Countable modules
by
Anand Pillay (London)

Abstract. In this paper I prove that if R is a countable ring and M is an R-module, then
either M is Ng-categorical or there are infinitely many pairwise non-isomorphic countable R-
modules elementarily equivalent to M (in the usual language for R-modules). I also show that
for an arbitrary theory T (not necessarily a theory of modules), if every formula is equivalent
modulo 7T to a Boolean combination of certain ‘nice’ formulae, and T is not ®y-categorical, then
T has at least four countable models. This latter elimination property was suggested to us by the
example of modules.

Let me sum up the earlier results on the number of models of theories of
modules. Let R be a countable ring and T a complete theory of R-modules.
T is always stable. The possible spectra (number of models of T in each
cardinality) for uncountable models of T is known [9]. In the case in which T
is w-stable, the complete spectrum problem is solved ([2], [7] and [9]). In
particular the number of countable models of T is 1, N, or 2% An
important fact in the w-stable case is that every model of T is uniquely
expressible as a direct sum of indecomposable modules. For superstable' T,
the number of countable models is 1 or infinite, but this is a property of all
superstable theories. On the other hand there is at present no general
theorem on the number of countable models of an arbitrary stable theory.

In Section 1, I present some preliminary information on modules,
forking and forking in modules. In Section 2, I show that any theory of R-
modules, 7, has one or infinitely many countable models. In fact I show that
such a theory always has a non-isolated type of U-rank at most a, if it is not
No-categorical. The treatment is model-theoretic, rather than module-theoretic.
In Section 3, I consider a theory T satisfying more general conditions, and I
show that such a theory has either one or at least four countable models.
The treatment is in the style of [5], that is, without use of stability machinery
(although the theories under consideration will be stable).

I thank G. Cherlin for some very helpful suggestions.

1. T will always be a countable complete first order theory, and L the
language of T. A positive primitive (p.p.) formula of L is a formula of the
form @x%)(/\ @), where the O, are atomic formulae of L.

i<n
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If R is a ring with a 1 (in our case a countable ring), then the language
Ly for (right) R-modules contains “+” for module addition, “0” for the zero
element of a module, and also a symbol “+” for each element r of R, to
represent multiplication of module elements by r. "

The crucial tool in the model theory of modules is the following:

ProrosiTioN 1.1 [1]. Let T be a complete theory of R-modules. Then any
Jormula @ (%) of Ly is equivalent modulo T to a formula y(X), where \y(X) is a

Boolean combination of p.p. formulae.
Now let ¢ (X, 7) be a p.p. formula of Lg, where [(X) = n. Then it is not

difficult to see that, for any R-module M, ¢(X, O
tuples of M satisfying ¢(x, 0)) is 2 subgroup of M". Moreover, if ae M, then
o (X, @M is either empty or is a coset of ¢ (X, 0)®. An easy consequence of
this fact and Proposition 1.1 is that any theory of R-modules is stable.

For general stable theories a notion of forking has been developed by S.
Shelah. Namely, let A < B be subsets of a model of a stable theory, and p a
complete type over B: then a certain meaning is given to the expression “p
does not fork over A” (or equivalently “p is a non-forking extension of ¢
= p[A4”), the intuitive content of which is that if a realises p then a depends
on B no more than it depends on A. For the details, see [4]. It is worth
mentioning that an important fact about forking is that tp(a/4 u b) does not
fork over A iff tp(b/4 ua) does not fork over A (symmetry).

A useful rank on types is the U-rank (introduced by Lascar), which tells
one how many times a type can fork. To be more precise:

DerFiNTioN 1.2. Let M be a very big model of a stable theory. Let n
< . The ordinal valued rank U, on complete n-types over subsets of M is
defined as follows:

i) U,(p) =0 for any such type p, and

ii) Let p be over A. Then U,(p) = a+1 if there is B> 4 and n-type g
over B which extends p such that q forks over 4 and U,(q) > o.

We will normally omit n, its value being clear from the context. If
U(p)>a for all o, then we put U(p)=co. If U(p)=a < oo, then the
nonforking extensions of p are prec1sely the extenslons of p with U-rank a. A
stable theory is superstable if and only if all types have U-rank less than .

Let a@®p denote the natural sum of ordinals & and . Namely, if

y ’ ) , ,
a=0'n+on+ .. +o™n,  and =" m+eim+ .. o™ m,

where ny, ny, ..., n, my, my, .. »my are natural numbers and <y, 75....,9%,>
is a strictly decreasmg sequence ‘of ordinals, then

a®f =" (n; +m) + 0" (ny+my)+ ... + 0" (n+my).

Fact 1.3 [3]). Ler @, b he finite tuples and A a subset, all in a model of a
stable theory. Then U(rp(a”b/A)) < U(tp(@A ub))@U(tp(b/A))

M (which is the set of n- -
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We will now return to modules and see what forking means in that
context. Firstly, if p(X) is a type over A and ¢(X, y) is a L-formula, we say
that @(X, y) is represented in p if there is aeA such that ¢(X, @ep.

ProrosiTiION 1.4 [6]. Let M be an R-module, A = B be subsets of M,
and p and q be complete n-types over A and B respectively, such that p < q.
Then q is a forking extension of p if and only if there is a p.p. formula ¢ (X,9)
represented in q such that for every p.p. formula (X, Z) represented in p
(p(x, 0) A W (X, O)M has infinite index in (X, O)™.

Thus with any type over a subset of a module, one can associate a set of
p.p. definable subgroups, namely those subgroups cosets of which are in the
type. Moreover it is by looking at these associated sets of subgroups that one
can determine whether or not one type is a forking extension of another.

2. Let R be a countable ring and T a complete theory of R-modules.

In this section, I will, until otherwise stated, use ¢, Y to denote p.p.
formulae of Ly. A formula will be assumed to contain no parameters unless
those parameters are exhibited. Also I will tend to identify a formula and the
subset which it defines (in some big model of T, say). Thus, for example, I
will talk about the inclusion of formulae when I really mean the inclusion of
the subsets they define.

I will prove first:

ProposiTioN 2.1. If T is not Ngy-categorical, then T has a non-isolated
type p (over the empty set) such that U(p) < w.

Thus assume T to be non Ny-categorical. Thus S,(T) (the complete n-
types over Q) of T) is infinite for some n < w. For notational convenience, I
take n to be 1. (In fact if S,(T) is finite, then T is w-stable and we have a
classification of all the models.)

DeriniTioN 2.2. ¥ (x) is small, if there are only a finite number of ¢(x)
(up to equivalence modulo T of course) such that ¢(x) < ¢ (x). If Y (x) is
small I define h(z//) to be the largest n < w such that there are
Wo(x) E Vi (x) & W (x) =y (x). (Yo(x) is always x = 0.) If Yy (x) is not
small, I say ‘c) is big.

The following is obvious:

Fact 2.3. Suppose that \J;(x) for each i < m (where m < w) is small, and
that W (x) = \/ W, (x). Then W (x) is small.

Now I commence the construction of the required type (with thanks to
Cherlin for his help). First let ¥ = {1/(x): ¢ is small}.

LemMa 2.4. ¥ is consistent (modulo T of course).

Proof. If not, then there are small ;(x) for i<m such that
TH (Vx)(\/ ¢:(x)). But then there are clearly only a finite number of p.p. 1-
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formula up to equivalence modulo T. By Proposition 1.1 (p.p. elimination),
this implies that there are only a finite number of 1-formulae modulo T,
which contradicts our assumption that S, (T) is infinite.

Now let @ be a maximal set of p.p. 1-formulae such that # UV is
consistent with T. Thus by Proposition 1.1 again, Tu® U ¥ generates a
complete consistent 1-type of T, say p(x).

Note that @ is closed under finite conjunctions (the conJunctlon of a set
of p.p.’s being equivalent to a p.p.), and moreover that if ¢ €® then ¢ is big.

Facr 2.5. p(x) is not isolated.

Proof. Suppose that x(x) isolates p(x). Then as p is generated by
TUG UV it is clear that y is equivalent modulo T to @(x) A /\ T (x)

i<n

where ¢ is in- @ and thus big, and the ; are small. But then clearly y(x)
contains infinitely many p.p. formulae (i.e. the subset defined by y(x) contains
infinitely many p.p. definable subsets), which is a contradiction.

I now show that U(p) < w.

LemMa 2.6. Let qeS84(A) be a forking extension of p. Then there is
Y (x, 7) represented in g such that (x, 0) is small.

Proof. By Proposition 1.4, there is y(x, j) represented in g such that
for all ¢(x) in p, Y (x, 0) A @(x) is a proper subgroup of ¢ (x). In particular
we must have that Ty (x, 0)ep. But then

To{o() A A\ TG} W D)
where ¢ is big and the y; are small. Then we have

T o) A (x, 5)-*\</l//i(X)-

So by Fact 2.3, ¢(x) A Y(x, 0) is small. Clearly ¢(x) A ¥ (x, ) is represented
in g. So the lemma is proved.

Lemma 2.7. Let qe8,(A), and y(x, y) be represented in q, where (x, 0)
is small and h(y (x, 0)) <n < w. Then U(g) <

Proof. Easy, by induction, using again Proposition 14.

CorOLLARY 2.8. p(x), the type constructed above, has U rank at most .
anl(Pro of. Immediate by Lemma 2.6, Lemma 2.7, and Definition 1.2 of U
rank.

So Proposition 2.1 is proved, by 2.5 and 2.38.

‘Now by Theorem 10, Chapter 10 of [3], the fact that T has a
nonisolated type with some U rank (less than ) is enough to prove that T
has infinitely many countable models. However I will go on to show that the
condition that the type has U rank at most , enables one to construct a
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particularly nice sequence of models which witnesses T having infinitely
many isomorphism types of countable models. This being true in general, 1
now drop the assumption that T is a theory of R-modules. Thus T is now
simply a countable complete theory. Recall first that a set {d: i <a} of
tuples in a model of a stable theory, is said to be independent if for every i
<a tp(@/\U{d;: j <a,j+#i}) does not fork over @. Moreover for any type p
there are always independent sets of realisations of p of any :cardinality.

ProrosimioN 2.9. Let T be stable and p a non-isolated (complete) type of
T (over Q) such that U (p) < w. Suppose that {;: i < )} is an independent set
of realisations of p in some model of T, and that further, for each n < w the
model M, is prime over \){@;: i <n}. Then m < n implies that M, and M,, are
not isomorphic.

Proof. Note that the models M, are all countable models of T. Let me
remark first that for each n < tp(a@,/U {@: i <n}) is not isolated. This is a
consequence of the “Open map theorem” [4].

There are now two cases to consider.

Case I) U(p) is finite. It then follows from Fact 1.3 that for all n <
tp(a@gay ... "a,-,) has finite U rank. It is now a consequence of Theorem 13,
Chapter 13 [3], that for each n, M, is relatively homogeneous. This means
that if be M, and tp(b) = tp(agay ... "a,—,), then there is an automorphism
of M, taking apap..."d,., to b. Thus, as tp(a/agal ... d,-,) is not
realised in (M, agay ... "a,-,), it follows that tp(agaf ... "a,—,"a,) is
not realised in M,. It is then clear that if n <m then M, and M,, cannot
be isomorphic.

Case II). U(p) = w. It follows from Fact 1.3 that p is regular. Namely,
if tp(a/A) is a nonforking extension of p and tp(b/A4) is a forking extension of
p, then @ and b are independent over A. Then, as in [8], for any model M of
T, all maximal independent sets of realisations of p in M have the same
cardinality. It now suffices to see that for each n < w, {@, @y, ..., 8,-,} is a
maximal independent set of realisations of p in M,,. But this is a consequence
of the Open Map theorem, and the fact that M, is prime over
a3a)..."d,_,. Thus again the models {M, n<w} are pairwise
nonisomorphic.

Thus we have shown that a non Ny-categorical theory of R-modules has
infinitely many countable models. Note that we can assume that T has prime
models over all finite sets, for if not, T has 2 Mo types, and thus 2" countable
models.

3. T is again simply a countable complete theory in a language L.

DerFinNiTioN 3.1, I will say that T is wuniform if there is a set & of
formulae of L, closed under conjunction such that:
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i) any formula ¢(X) of L is eqhivalent modulo T to a Boolean
combination of formulae in @ (with free variables among X), and
i) if @(X, y)ed, then

TH V9 7, (@0 (0 (%, 71) A 0 (X, 7)) = (VR0 (%, 7)) <0 (X, 72))).

Note that by Proposition 1.1 and the remarks following it, any theory of
R-modules is uniform, where @ is just the set of p.p. formulae of L.
However an important property of theories of modules is not captured by the
definition of uniform. This is the property that if ¢(x, d@;) and ¢(x, d;) are
p.p. definable subsets of a big module, then the Boolean algebras of the
definable (with parameters) subsets of ¢(x, ;) and ¢(x, @,) are isomorphic,
It is this property that accounts for the simple expressions of forking and
ranks in modules, that we have used in the previous .sections. Thus such
reductions will not be a priori available in the case of uniform theories.

ProrositioN 3.2. If T is uniform then T is stable.

Proof. Let M be a model of T and p(X) a complete type over M. Then
it is easy to see that p is definable. It is enough by 3.1 i) to check this for
formulae in @. So let ¢ (%, ) be such a formula. If say ¢ (%, @ ep, then by 3.1
i) for all b in M ¢(%, b)ep iff ME 3%)(¢(X, @) A @(X%, B). If on the other
hand ¢(X, ¥) is not represented in p, then we have for all b in M ¢ (X, b)e p
iff MEb #b.

However within the class of stable theories, there are a variety of
uniform theories. The case of modules provides such theories which are w-
stable, superstable and non-w-stable, or non-superstable. I leave the reader to
find examples which are multidimensional, nonmultidimensional, with the
fc.p. or without the fc.p.

I will prove:

Prorosimion 33. Let T be a ‘“non-No-categorical” uniform  theory.
Then T has ar least four countable models up to isomorphism.

DeriNiTioN 34. A model M is relatively homogeneous, if M is prime
over a finite set @, and whenever be M and tp(b) = tp(@) then there is an
automorphism of M taking a to b.

I will use the following result which can be extracted from Theorem 2.1
of [5].

PRrOPOSITION 3.5. Let p(X) be a complete n-type of T (an arbitrary
complete countable theory), such that p has Cantor-Bendixon rank 1. Let M be
prime over b, where tp(b) = p, and suppose that M is not relatively homogen-
eous. Then there is a 2n-formula o (%, y) of L(T) and n-formulae (%) of L(T)
Jor i < w, such that

i) a(b, 7) is a complete n-formula of Th(M, b).

i) ¢;(%) is a complete nformula of T, for all i < w.
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i) M @%)(0i(%) A (X, b)), for all i< o. -

iv) For all i, j < w, ME=@X3)(0:;(%) A ¢;(7) A (X, ) iff i <j.

Proof of Proposition 3.3. Let T be a uniform theory which is not
No-categorical. We can assume that S(T) is countable, and thus for some n
< o, there is a complete n-type p(%) of Cantor-Bendixon rank 1. Let M be a
model of T which is prime over b, where tp(b) = p. I will show that M is
relatively homogeneous. Suppose not. Then there are formulae « and ¢;, i < w,
as in 3.5 satisfying i)-iv) of 3.5. Let @ be a set of formulae as in Definition 3.1
which witnesses the uniformity of T. Thus by Definition 3.1 i) and 3.5 i), we

n
can assume that a(X, y) is of the form ¢ (%, y) A Z\l ; (%, ), where ¢ and

the y; are in @. .
By 3.5 iii) we can choose for each i < @, & in @M such that M = a(d, b).

OBSERVATION 3.6. There is, for each i <j < w, an n-tuple ¢;; in (p§“ such
that M= o(a;, T;j).
Proof. Take i <j. By 3.5 iv) we have
ME @) (0:(® A 0;(7) A 2(%, 7).
As ¢;(%) is complete, it follows that
M = (V%) (0 (5 = @5) (9, A (%, 7))
But ME ¢,(@). Thus we can find the required ;.

OBSERVATION 3.7. Let k< w and i <j<w. Then M= (@, E,-j)._
Proof. Let k, i, j be as in the line above. Now M= a(a, b) and

Mk a(@, b). Thus (as « is just ¢ A A\ W) ME @@, b) A ¢(@, b). But
i=1

M ¢(a@, ¢;), by Observation 3.6. Thus as ¢pe® and by Definition 3.1ii),
it follows that M (&, ;).

OuservaTION 38. 1) If i <j <w, then M= [\ W, (@, Ty)-
i) If i <j<k<w, then M= \ ¥, (@, &y)-
r=1

_Proof. i) is clear because i <j implies M = o (d;, T;j)-
For ii): Let i <j <k Now g;eq}, and @eq. Thus by 3.5 iv) we have

M= Ta(d, &) But a(X, 7 is @& ) A /_\1 W, (X, ¥, and we know
that M= ¢ (&, &) (Observation 3.7). Thus M= \_/1 Vo (@ T

Now we try to obtain a contradiction. I define f: [w]® — {1, 2, ...in}_as
follows: if i <j <k, then f(i, j, k) = the least r such that ME ¢, (a, ¢)).
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(Such an r must exist by Observation 3.8 ii)). Thus by Ramsey’s Theorem
there must be an infinite X < w, which is homogeneous for f. That is, there is
s < nsuch that if 4, j and k are in X and i <j < k then

(¥ M=y, (@, &)).
Now choose iy <i; <i, <iy <i, all in X. Thus by (%), we have
M=, (@, Tyi,) A Vs @y, Tp)) A U3, Ciyiz)-

But y,ed. Thus it easily follows (from Definition 3.1 ii)) that
M= (@, T,;,)- But this contradicts Observation 3.8 i). This contradiction
proves that M is relatively homogeneous. As in the proof of Proposition 2.9
it follows that there is some type g of T which is omitted in M. Let N be
prime over a realisation of g. Then M, N and the prime and countable
saturated models of T give us our four models. So Proposition 3.3 is proved.

- I should like to thank the C.N.R.S. for their financial support during a
visit 'to Université Paris VII when some of the above results were obtained.
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Fixed point theorems and almost continuity
by

Vladimir N. Akis* (Davis, Ca.)

Abstract. In 1959, John Stallings asked the following question which he attributed to K.
Borsuk : Suppose K is a non-separating planar continuum contained in the interior of a disk D. Is
there an almost continuous function r: D — D such that r(D) = K and r|K = id? We answer this
question negatively. We also show thatif Xo > X, o ... » X,  X,,; @ ... is a sequence of ARs,
with retractions f,: X,_, = X,, such that xe X,,_, ~ X, implies f,(x)e(\ X}, then " X, has the
fixed point property.

1. Introduction. Throughout this paper X, Y and Z will denote topological
spaces. A map is a continuous function. When f: X — Y may not be continuous,
we refer to it simply as the function f. An absolute retract (AR) is a retract of the
Hilbert cube. A space X has the fixed point property, if for each mapf: X — X
there exists x & X such that f(x) = x. The graph of a function f* X — Y is the
subset of X x ¥ consisting of the points (x, f (x)); this set will be symbolized
ro.
J. Stallings [11] defined a class of functions, which he named almost
continuous, for the purpose of studying the fixed point property.

Dermnirion 1 [11, p. 252]. A function f2 X — Y is almost continuous if for
each open subset % of X x Y such that I'(f) = %, there exists amapg: X =Y
such that I'(g) c %.

TueoreM 1 [11, p. 252]. A Hausdorff space X has the fixed point property
if and only if every almost continuous function f: X — X leaves a point fixed.

THeorEM 2 [11, p. 260]. Iff: X — Yis almost continuous and g: Y— Z is
a map, then gft X — Z is almost continuous.

DerFiNTION 2. If Yo X and r: X — X is an almost continuous function
such that r(X) = Y and r(x) = x for all xe ¥, then r is called a quasi retraction
and Y is called a quasi retract of X(*).

* The author gratefully acknowledges numerous conversations about topics in this paper

with Professor C. L. Hagopian.
(") In the Literature quasi retractions have been called almost continuous retractions. We

have avoided the term “almost continuous retraction” because it has also been used for almost
continuous r: X — Y such that r(x) = x for all xeY.
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