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On a fixed point theorem of Krasnoselskii
and triangle contractive operators

by

Dang Dinh Ang and Le Hoan Hoa (Ho Chi Minh)

Abstract. The paper presents some variants to a fixed point theorem of Krasnoselskii for
operators on a closed convex subset of a Banach space of the form U+ F where U is contractive
and F is completely continuous. A study is made of triangle contractive operators in a Hilbert
space. It is proved that a triangle contractive operator satisfying certain rather mild conditions is
on each hounded set the uniform limit of a sequence of operators (T,) with T, = U,+F, where
U, is contractive and F, is completely continuous.

Finally, a fixed point theorem is proved for operators of the form U+F where U is
triangle contractive and F is completely continuous.

Introduction. Let X be a Banach space and let K be a bounded closed
convex subset of X. A well-known theorem of Krasnoselskii [8] states that if
U is a contraction of K (ie. [Ux—Uy|| <kljx—y| for O<k < 1)and Fis a
completely continuous operator on K such that

(*) Ux+FyeK for every x,y in K

then U +F has a fixed point. Krasnoselskii’s theorem has been extended by
Nashed and Wong [9] to the case U is a @-contraction and to the case U is
bounded linear and such that U? is a p-contraction for some p > 1.

Our aim in this paper is to present some variants to Krasnoselskii’s
theorem and to its generalizations by Nashed and Wong (loc. cit.). In our
version, K will be the closure of a bounded open convex subset of X, and the
condition (*) will be replaced by the following weaker one

(*%) Ux+FxeK for each x in K.

Extensions to the case of unbounded domains will also be considered.
The concept of a triangle contractive operator on a Hilbert space, a
noteworthy extension of the concept of a contraction, was introduced and
studied by Daykin and Dugdale [6] (cf. also Rhoades [10], [11], Daykin [5]
and Ang and Hoa [1]). Roughly speaking, an operator on a Hilbert space is
said to be rriangle comtractive if it decreases areas of triangles in some
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appropriate manner (cf. Section 2 for a precise definition). The concept of a
triangle contractive operator (a TC operator for short) is no doubt an
attractive one, geometrically. We shall show that a TC operator satisfying
certain rather mild conditions is on each bounded set the uniform limit of a
sequence of operators (T,) with T, = U,+F, where U, is contractive and F,
is completely continuous (ie. is continuous and maps bounded sets into
compact sets). In fact, we shall study operators of the form U+ F where U is
TC and F is completely continuous, and prove a fixed point theorem for
such operators.

We shall consider operators that are quasibounded in the following
sense (Granas [7]):

lﬁn;iUDllﬁll/!lxll <o,

If T is a quasibounded operator, we put
|T| = Iﬁ sup || Tfl/l)x].

Th.en IT| is called the quasinorm of T. Note that if T is bounded linear, then
T is quasibounded and |T is precisely equal to the norm of T as a bounded
linear operator.

The remainder of the paper is divided into two sections. Section 1 is
devoted to some fixed point theorems of the Krasnoselskii type. Section 2 is
devoted to a study of operators of the form U+F where U is TC and F is

completely continuous. We shall prove a fixed point theorem for such
operators.

Section 1. Fixed point theorems of the Krasnoselskii type. Throughout
this section, X denotes a Banach space, G denotes a domain (open connected
set) of X and cl(G) its closure.

DerFINITION 1.1. Let ¢ be a continuous real-valued function on the
positive real numbers such that '

O<o<r for r>0.
A mapping
U: (G- X

.is said to be a g-~contraction (Boyd and Wong [2]) if

HUx—Uyll < o(llx—yl)

We shall commence with the following theorem.
Tueorem 1. Let G be a convex open set in X and let 0cG. Let

U: (@) -»X

for every x, y in cl(G).

icm°®

On a fixed point theorem of Krasnoselskii 79

be either a @-contraction or the restriction to cl(G) of a bounded linear
operator U’ on X such that (U'Y is a g-contraction for some p>1. Let

F:cl(G)» X
be a completely continuous operator. Put
T=U+F

and suppose T maps cl(G) into itself. Then the following holds:

(i) If G is bounded, then T has a fixed point.

(i) If G is unbounded and if |T| < 1, then T has a fixed point.

Remark. This theorem is to be compared with Theorem 4 of Browder—
Nussbaum [4].

For the proof of Theorem 1, we shall use properties of the Browder—
Nussbaum degree [4] as follows. Let G be a domain in X, let H, F be
mappings of cl(G) into X satisfying the following conditions:

a) For each fixed v in cl(G), the mapping
S,: cl(G)— X

defined by S,u = Hu+ Fv is a homeomorphism of G onto an open subset G,
of X, mapping cl(G) homeomorphically onto cl(G,).

b) The mapping v— S, is a locally compact mapping of cl(G) into the
space of homeomorphisms of cl(G) into X with the topology of uniform
convergence on cl(G).

Let Tu = Hu+ Fu for u in cl(G). Suppose T~ !(0) is a compact subset of
G. Then, deg(T, G, 0) is defined. (In fact, the Browder-Nussbaum degree is
defined for more general operators, but this simplified version is all that we
shall need).

The following proposition is implicitly contained in the Browder—
Nussbaum paper (loc. cit.).

Proposition 1.1. (i) If deg(T,E, 0) # O, then there exists an x in G such
that Tx = 0.

(i1) Let A, B be continuous mappings of cl(G)x [0, 1] into X such that
A(., t) and B(., t) are continuous uniformly with respect to t in [0, 1], and for
each 0 <t <1, the map A,(.) = A(., t) is a homeomorphism of G onto an open
set G, of X, taking cl(G) homeomorphically onto cl(G,), and the map B,(.)
= B(., t) is a completely continuous operator of cl(G) into X. Suppose that for
each 0 <t < 1, the pair A,, B, satisfies condition b) above. Suppose further that
for each t,

(4+B) 1 (0ndG=0
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(where &G is the boundary of G) and that the set of the (x, tys for which
Ax+Bx =0 is bounded in cl(G)x [0, 1]. Then

deg(do+ By, G, 0) = deg(4,+B;, G, 0).

We now turn to the

Proof of Theorem 1. We first consider part (i) of the theorem,
beginning with the case U is a ¢-contraction. In order to be able to use
properties of the Browder-Nussbaum degree, we shall prove that for each
0<t<1, the map H,=1-tU is a homeomorphism of G onto an open
subset of X, taking cl(G) homeomorphism of G onto an open subset of X,
taking cl(G) homeomorphically onto cl(H,(G)). We have

llx—yll =@ llx~ ) < [1H, ()= H)ll < lIx=yll+ @ lx—yI)

which shows that H, is a homeomorphism of cl(G) onto a closed subset of X.
We shall show next that H,(G) is an open subset of X. Let x,€G, and let
r> 0 be such that the closed ball B'(xy, r) is contained in G. Put ¢

=sup|¢(s): 0<s<r) #»Then ¢ < r. For |jv]| < r—g, define the map V on
the closed ball B'(0, r) as follows:

Vh =tU(xq+h)—yo+v .
where y, = tU(x,). We shall show that V takes B'(0, r) into itself. Indeed,
WA < 1[tU (xo+ B)— U (xo)ll + 1ol < to (Al +1lvll
<o+r—g=r.
Since it is clear that V is a @-contraction, ¥ has a fixed point h (say) by a
theorem of Boyd and Wong (loc. cit.), ie.,
h=tU(xo+h)—~yo+v

or
Xo+h—tU(xg+h) = xo—yo+0.

We have proved that the open ball B(x,—y,, r— ) is containéd in the image
of B'(xg,r) under H,. It follows that G has an open image under H, as
claimed.

If I—(U +F) does not vanish on the boundary G of G, then, since 0e G
and since G is convex, I—t(U+F) does not vanish on ¢G for 0<t < 1.
Consider the homotopy I—t(U+F), 0<t<1. Since G is bounded,
Proposition 1.1 applies, and we have

deg(I—(U+F), G, 0) =deg(I, G, 0) = 1.

Hence U+ F has a fixed point in G.
The case U is the restriction to cl(G) of a bounded linear operator U’
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such that (U') is a ¢g-contraction for some p'> 1, is: handled in a similar way.
This proves part (i).

Consider now part (ii). Since |T| < 1, there exists for each k with |T} < k
<1, an ry > 0 such that

17X < k||x]]  for all x in cl(G) with ||x]| > r,.
Now there exists an r, > ry such that
T[B'(0, r{) ncl(G)] = B'(0, r5).
Put | ‘
K, =cl(G)nB'(0, ry).
Then T maps K, into-itself. Hence T has by part (i) above a fixed point in

K, and hence in cl(G). »

CoroLLARY 1. Let U be a ¢@-contraction on X, and let F be a completely
continuous operator on X. Suppose

[U+F| <1
Then R(I—U—F) = X, where R denotes the range of a map.

This follows from Theorem 1, part (i), for G = X. Indeed, if y is any -
point of X, then the operator U+F-+y satisfies

[U+F+y| <1.

Hence, by Theorem 1, part (i), U+F+y has a fixed point x (say), which
clearly satisfies x—(Ux+Fx)=y. n

Remark. Corollary 1 above contains as special cases a result of Granas
(loc. cit) which corresponds to .U =0, and a result of Nashed and Wong
(Theorem 3, loc. cit.) where U is a contraction of coefficient 0 < 7 < 1 and F
is completely continuous and quasibounded with |F| < 1—7.

CoOROLLARY 2. Let U be a bounded linear operator on X such thut some
iterate U?, p = 1, is a @-contraction. Suppose F is completely continuous on X.
Suppose |U+F| < 1. Then

R(I-U-F)=

where R denotes the range of a map.

This follows from Theorem 1, part (i), for G = X, in the same way that
Corollary 1 follows from the theorem.

Remark. Corollary 2 above is a counterpart of a result of Nashed and
Wong (Theorem 4, loc. cit) in which U is bounded linear with UP a
contraction of coefficient 0 < 7 < 1, and F is completely continuous with |F|
<l-7y.
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A well-known extension of the Schauder fixed point theorem of F. E.
Browder [3] states that if F is completely continuous on X such that for
'some n, F*(X) is bounded, then F has a fixed point. We propose to consider
operators of the form U+F where U is a ¢-contraction and F is an
asymptotically linear, completely continuous operator such that for some n,
F" is quasibounded. More precisely, we have

Theorem 2. Let G be an unbounded convex open set in X, and let 0cG.
Let T be a map of cl(G) into itself of the form U+F, where U is a @-
contraction, F is completely continuous such that

() |U] =0 and (i) Lm [[Fx—Bxx]| =0
et »x

where B # 0 is a bounded linear operator on X. Iffor some n > 1, F"is defined and
satisfies |F™ < 1, then T has a fixed point.

Remark. If B=0, then condition (ii) of Theorem 2 implies [F| = 0.
Thus, the corresponding problem for B =0 is covered by Theorem 1.

For the proof of Theorem 2, we need some lemmas.

Lemma 1.1, Let U, F satisfy the conditions of Theorem 2. Then, there
exist a ko in [0, 1] and an r, > O such that for every r >r,

HU+FY N <kor  and  ||Bx|| < kor

Jor every x in cl(G) such that [jx|| <r.
Proof. Put W=U+(F—B) and Y = F—B. Then

T=U+F=B+W and F=B+Y.

We claim that

m—1
) (U+F"=B+W)"= § BWB+W)""lipm

i=0 s
and

, i .
@ Fm= ¥ BY(B+Y)"'4B"
i=0

Indeed, identity (1) holds for m = 1. If it holds for m, then
(B+ W)™+ = (B+W)(B+ W) = B(B+W)"+ W (B+ W)".

Using the linearity of B, one verifies that (1) holds for m+1. Thus, by
induction, it holds for every m. Identity (2) is proved by induction in exactly
the same manner. From (1) and (2) one deduces

n—1

n—1
WU+FY=i <IFXi+ Y IBWB+WY~—~ix+ ¥ [|BY(B+Y) x|
i=1 i=1
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and
1B < IF™+ Y IBY(B+Y)=i-1x|
i=1
for x in cl{G).

By the conditions of Theorem 2, for each k with |FY <k <1, and each ¢
with
n~1

0<c<i(l-k) Y IBF({B|+c+1)ritt
i=1

there exists an r, >0 such that for each x in cl(G) with |Ix] =r, the
following holds

Il < kil (1% < cfix]] [IWxl < elld].

Let r, >r, be such that Yx and WxeB'(0, cry) for each x in ¢l(G) N B'(0, ry)
and (U+F)xeB'(0, r,) for each x in cl(G)nB'(0, r,) (here as elsewhere
B'(0, ) denotes the closed ball of center 0 and radius r). For each r > r, and
x in cl(G) such that ||xj| <7, we have
3 B+ Wyx|| < (1B|+c+1)r.
Indeed, this holds for i = 1. ¥ it holds for i < n—1, then

B+ W)™ x| < ||B(B+W)x||+||W(B+W)x|

< |B|(IBi+c+1)r+||W(B+W)xi}.

and

If (B+W) x|| <ry, then
WB+WY*'xl| = (U+F)(B+W)xl| <r, <7 <(B+c+1)*1r.
If |(B+W)x|| > r,, then

IW (B+ Wy x| < cllxl| < cr.
Thus .

I(B+Wy*'xil <[IB|(IBl+c+1f+clr < (B|+c+1)*1r

which completes the induction process and (3) is proved.
In a similar way one shows that

B+ Y)xl| < (1B{+c+1)r
Furthermore, if [|(B+ W)'x|| <r,, then
W (B+Wyx|l < ery < or < c(1+|B|+c)r.
If B+ W)x| >ry, then
IW(B+W)x|| < c|(B+ W)x| < c(B|+c+1)r.

for each x in cl(G) with ||x}| <r.
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In a similar way one has
1Y (B+ Y)x|| <c(B|+c+ Vir.

Hence
n—1 .
(U +Fyxl| <kr+2c ¥ |BI(Bl+c+1y7" 7 r.
i=1
Put

n—1
ko =k+2c ¥ |BF(Bl+c+1) 7L

i=1
Then ko < 1, and
(U+F)xi| <kgr and [B"|| < kor

for each x in cl(G) such that ||x|| <r and r=r;. m

COROLLARY OF LEMMa 1.k If U, F satisfy the conditions of Theorem 2,
then for T = U+F, the set (I—T)™'(0) is compact.

"Proof. By Lemma 1.1,

(I-17)"*(0) = B'(0,ra).

Hence, the set is compact. m

LemMA 1.2, Let U, F satisfy the conditions of Theorem 2. Let

A, =I—tT)"1(0).

Then A, is compact for each 0<t <1, and there exists 13 > 1, such that
A, < B(0,r3) for each 0 <t <1

Proof The case t =0 is trivial. The case t=1 follows from the
corollary of Lemma 1.1. Hence, we shall consider 0 <t <1 only. Let

0<a<(—ky'S IBL.
i=0

Then there exists ry > r, such that for each x in cl{G) with ||x]| > r3, one has
[[Wxll < alx|l. We shall show that

A, = B'(0, r3).

Indeed, if for some 0 <t <1, there exists x in 4, with ||x|| > r; then Tx
= Xx/t, ie,

(B+W)x =(U+F)=x/t.
It follows that
Bx = x/t— Wx.
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By the linearity of B, oue has

- B'x= x/t“—Wx/t"‘l—BWx/t"‘z—— ... —B"ipx
= (x— tWx~12BWx— ... —t"B"~ ' Wx)/1".
Then
_ Bl = (1) (1—a(L +|B|+|B>+ ... +BI"™Y)).
Hence

[|B"x|| = kollx|l/t" for some O0<t<1 and ||x]| >r3 >r,.
This contradicts Lemma 1.1. Hence, we have
A, cB(0,r;) for each 0<r<1
as claimed. m
We are now ready for

Proof of Theorem 2. Suppose (I—T)"*(0)néG = @. Consider the
homotopy

S, =tT: cl(G)x [0, 1] - cl(G).

By Lemma 1.2, the set (I—T) !(0) is compact, and the set of the (x, t)'s for
which x—8,x = 0 is bounded. Since cl(G) is convex with 0eG, and since T
takes cl(G) into itself, one has

I~S5)" () néG =@ for
By Proposition 1.1

o
N
A

deg(I-T, G, 0) =deg(l, G, 0) = 1.
Hence T has a fixed point in G. =

Section 2. Triangle contractive maps and Krasnoselskii operators.
Throughout this section, H will denote a real Hilbert space. Let 0 <a < L.
An operator U on H is said to be a-triangle contractive if for each x, y, z in
H, the following holds: either

() IUx—Uy| < «llx—yll and ||Uy—Uzl <ally—z|| and [[Uz—Ux|
< aljz—x|| or

(ii) A(Ux, Uy, Uz) < ad(x,y, 2)
where 4(x, y, z) is the area of the triangle x, y, z (cf. Daykin-Dugdale [6]
where the concept was first defined). We shall use the abbreviation «-TC for
a-triangle contractive. If there exists an 0 <a <1 for which U is a-TC, we
say that U is TC (abbreviation for triangle contractive). Throughout this
section, o will stand for a positive number strictly smaller than 1.

If U is a TC operator which maps H into a line, then we say that U is
trivial. Our aim in this section is to prove a number of properties of TC
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operators, and to establish a fixed point theorem for operators of the form
U+F where U is TC and F is completely continuous.

THEOREM 3. Let U be TC nontrivial. Then U is Lipschitzian on each
bounded subset of H, i.e., for each bounded subset D of H, there exists an ay

= 0 such that
NUx~Uy|| < aplix—y|| for all x,y in D.

Proof. Suppose this is not the case. Then, there exists a bounded set D
such that for each n > 1, there exists x,, y, in D with

1Uxy= Uyl > nlixy—yil-
Let U be a-TC; the above inequality implies that for each x in H
4(Ux, Ux,, Uy,) <ad(x, X,, ¥y
or (from the definition of the area of a tﬁangle)
(U x, LUX,, Uy ) IU Xy~ U pll < o (x, L(Xns Y} X~ yall

where L(u, v) is the line through u and v, and n(x, L(x,, ,) is the distance
from x to L(x,, y,). One readily deduces that

n(Ux, L(Ux,, Uy,)) < (e/mym(x, L(x,, ¥,))-
Since x,, y, are in D and since D is bounded, there exists an M > 0 such that
(X, L%y ¥a)) < =) < Ixlf+ M
This implies

for each n.

n(Ux, L(Ux,, Uy,)) < (a/n)(||x]| + M).
Similarly, one has for y, z in H
n(Uy, L(Ux,, Uy,) < (@/n)(Iyll+ M),
n(Uz, L(Ux,, Uy,) < (@/n)(lzll + M).
Hence for each &> 0, there exists n, > 1 such that for all n> n,

n(Ux, L(Ux,, Uy,) > ¢,

n(Uy, L(Ux,, Uy,)) <e,

7(Uz, L(Ux,, Uy,) <.
The line L(Ux,, Uy,) thus has a nonvoid intersection with the open balls
B(Ux, &), B(Uy, &) and B(Uz, ¢). Since £ > 0 is arbitrary, it follows that Ux,
Uy, Uz are collinear. Thus U(H) is part of a line, ie, U is trivial, a
contradiction. Hence U is Lipschitzian on D as desired. =

Remark. Daykin and Dugdale (loc. cit) have proved that if U is

discontinuous, then U is trivial. Thus in the preceding theorem (and in all
that follows) U is continuous (from the nontriviality hypothesis).
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CoROLLARY OF THEOREM 3. If U is TC nontrivial, then U maps each
bounded set into a bounded set.

This is immediate from the theorem.

The following theorem proves a crucial property for a large class of TC
operators.

THEOREM 4. Let U be o-TC nontrivial such that |U| > a. Then there
exists a sequence of operators (U,) on H with the following properties

Un =V,+F,
where

(i) F, is completely continuous with F,(H) contained in a line,

(i) for each r >0, there exists n,>1 such that for all n>n, V, "
restricted to the closed ball B'(0, 1) is a contraction with coefficient 5, not
depending on n>n,,

(ili) U, converges to U uniformly on B'(0, r) for each r > 0.

Proof. We first remark that there exist a y >« and a sequence (x,,),
x, # 0 for each n, in H such that [|x,]] = oo and [|Ux,|| > y|[x,]| for each n.
This follows readily from the condition that |U| > a. This being the case, we
define a sequence of operators as follows. Let H, be the homogeneous
Hyperplane orthogonal to x,, let H, be the homogeneous hyperplane or-
thogonal to Ux,. Let P, be the orthogonal projection onto H,, and let P, be
the orthogonal projection onto H,. Then define the sequence of operators
(V) by

V,=P,UP
and the sequence of operators (F,) by
Fx=(e, Ux)e, for xin H, e,=Ux,/|Ux,.
Here (.,.) denotes the inner product.

Clearly, F,(H) is part of a line and U (B'(0, 1)) is bounded. Hence F, is .
completely continuous. The remainder of the proof is split into a number of
steps as follows.

Step 1. For each r >0, there exists ny(r) such that for all n> n,(r)
U takes L(y, x,) into L(Uy, Ux,) for each y in B'(0, 2r). )

(Here L denotes the line passing through two given points. It is
understood that n is sufficiently large so that x, is distinct from y, Ux,
distinct from Uy for all y in B'(0, 2r))

Proof of Step 1. By the corollary to Theorem 3, there exists an
R > 0 such that U takes B'(0, 2r) into B’(0, R). Then, for each x in B'(0, 2r)
one has

Ux, = Uxil Z |UxJ| =1 Ux]| Z p x| — U]}
= plx,— x| ==l =1 Ux]|
> /=l =y Il = 10Xl + =) %, =]


GUEST


88 D. Dinh Ang and L. Hoan Hoa

where a < ' < 7. Since [|xJ| — oo, there exists n, ) su@:h that for each n
Zn(r)
0 < (=) lIxg—xll = 2yr =R < (y= )%, =2l =7 lIxll = N U}

It follows that

1Ux,— Uxll 2 ¥ [l —xIl > I, =l
Since U is a-TC, one has for each x, y in B'(0, 2r)

A(Ux, Uy, Ux,) <ad(x, y, X,)
or (from the definition of the area of a triangle)
7 (Ux, LUy, Ux))|Uy—Ux,l| < an(x, Ly, %) lly—%l-
One deduces that
¥ %= 2 (Ux, LUy, Ux,)) < =(Ux, L(Uy, Ux)|lUy—Ux,||
<an(x, Ly, x))lly=xl.

Hence
()] n(Ux, L(Uy, Ux)) < én(x, L(y, x,)

with & = a/y’ < 1. Thus for each x in L(y, x,), one has Uxe L(Uy, Ux,), and,
hence, U takes L(y, x,) into L{Uy, Ux,) for each y in B'(0, 2r) and for each
n > ny(r). This completes Step 1.

Step 2. There exists n, > ny(r) such that for each n > n,, V, restricted to
B'(0, 2r) is a contraction. .

For x in B'(0, 2r), let D, be the line through x, of direction Ux,. Let ¥,
be defined as above. Then, for each x, y in B'(0, 2r)

{1) [1Vex— V)l = |IP,UPx—P,UPY| = n(UP,X, Dyp,y)

because P, is the orthogonal projection onto H,. We claim that there exists
n, > ny(r) such that for each n>n, one has

[1Vx =Vl < 8ol|Pox—Poil  for all x, y in B'(0, 2r).

(Here & < 8y < 1 where, we recall, 6 was defined to be a/y’) If [UPx—
—UPy|| =0, then n(UP,x, Dyp,) =0 and hence, trivially

IVax—Vuyll < 0o | Pwx—Pull-

Now, let
|UPx—UPy| > 0.
Put
u=[UPx—UPyJNUPx~UPHI, v,=[Ux,—UPyl/liUx,~UPyl,

e, = Ux,/|Ux,|.
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Note that by the property of (x,), Ux, # 0, and hence, e, is defined. Note
also that for large n, Ux,# UP,y for all y in B'(0, 2r). We have then

Isin<u, ey = (1—(u, )%
ISiIl <ua l),,>| = (1 _(u’ vn)z)llz

where ¢.,.» denotes the angle between two vectors.
One has

(2) n(UP,x, Dyp ) = [[UPx—UP,yllIsin (u, €,)|
< k|Pyx— Pyl Isin {u, e,)|
where k is a constant such that
lUx—Uyll < kllx—yll

One has furthermore

for all x, y in B'(0, 2r).

3) n(UP,,x, L(UP,y, Ux,)) =l|UPx—UPyl|sin {u, v,)|-
Now, it is clear that "
sin? (u, v,>—sin®{u, e,> = (u, )’ —(u, v,)*
= [(u, e)—(u, v)1[(u, e)+(u, v,)]
from which it follows that
@ Isin® <y, v,)—sin® <y, e,)] = (1, =0, &+ 0, < 2lle,—vil.
We claim that |jv,~—e,|| = O uniformly with respect to x, y in B'(0, 2r). Indeed
v,— &, = [Ux,~ UPy|Ux,— UPyl|— Ux, /| Ux,ll
and hence,
loa—eall < HUXJ(1Ux,—UP,ylI~ = 1Ux,| ™) +HIUP, INUx, = UP I

Now, by the first part of the proof of Step 1, we have |[UPy|| < R for y in
B'(0, 2r). Since |{Ux,]| = o0, we have

lv,—e] = O as claimed.
Let &, = 2||v,—e,|l. There -exists an n, > 1 such that for all ne n,
@) &, <(1/2)(6/k7 and  (5/k)*A(E/k)*—es) < (80/0)

for all x, y in B'(0, 27) (note &, is function of x and y). As aresult, for n>mn,,
one has:
(i) For all x, y in B'(0, 2r) with sin?<u, e,) < 82/k*

n(UP,x, Dyp,,) <O||Px—Pyll (in view of (2))

with d<dy<1


GUEST


90 D. Dinh Ang and L. Hoan Hoa

and thus (by (‘1’))
1V,x— Vol < o 1 Ppx—Pyl-
(i) For x, y in B'(0, 2r) such that sin’<u, e, > 5%/k?
sin® <u, v,> > 3(6/k)?  (by (4) and (4)).
From (2) and (3), one has then
n(UPx, Dyp,) = n(UPx, L(UP,y, Ux,))lsin {u, e,)|/lsin<u, v,»| = RHS.
Now
(5)  RHS < n(UP,x, L(UPy, Ux,))lsin{u, e,)|/(sin® {u, e, —g )2
Since the function
x = x/(x*—a?)/?
is decreasing for x > |a|, we have then
Isin Cu, e,dl/(sin? Cu, e,y &) < 8k (0K &) "> < 8o/
from which it follows that
n(UPx, Dyp,) < 8¢n(Px, L(Pyy, X))
Now '
7 (Pox, L(Py, %)) < |[Pyx—~ Pyl
Hence, in view of (1) -
1Vax— Vol < 8o lIPx—Poll.
We have just shown that for n>n,
1V~ Voyll < 6l Pyx— Pyl < Sollx— |
This completes Step 2. .
Step 3. (U,) converges to U uniformly on B'(0, r).

We shall show that for each ¢ > 0, there exists n, > 1 such that for every
nzn,

for all x, y in B'(0, 2r).

H_Ux—U,,xM <¢ for all x in B'(0,r).

For x in B'(0, r), let x’ be the intersection point of L(x,, x) with H, (x’ may
well not belong to B'(0, 7), but for all sufficiently large n, x-is in B'(0, 2r),
and this was the reason why in Step 1 and Step 2, we had to consider U and
V, on B'(0,2r) rather than on B'(0,r)). Now, by Step 1, one has
UxeL(Ux,, Ux) for each x in B'(0, 7). One has

Ux = P,UP,x+(e,, Ux)e,
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and thus, U,x is the projection of UxeL{Ux,, Ux) into Dyp . (the line
through UP,x, of direction e,). :
By Theorem 3 .

NUX'~UPxX|| < kllx'—Pxl.
(Note that both x' and P,x are in B'(0, 2r)) If x' =0 then Px=x"=0,
which implies

|Ix—P,x]| =0 and hence [[Ux'—UP,x||=0.

If x' s 0, then, by considering the similar triangles X', x,, 0 and x', x, P,x,
one has .

llx' = Podl/llxl| = flx—Puxliflixdl < 2r/lix]l-

(Note that x, P,x are in B'(0, 1))
One then deduces

llx'— Ppxl] < 2r [lx /el < 42/l
Hence, for all x in B'(0,7)
[lUX' —UPx| < 4r7k/||x,l.
Since |jx,J] = o for n— co, there exists n; > 1 such that for all n>n,
4rkfllxl < Ze,
which implies
lUx'~UPx|| <% or

Ux'eB(UP,x,%) for n>=n;.

Since Ux is in L(Ux,, Ux') and since U,x is the projection of Ux into Dyp, .,
one has

lUx—Ux|| =n(Ux, Dyp,) (= distance from Ux to Dyp,y)-
If |Ux—UPx| =0, then n(Ux, Dyp)=0 and hence ||U,x—Ux|| =0.
Now, let ||[Ux—UP,x|| > 0. Put

u=(Ux—UPX)|Ux—UPX|, v,=(Ux,~UPX)lUx,—UP|.

Then |[v,—¢,| - 0 uniformly on B'(0, r) for n—oo. Let ¢, = 2||lv,—e,|| and
note, for further use, that by inequality (4) in Step 2,

sin?<u, v,) > sin® (u, e,> —&,.
Since, by what precedes, (g,) converges to 0 uniformly on B'(0, ), there exists
n, > n, such that for aill n=n,

&, < £2/2(k)*> and (/rk((e/rk)*—e,)"

<2 for all x in B'(0, r).
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Our aim is to prove there exists ny > n,, such that for all n>ny
(%) lUx~Ux|| <& for each x in B'(0, r).
We distinguish two cases.

Case 1. x in B'(0,7) is such that [sinu, e,>| < gfkr.

In this case, we have

U, x~Ux| = n(Ux, Dyp,2) = [IUx—UP,x]|sin {u, e,)|
< kilx— P, x|||sin <u, e, < krisin<u, e,)| <.

Thus (*) holds in this case.

Case 2. x in B'(0, r) is such that |sin<u, e,»| > s/rk
In this case, since n> n,, one has
Isin<u, v,>] = (sin® (u, e,y —&,) /% = &/2rk.
Now
n(Ux, LUP,x, Ux,)) = |Ux—UP,x|[sin {u, v,)|.
Hence ’
n(Ux, Dyp,) = n(Ux, L(UP,x, Ux,,))]sm(u e l/Isinlu, v,
< n(Ux, L{UP,x, Ux,)lsin Lu, ed|/(sin Cu, e, —e)'?
< n(Ux, L{UPx, Ux)(e/knf((e/kr)? —e,) "
< 2r(Ux, L(UP,x, Ux,)).

Recall that ||Ux,}| = 7lix,| = oo for n— co. Hence, there exists ny > n, such
that for all n > n3, ||Ux,)| > 4R. Since Ux and Ux' are in B'(0, R) and since
Ux, Ux', Ux, are collinear, one has

n(Ux, L{Ux,, UP,X)) < 2rn(Ux, L(Ux,, UP,x)).
But
(U, L(Ux,, UP,x) < |Ux' — UPx|| < }e.
Hence
n(Ux, L(Ux,, UP,x)) < }¢

It follows that

lUnx—Uxll = n(Ux, Dyp ) < 2r(Ux, L(UP,x, Ux,))

for all n> n;. Thus (%) holds in this second case.

for all x in B'(0, r)

We have just proved that U, —» U uniformly on B'(0, r). This completes
Step 3 and the proof of the theorem.
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CoroLLARY 1. Let U be as in Theorem 4. If, in addition, the sequence e,
= Ux,/||Ux,|| has a convergent subsequence, then

U=V+F

where V is a contraction and F is completely continuous such that F (H) is part
of a line. In particular, if H is finite dimensional, then U = V+F where V and
F are as above.

Proof. We can assume that the sequence (e,) itself converges to e (say).
Recall

F,x =(e,, Ux)e,.
Let Fx = (e, Ux)e. Then
1Fx—Fxi| < |UxI| le—e i +1(e, Ux)lle—e,ll.

Since U is bounded on B'(0, ), one has F, — F uniformly on B'(0, r). Let ¥,
=U,—F,. Then V,—~ U—F uniformly on B'(0, r) (since U, — U uniformly
on B'(0, r)). Since for each n>n,, ¥, is a contraction with coefficient §, < 1
(not depending on n>n,) V is a contraction with coefficient J,. =

CoRroLLARY 2. Let U be as in Theorem 4. Suppose in addition that U is
nontrivial. Let H; be a finite dimensional subspace of H, let P, be the
orthogonal projection onto H;. If P;U has no fixed point, then U = V+F where
V is a contraction and F is completely continuous with F(H) contained in a
line.

Proof. Let U be a-TC. The proof consists of two steps.

Step 1. We shall prove that P,U is o-TC. Indeed, one has

|Pox— Pyl < llx—ylI
We claim that for all x, y,z in H
A(Px, Py, Pz) < A(x, y, 2).

for all x, y in H.

Indeed,

A(Px, Py, Piz) = %n(Pix: L(Py, Piz))”Pix_PiZ”-

Let x' be the orthogonal projection of x into L{z,
n(x, L@y, 2)) = |lx—x'I.

Since Px' is in L(P;y, P:z), one has

n(Pyx, L(Py, Pz)) <

y). Then

1Pix— Pix'l| < flx— 1.

It follows that

A(Pix, Py, P2) <$m(x, L, 2))lly—zll = 4(x, y, 2)
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as claimed. Thus, P; decreases both distances and areas of triangles, and
hence, P,U is «-TC if U is a-TC. .

.Step 2. Note from the hypothesis that P;U has no fixed point. Since H;
is finite dimensional, P,U has a fixed line L (say [1]). It follows that P;U|L
has no fixed point. Hence, there exists a sequence (x,) in L such that |[|x,|]
— oo and |P;Ux,|| = ||x,l| for each n. This implies

1Ux,| = x|l  for each n.

Let x, be any point of L. Then, for all sufficiently large n, one has
1Ux,— Uxol| > o]}, — ol

It follows that U(L) is part of a line L (say); in particular Ux, is in L for
each n. Hence

e, = Ux,/||Ux,j| - ¢ where ¢ is a direction vector of L.

Thus, by the preceding corollary, U = V+F where V is a contraction and F
is completely continuous such that F(H) is part of a line. m

We end up this paper with the following

TueOREM 5. Let U be an a-TC operator of H with |U| > a. Let F be a
completely continuous operator on H such that |U+F| < 1. Then

R[I-(U+F)]=H

where R denotes the range of a map.

For the proof, we need some lemmas.

LemMa 2.1. Let U be a nontrivial TC operator on H. Let K be a closed
bounded subset of H. If 0¢(I—U)(K), then there exists a > 0 such that

I-U)xl| =>a for every x in K.

Proof. Let U be «-TC. Suppose by contradiction that there exists a
sequence (x,) in K with ||Ux,—x,|| = 0. Then, since 0¢ (! — U)(K), (x,) has no
convergent subsequence. Hence, there exist a subsequence also denoted (x,)
(by a change of notation) and a d > 0 such that ||x,,—x,]| >d for every
n# m. Since

WUxy= %)= (UXp— %)l = 0 for

there exists for each § with « < § < 1, an ng such that for every m, n > n,,
m# n, one has

m, n— ©

[1UXy— Uxpll 2 Blixy—Xpmll > alix, Xl
Since U is a-TC, one has

(1) A4Ux,, Uxy, Uxy) < ad(x,, X, x) for all m, n, k > ny with n % m.
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Since in bounded sets, the area is uniformly continuous in the three variables
jointly, one has
(2) IA (ans Uxms ka)'_A (xm Xms xk)' -0 for

(this is true since ||Ux,—x,/| -0 for n— c0).
We claim that 4(x,, X, %) — 0 for n, m, k — co. Indeed, if this is not
the case, then there exists a subsequence

m, n, k—> o0

4 (x,,i, Xomgs x)=2b>0 for some b.

We can assume, by another change of notation, that

A(Xyy Xy Xg) = b > 0.
By (2), there exists for each a < §' < 1, an n; > ny such that
A (Uxm Uxms ka) 2 ﬂ’A (xm Xms xk) > tXA (xn’ xma xk)

But this contradicts (1). Hence, we have

for al m, n, k> ny.

A(Xpy Xpys X500 for n,m, k—co

as claimed. Now

A Xy Xms Xi) = T (X, LGy X)) 1% — Xl
where

X=Xl =d>0 for m##k.

Hence,

n(%, L%y, x))—>0 for  n,m, k— oo.
Thus, there exists n, > 1 such that for n, m, k > n,, we have

(X L(Xms X)) < 3.

Fix mg, ko = 1, and call a, the orthogonal projection of X, into L(Xpg, Xio)
Then

”an—am” = ]lan_xm+xm_xn+xn_am”
2 56— Xl = l12 = Xpll =l — Xl
>d—id—3d>3d>0 for all n#m,n, m=n,.

Since a,& L(Xgpg Xp)s it follows that the set {a,: n > n;} is not bounded, a

" contradiction. We conclude that there exists a > 0 such that

|lUx—x|| >a for each x in K. =

COROLLARY OF LEMMA 2.1. Let U be as in Lemma 2.1. Let K be a closed
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bounded set in H. Let F be a completely continuous operator on H. Suppose
0¢[I—(U+F)](K). Then, there exists an a> 0 such that

lUx+Fx~x||>a for each x in K.

Proof. Suppose by contradiction that there exists a sequence (x,) in K
such that

[, —Ux,—Fx,|| >0 for n-soco.

Then (x,) has no convergent subsequence, as is easily seen. Now, F(K) is
relatively compact ; hence, there exists a subsequence (Fx,,) converging to a z
(say). By a change of notation, we can assume that Fx,— z. Then we have

%= Ux,—2l| < lixg = Uxy— Fx,J| +|Fx,~ 2| = 0.
Consider the operator U, on H defined by
U,x=Ux+z.
Then, U, is a nontrivial «-TC operator and
lim [lx,—U,x,| =0.

As noted earlier, (x,) has no convergent subsequence. The set (x,) = 4 is then
an infinite closed bounded set, and we can assume x, # x,, for n# m. By
Lemma 2.1, U, has a fixed point in A. The set Ay of the fixed points of U, in
A is infinite, as can be seen by repeating the argument, using the same
Lemma 2.1. This implies, since U, is TC, that 4, is part of a line L (say), and
thus, - .

Ay < LnK.

Since LN K is compact, Ay contains a convergent subsequence of (x,), a
contradiction. This proves that (x,) has a subsequence (xy) Which converges

to xy (say) in K. It is clear that
Fx, —Fxy=z.

Hence

klim 1w, = Uxy, = Fxy ]l = llxo = Uxo—Fxol| = 0,

ie, Xo = (U+F)x, which implies contradiction. Hence, there exists an a > 0
such that |[Ux+Fx—x|| > a for all x in K as desired. =

LemMA 2.2. Let U be a nontrivial TC operator on H. Let F be a

completely continuous operator on H. Suppose |U+F| < 1. Then, there exist
ro>0 and 0 <3 <1 such that
(U+F)xeB'(0,8ry) for

Il < ro.
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Proof. Since |U+F| < 1, there exists for each § with [U+F|<d <1,
an r > 0 such that

|[Ux+Fx)| <dllx]| for all ||x||>r.

Since U is nontrivial TC, U (B'(0, r)) is bounded by the corollary of Theorem
3. Since F is completely continuous, F(B'(0, r)) is bounded. Hence, there
exists an ry, > r such that

Ux+FxeB' (0, ory) for each x in B'(0, r).

What precedes shows that Ux+ Fx is in B'(0, dr,) for each x in B'(0, o). m
We now turn to

Proof of Theorem 5. It is sufficient to prove that U+ F has a fixed
point. With § and r, as in Lemma 2.2, we have, by Theorem 4, two
sequences of operators, (¥,) and (F,), on H such that for each n, ¥, restricted
to B'(0, ry) is a contraction with coefficient 6, < 1, F, is completely con-
tinuous with F,(H) contained in a line and

V,+F,— U uniformly on B'(0, ro).

Since Ux+ Fx is in B'(0, dry), 0 < < 1, for each x in B'(0, ro), there exists
ng such that for all n > n,

U,x+Fx is in B'(0, ry)
Here U, =V,+F,. We have
V,+F,+F: B'(0, ro) = B'(0, rg).

for each x in B'(0, ry).

Since V, is a contraction and F,+F is completely continuous, the operator
V,+F,+F has, by Theorem 1, a fixed point x,, ie,

x'l = Unxn + Fx'l -
Then

X, — Ux,—Fx; = U,x,—Ux,.

Since U, — U uniformly on B'(0, ry), we have

lim |[x,— Ux,—Fx}| = im {jU,x,—Ux,{ = 0.

By the corollary of Lemma 2.1, U+F has a fixed point. This completes the
proof. =
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