ..., so that the existence of
a fixed point for T is ensured, though K is not starshaped.

2. Nonexpansive mappings. In this section we prove fixed point the-
orems for nonexpansive mappings. The results of Hicks and Kubicek [9] are
extended. Also we obtain as corollaries of our results, results of Chandler
and Faulkner [6].

5 — Fundamenta Mathemat. 120.1
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DeriNiTIoN 2.1, Let C be a nonempty subset of E. A mapping T: C—E
satisfies the conditional fixed point property (CFPP) if either T has no fixed
points, or T has a fixed point in every closed starshaped subset which it
leaves invariant.

DerINITION 2.2, Let C be a nonempty subset of E and let T: C > E be
a mapping (not necessarily continuous). We say that T is demicompact if each
bounded sequence {x,} in C such that (I — T)(x,) converges has a convergent
subsequence. .

DerinrTion 2.3. Let C be a subset of E and T: C—C. T is called
nonexpansive if g(Tx— Ty) € ¢(x—y) for all x, yeC.

‘The following theorem extends results of Hicks and Kubicek [9,
Theorem 3].

THEOREM 2.4. Suppose E is sequentially complete and C is a subset of E.
If T: C— C is nonexpansive then T satisfies (CFPP) if any one of the
Jollowing holds:

i) I—T)(K) is closed whenever K is bounded, closed and starshaped
subset of C;

(ii) T is demicompact and continuous;

(iii) C is weakly compact and T is affine.

Proof. Suppose K is a closed bounded starshaped subset of C.

(i) Let p be the star centre of K. For each 1, 0 <t < 1, define T;(x)
=1T(x)+(1—1)p, for xeK. Since K is starshaped, each T, clearly maps K
into itself. Also T, is a contraction, in fact o(T;(x)~T,(y)) = o (tT(x)—
—tT(y)) < te(x—y) for all x, yeK. Since K is complete, it follows that T,
has a unique fixed point x, in K. Now (I-T)(x)=x,—Tx, = x,—
—(1/t)(Tx,~{(1—1) p) = (1— 1/5)(x,~ p) which clearly tends to zero in E as t
-1, since K is bounded. Since (I — T)(K) is closed, there exists a xe K such
that x—Tx =0, so x is a fixed point of T

(i) We show that (J— T)(K) is closed and the result follows from (i). Let
{I-T)x,: aeD} be a net in (I— T)(K) such that (I - T)(x,) - y. Since T is
demicompact, {x,} contains a convergent subnet which we also denote by
{x,}. Since K is closed we have x, — x, where x is some point of K. By the
continuity of T it follows that (I—-T)(x,) >(I—-T)x. Thus I—-T)x = y.

(ili) The proof is contained in [9, Theorem 3 (iii)].

DerinrTioN 2.5. Let K be a nonempty subset of E and let F: K — K be
a family of functions. F is said to be equicontinuous on K if for each ¢ > 0
there is d(g) > O such that for all x, yeK, if o(x—y) < & then o(Tx—Tj)) <¢
for all TeF. ’

DeriNTiON 2.6. A subset A of E is called a retract of E if there exists
a continuous mapping r: E — A such that r(a) = a for all ae 4. A subset A
of E is a nonexpansive retract of E if either A = () or there is a retraction of
E onto A which is nonexpansive.

icm
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LemMa 2.7. Let K be a nonempty compact subset of E. Let T: K - K be
a nonexpansive mapping. Then there exists a nonexpansive retraction r: K — A,
where A= (\{T": n>1}.

Proof. The family {T"} is equicontinuous; for, given any & > 0, choose
6 =¢ then p(x~3)<d implies o(T"x—T"y) < o(x—y) <e¢ for all n>1.
Now, the retraction r guaranteed by [15, Theorem 2] is the pointwise limit of
the mappings of the form T". Thus for any x, yeK and any &> 0 there
exists an n such that o(rx—T"x) < ¢ and o(T"y—ry) <e. Hence

elrx—ry) <elrx—T")+o(T"x— Ty)+o(T"y—ry) < o(x— )+ 2.

Since ¢ was arbitrary this shows that g(rx—ry) < p(x—y) and thus r is
nonexpansive,

Dernrrion 2.8. E is said to be strictly convex if for x, yeE, from x # y and
(x+y)

;__' <o(x), ie, [Q (X—}yﬂ

THEOREM 2.9. Let E be strictly convex and C be a nonempty compact

o(x) = ¢(y) follows ¢ (@) < [e(x)](a) for some aeA.

. subset of it. Let T: C — C be a nonexpansive mapping. If there exists n > 1

such that T"(C)n&,C =@, then T has a fixed point in C, here é,C is the
boundary of C in the closed convex hull of C.

Proof. Let D= ﬂ T™(C). Then D is compact. By Lemma 2.7 there
n=1

exists a nonexpansive retraction r: C — D. We shall show that D is convex.
Suppose not, then there exist x and y in D such that [x, y]= lax+
+(1—a)y: 0< o<1} is not entirely contained in D. Let f=sup {y: ax+
+(1—a)yeD, 0<a<y}. Since D is compact, z = Bx+(1—pB)yeD. Now
if [x, y] contains no points of C\D, then z is a & -boundary point -of C
in D < T*(C) for all n, contradicting the hypothesis. Hence there exists
a point welx, yJn{C\D}. But then we will have g(rx—rw)+g(w—ry)
< o(x—w)+o(w—y) = o(x~—y). Since rx = x and ry =y, it follows that

(1) g(x—rw)+o(rw—y) < o(x—y).

Let us observe that rw  w, otherwise w will belong to D. The bmapping
r is nonexpansive, so rw is not collinear with x, y for if w = ax+(1—a)y and

1-b
rw = bx+(1—b)y we will have a+# b. Suppose b <a-<1, then m> L.

Thus .
e(x—w) = g(x—ax—(1—-a)y) = (1—a)o(x~y),
erx—rw) = @(x—bx—(1-b)y) = (1—-b) e(x~y).
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Hence »
(1-b)
g(rx—rw) =(1—h)g(x—y) = m(l—a)Q(X—y)
1—-b
= (———)Q(X—W) > g(x—w),
1—a

a contradiction.

Suppose 0 < a < b, then b/a > 1. Thus p(y—w) = ap(x—y) and o(ry—
—rw) = o(y—rw) = bo(x—y). Hence o(ry—rw)=be(x—y)=(b/a)ag(x~y)
= (b/a) o(y—w) > o(y—w), a contradiction. Thus x, y, rw are not collinear.
But then o(x—rw)+o(rw—y) > g(x—y), contradicting (1). Thus D must be
convex. Now T: D—D, so T has a fixed point by Tychonoff's Theorem.

DerinmrioN 2.10. Let X be a topological space and T: X — X be a map.
A subset M of X is said to be an attractor for compact sets under T if (i) M
is nonempty compact and T-invariant and (ii) for any compact subset C of X
and any open neighbourhood U of M there exists an integer N such that
T (C)< U for all n=N.

TueoreM 2.11. Let C be a complete starshaped subset of E. Let T:. C
—C be a nonexpansive mapping. If there exists M < C, an attractor for
compact sets, then T has a fixed point.

Proof. Let y be the star centre of C and L be the closed convex hull of

M. M is compact, sO co[Mu {y}1is compact. But L& co[Mu {y}1so Lis
€L
compact. Let D = |J T"(L), where T°(L) = L. Clearly D is T-invariant. We

n=0
shall show that D is totally bounded.

Let U be any neighbourhood of 0. Then there is an open symmetric
neighbourhood ¥ of O such that V4+V+VcU. As M+V is an open
neighbourhood of M and M is an attractor for compact sets under T, there
exists a positive integer N such that T*(L) = M+ N for all n> N. Now for

N-1

the compact set Mu |J T"(L), there is a finite subset P of C such that
n=0

N-1
Mu U T(L)S P+V.
. n=0
Thus
ES N-1 o
U T"my= U T@L)u U THL) S P+VU(M+N)
=0 n=0 n=N

c(P+V)c(P+V+V)=P+V+V.
It follows that
D= T"(L)sP+V+V+V < P+U.
n=0

©
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Furthermore, D being a closed subset of a complete set is complete and,

hence, D is compact. Let R = () T"(D). Then R is nonempty and compact,

n=0
TRy =T(N T"(D)= ( T""(D) =R, so by definition of M, R = M. By
n=0 n=0

Lemma 2.7 there exists a nonexpansive retraction r: D — R. Note that the
nonexpansive map F = Tyr maps L continuously into itself. Hence by
Theorem 2.4 there exists a point y,e L such that F(yg) = yo. As ry,€R and
R is T-invariant, the equation y, = F(yo) = T(ry,) shows that y,eR. Thus
Yo =Yg, since r is an identity map on R. Thus y, = T(ry,) = Ty,. This
completes the proof.

Corovrrary 2.12. Let E be strictly convex and K be a nonempty compact
subset of E. Let R and S be selfmappings of K such thar R is continuous and S
is nonexpansive and T"(K)n ¢, K = Q for some n = 1. If RS = SR then R and
S have a common fixed point in K.

Proof. Using strict convexity of E, continuity of § and Theorem 2.9 it
follows that F(S) is nonempty closed and convex subset of K. Since RS = SR
we have R(S(F)) = $(F). Hence by Tychonoff’'s Theorem R has a fixed point
in F(S).

CoroLLARY 2.13. Let E be strictly convex and K be a compact subset of
E. Let {T,} be a family of commuting nonexpansive selfmappings of K. Suppose
there is ar least one Te!T,) for which there exists an n=1 such rhat
TYK)N K = Q. Then the family [T,} has a common fixed point in K.

Proof. Recall that the fixed point set F of T;e{T,} is a nonempty
closed and convex subset of K. Thus F; is compact and convex. The proof
easily follows.

The following results of Chandler and Faulkner [6] ensue from the
above theorems.

CoroLLARY 2.14. Let X be a compact subset of a strictly convex normed
linear space E and T: X — X be nonexpansive. If there exists an n =1 such
that T"x 0y x =@ then T has a fixed point in X.

COROLLARY 2.15. Let S be a closed, starshaped subset of a Banach space
E and T: S — S nonexpansive. If there exists M < S, an attractor for compact
sets, then T has a fixed point in §S.

3. Families of nonexpansive mappings. We prove the existence of com-
mon fixed points for a commutative family of nonexpansive mappings: in
Fréchet spaces. The weil known result of Bahtin [2] foilow as an immediate
corollary.

Lemma 3.1. [13, Lemma 2.2]. Let M be a nonempty compact set of E. If
for some aed
(1) d,=sup{g,(x—y): X, yGM}>0
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then there is a u in the convex hull of M such that
r=sup{g,(x—u): xeM} <d,.

Lemma 3.2. Let D be a bounded closed subset of E. Let T: D — D be
a continuous demicompact mapping. Then F(T) is sequentially compact in D.

Proof. Let {x,} be a sequence in F(T), ie. x,— T(x,) =0 for each n.
Smce T is demicompact and D is bounded there exists a subsequence {x, .} of
{x,} such that x,, = for some xeD. By the continuity of T, Tx = x.

THEOREM 33 Let C be a nonempty, closed bounded convex subset of
a Fréchet space E and F be a commutative family of nonexpansive self
mappings of C with nonempty fixed points set. Suppose there is at least one
mapping in the family which is demicompact. Then the family F has a common
fixed point.

Proof. Let D = {B< C: B is nonempty, closed, convex and T(B) < B
for each TeF}. Since C belongs to D, D is nonempty. Define a partial order
< on Dby D; <D, if and only if D, < D,. We shall show that every chain
in D has a lower bound. Let {B,: acd)} be a chain in D. Let 4
=N {B,: acd}.

Let ToeF be a demicompact mapping and let F, = {xeB: Ty(x) = x}.
It follows from Lemma 3.2 that F, is compact and, hence, [} {F,: a4} is
nonempty subset of A. It is clear that AeD. Therefore by Zorn’s Lemma,
there exists a minimal nonempty closed and convex subset B, < C such that
T(Bo) € By for each TeF.

Let G = {xeBy: Ty(x) = x}. Then G is nonempty compact subset of B,.
Obviously Tx = T(Tyx) = Ty(Tx) for any xeG and T = F. It follows that
T(G)eG for each TeF and xeG. Let H={K = C: K is nonempty, com-
pact and T(K) < K for each TeF}. Then H is nonempty, since G belongs to
H. By Zorn’s Lemma, there is a minimal nonempty compact set M < C such
that T(M)eM for each TeF. Clearly M = B, and the minimality of M in H
implies that T(M) = M for each TeF.

We claim that M consists of exactly one element. Suppose not, then
since E is Hausdorff by Lemma 3.1, there is «e4 and ueco(M) such that r
=sup {g,(u—x): xeM} <d,. Since B, is convex and M <€ By, it follows
that ueB,. For each xe M, define

() N(x) =
Then N(x) is convex and ue N (x) for each xeM. Let N =

{zeE: g (z—x) <1)}.

M} N(x) and P
xeM
= NnB,. Then P being the intersection of two convex sets, is convex. We

shall show that T(P) < P for each TeF. Since T(B,) = B, for each TeF, it
suffices to show that T(N) < N for each TeF. Let zeN and TeF. By the
definition of N we have

3) G(z—x)<r

icm
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for each xe M. Since T(M) =M, there is ye M such that Ty = x, hence
0. (Tz—x) < g,(z—y) < r for each xe M. Thus T(z)e N (x) for each x& M, that
is T(P) < P for each TeF. Thus PeD, and by (2) and the minimality of B,
in D, we have P = B,. Now g, being continuous and M compact, there are
elements x and y in M such that g, (x—y) = d,. This equality implies y ¢ N (x)
and consequently y¢P. However, since M < B, it follows that yeB,. This
ix] for some xeC and, hence, Tx = x for each
TeF.

DeriNiTioN 34. Let & be an absorbing base for E of closed, circled
neighbourhoods of 8. For each subset A of E let a(4) = {Ue.#: for each

Ve there exists a finite number of sets Sy, ..., S, with A= (J S; and

i=1

Si—=S; cU+V,i=1,2,...,n}, and let B(4) = {UeF: for each VeF there
exists a finite subset F of E with A S F+V+U}. H K < E, then T K~ E is
a-condensing if T is continuous and oc(T(A))d: o(A) for each bounded but
not totally bounded set A = K; Tis called f-condensing if it is continuous
and B(T(A4)) ¢ B(A) for each subset 4 = K. Note that (A) is also equal to
the set {Ue% : for each Ve F there exists a totally bounded set W < E with
AcU+V+W}.

Lemma 3.5. Let K be nonempty quasicomplete subset of E and let T:
K — E be either a-condensing or B-condensing. Then T is demicompact.

Proof. Let {x,} be a bounded sequence in K such that x,—Tx,
converges in E. To prove that T is demicompact, it suffices to show that {x,}
is totally bounded. Thus, in the case T is a-condensing it suffices to show
that a({Tx,}) < a({x,}). Let Uea({Tx,}) and Ve F. Choose We F such that
W+W < V. Then there are subsets S;,...,S, of {Tx,} such that

{To}s U S and S-S, SU+W i=1,2,..,

ges to some yeE, there exists n, such that if m > ngy then x,,— Tx,ey+W.
Thus for m > ng, x,,,eT(x,,,)+y+W_C.S,-+y+W for some i. Let R,
=S;+y+W, i=1,2,...,nand R; = {x;,_,) for i=n+1,..., ng+n Then

nt+ng

x, < U R and R,—R; c U+V for all i. Therefore, Ve {x,} and (x,} is

n. Since x,— T, conver-

totally bounded The proof when T is f-condensing is similar.

The converse of Lemma 3.5 is not true as can be seen from the following
examples.

ExampLE 3.6. Let E = R with the usual norm and C = [0, 1]. Define
T C—-Cas T(x) =x/2,0< x<1, T(0) = 1. Then T is neither a-condensing
nor f-condensing due to lack of continuity. However, it follows from
Bolzano—Weierstrass theorem that T is demicompact.

ExampLE 3.7. Let B = [e,, e, ..., €, ...; be the usual orthonormal
basis for E,. Define ' B—B by T(e) =¢;.,. Then T is continuous but
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neither o-condensing nor f-condensing. However, T is demicompact. Indeed,
if {e;};2, is a bounded sequence in B such that ¢;— T¢; converges, then {¢;}/<,
must be finite.

CoROLLARY 3.8. Let K be a nonempty, complete bounded, convex subset
of a Fréchet space E. Let F: K~ K be a family of commuting nonexpansive
mappings. Suppose there is at least one mapping in F which is either
a-condensing or f-condensing, then the family F has a common fixed point.

Proof. We only need to show that the fixed points set of F is nonempty,
which is a consequence of [11, Theorem 1].

CoroLLARY 3.9. [2, Theorem 1]. Let E be a real Banach space and K be
a nonempty, bounded, closed and convex subset of it. Let F be a commuting
family of nonexpansive mappings of K into itself. Let there be ar least one
mapping in F which is condensing ; then the family F has a common fixed point.

Proof. An appeal of [8, Theorem 3] guarantees the nonemptiness of
the fixed point sets.

4. Nonexpansive retracts. In this section we show that for E strictly
convex, the fixed point set of a nonexpansive mapping is a nonexpansive
retract. Results of Bruck [3], [4] are extended to more general spaces.

For the proof of our next results we need to recall the following.

Lemma 4.1. [10, Theorem 8]. Let E be strictly convex, g, heE with
o(g) <e(h). Suppose 0 <t <1 and o((1—t)h+tg)=o(h). Then g = h.

Tueorem 4.2. Let E be strictly convex and K be a nonempty closed and
convex subset of E. Let S be a compact (in the topology of weak pointwise

convergence) and convex semigroup of nonexpansive mappings of K into itself
such that for each r,seS

) co R(r)nco R(s) # O,

where R(r) denotes the range of R. Then F(S), the fixed point set of S, is
a nonexpansive retract of K.

Proof. Define a partial ordering on S by setting f < g if o(fx—f¥)
< o(gx—gy) for all x, yeK with inequality holding for at least one pair
x,y and f < g to mean f <g or f =g. As in the proof of Lemma 3 in [9]
there exists a minimal element r in (S, <) and each se$ acts as an isometry
on R(r):

(1) elsr () —sr () = o{r (x)—r ).
If r is minimal in (S, <) and seS, then $sr+1reS and
@ eBer+inx=36r+3n00) = e (3 ()= sr () +4(r () —r 3)))
< ze(sr(N—sr@)+ie(r(x)—r()
<e(r()—r(y).
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Equality must hold throughout (2), since r is minimal. Using the strict
convexity of E and equation (1) we must have sr(x)—sr(y) = r(x)—r(y) for
ali seS and x, yeK. In fact, let g = sr(x)—sr(y), h =r(x)—r(y) and t = §, in
Lemma 4.1.

Thus if r is minimal in S then each seS acts as a translation on R(r). In
particular, r acts as a translation on R(r). But since R(r) is bounded and
r-invariant, this means r acts as the identity on R(r). Thus r is a non-
expansive retraction of K onto R(r).

Let r,, r, be minimal in (S, <). We claim that R(r;) = R(r). Indeed,
we have already shown that r; acts as a translation by some vector x on
R(r,) and acts as an identity on R(r;). The continuity of r,, r, and strict
convexity of E imply that R(r,) and R(r,), being fixed point sets of
nonexpansive mappings r; and r,, are closed and convex. Thus, by condition
(I), we have R(r;)"R(r,) # @. Thus x =0, ie. ry acts as the identity on
R(r,), so that R(r,) = R(ry). By symmetry R(ry) = R(r3).

Now we claim that if r is minimal in (S, <) then R(r) = F(S). Obviously
F(5) = R(r). It remains to show that R(r) = F(S). Let s€S, by equation (1)
sr is also minimal in (S, <). But we have shown that minimal elements of S
are retractions of K onto R(r). If yeR(r), then r(y) =y and sr(y) =y, so
s{y) = y. Since this is true for all seS, we have R(r) = F(S). Hence R(r)
= F(S). F(S) is nonempty, because obviously R(r)# @ and r is a non-
expansive retraction of K onto F(S).

Consider the following conditions on a compact convex semigroup § of
nonexpansive mappings:

(FP1) S has a common fixed point.

(FP2) For each s,.s,€5.5, and s, have a common fixed point.

(FP3) For each- s,, s;€5, R(sy) "R(sy) # O.

(FP4) For each sy, 5,€8, dist(R(s,), R(s;)) = 0.

We note that (I) does not imply (FP1), (FP2), (FP3) or (FP4) if E is not
strictly convex, even if K is compact.

ExampLE 4.3. Let E = R? with the supremum norm and let K be the
square, K = !(x,)): [IxI < LIl <1}, For 0<i<1, define f(x,3) =
(M—t, ¥). Let S={f: 0<t<1}. § is convex semigroup. Indeed,

Sifibe, W =£1AC 1 =L T =5, 91 = =1, ) =fix, p).
Sura-nsCe ¥y = =2—=(1=2s.y)
= (Aly|— 2+ =AY —(1=D) s, A +(1~ 1) y)
= Ay =1, Y)+ (L= Ay =5, ¥) = M (x, D+ =D (x, ¥).

Thus S is a compact convex semigroup and each £, in § is nonexpansive.
(1) is satisfied because the range of f; is the intersection of the graph of x
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=[y|~t and K, 50 {(0, 0)} = {co R(f): 0<t<1}. But none of the con-
ditions (FP1), (FIP2), (FP3) or (FP4) are satisfied.

THEOREM 44. Let E be strictly comvex and K be a weakly compact .

convex subset of E. If T: K — K is nonexpansive, then F(T) is a nonexpansive
retract of K. Moreover, the class of nonexpansive retracts of K is closed under
arbitrary intersections.

Proof. Let 4 be a nonempty subset of K. Let M(4) = {T: T: K - K is
nonexpansive and 4 < F(T)}. Define an order on M (4) by setting T < T if
o(Tx—Ty) < o(T'x—T'y) for all x, yeK with strict inequality holding for at
least one pair (x, y). As usual T< 7" means T< T  or T=T". Then < is
a partial ordering on M(A). Let I(T) = {T"eM(A4): T'< T}. Then it fol-
lows from the proof of Lemma 3 in [9] that I(T) is closed in M (A). Thus
I(T) is weakly compact.

If € is a chain in M(4), then {I(T): Te%} is a chain under inclusion.
Since each I(T) is weakly compact, there exists T,e() {I(T): Te%); T, is
a lower bound of . Thus, by application of Zorn’s Lemma, we conclude
that M(A) has a minimal element. For Re M (A), let § =%(I+R). Because E
is strictly convex, if ¢(Su—Sw)=g(u—w) then Su—Sw=u—w. In fact,
letting g = Su—Sw, and A=u—w and r=4, in Lemma 4.1 we have the
required result. Also F(R) = F(S).

Let T be minimal in M(A4), R be any function in M (A) and let S be the
function as above, then STeM(A4) while ST T, By the minimality of T,
therefore ST = T. Let R(T) be the range of T Therefore

(1) F(T) = R(T) = F(S)+F(R)
and in particular
(2 F(T) = F(R)

for Re%. Taking R=T in (1) we see that F(T) =R(T), so that T is
a nonexpansive retraction onto F(T). From (2) if T and R are minimal
elements of M(A) then F(T) = F(R). This common set F (T) is the smallest
nonexpansive retract 4, of K with 4, > A. If R of (2) is any nonexpansive
retraction with F(R) = 4,, it follows from (2) that A F(T)c A,.

Suppose F(T) # @. Let G = F(T) and Jet S be the minimal element of
%. Taking R = T in (2) we have F(S) = F(T), while F(%) « F(R) since Re%.
Therefore § is a nonexpansive retraction of K onto F(R)=F(T).

Let {F,} be a family of nonexpansive retracts of K. Let P = NF,; we

may assume P # (). We have already proved that if Tis a mim’ma]ﬂ element
of %, then P <« F(T) < P, for each nonexpansive retract P,. In particular,
F(T)cF,for all ¢, s0 Pc F(T)< () F, =P, and Tis the required nonex-

pansive retraction. As corollaries of Theorem 4.2 and Theorem 4.4 we have
the following results of Bruck [4] and [3], respectively.
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CoroLLARY 4.5. Let C be a nonempty closed convex subset of a strictly
convex Banach space and let S be a semigroup of nonexpansive self mappings of
C which is compact and convex in the topology of weak pointwise convergence.

If S has the property that co R(s;)"co R(sy) # @ whenever s, s,€8, then
F(S) is a nonexpansive retract of C.

CoroLLARY 4.6. Let C be a closed bounded convex subset of a reflexive,
strictly convex Banach space X. If T: C — C is nonexpansive, then F(T), the
fixed point set of T, is a nonexpansive retract of C. The class of nonexpansive
retracts of C is closed under arbitrary intersection.
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