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The equicontinuous structure relation of
a unicoherent point-transitive flow

by
Mark D. Wochele (Amherst, Mass.)

Abstract. We prove that if (X, T) is a point-transitive transformation group, where X is a
compact unicoherent space and T is a connected abelian Lie group, then (X, T) has no nontrivial
equicontinuous or distal homomorphic images. Hence unicoherent point-transitive flows are
highly nonrecursive and possess dynamical properties similar to unicoherent minimal flows.

In connection to this result, we discuss the existence and properties of point-transitive
continuous flows (S",R), n>2, on the n-sphere. Concrete examples of unicoherent point-
transitive flows (8" R¥), n > k > 2, are given, We show how our theory applies to these examples.
In addition, we study the question: For n 2 2, what is the least positive integer k such that
point-transitive actions (5", R¥) exist?

I. Introduction. An open question in topological transformation group
theory is: Do point-transitive actions (actions such that some orbit is dense)
of the additive group of real numbers R on higher-dimensional spheres S", n
= 2, exist? The question of existence of such flows is closely related to a
conjecture of Seifert, made in 1950, that each continuous flow (S? R) has a
closed orbit. Although Seifert’s conjecture has been proved false [12], the
question of existence of point-transitive continuous flows (S R) remains
open.

In this paper we show that if (X, T) is a point-transitive transformation
group, where X is a compact unicoherent space and T is a connected abelian
Lie group, then (X, T) has no nontrivial equicontinuous or distal homomor-
phic images. Hence (X, T) is highly nonequicontinuous and highly nondistal.
In particular, if point-transitive continuous flows (8", R), n > 2, do exist, they
are highly nonequicontinuous, highly nondistal, and could not be built up as
products or extensions of simpler equicontinuous or distal flows.
DEermNITION 1.1. A transformation group (or flow) is a triple (X, T, =) such
that: :

1) X is a nonempty compact Hausdorff space,

2) Tis a separated topological group,

3) m: XxT— X is a continuous map satisfying

i) m(x,1) =Xx (xe X, 1 =identity element of T);

i) m(x, by t2) =n(m(x, ty), 1)) (xe X; 1y, t,eT).

X (T) is called the phase space (phase group) of (X, T, n).


GUEST


180 M.D. Wochele

We frequently suppress n and write (X, 7) instead of (X, T, n); also if
xeX and te T we usually write the abbreviated notation xt for n(x, t). In
certain instances, the action of a transformation group is denoted by ; in this

case we write xxt for *(x, ).

' If T= R, the additive group of real numbers with its usual topology, we
call (X, T) a continuous flow. We sometimes write the shortened notation X
=Y if X is homeomorphic to Y, and G~ H if G and H are isomorphic
topological groups.

DeFmvumion 1.2. Let (X, T) be a transformation group.

1) Let xe X. The orbit of x, denoted by xT, is the subset {xt| te T} of X.

2) (X, T)is said to be point-transitive if some orbit of (X, T) is dense in X.

3) (X, T) is said to be minimal if each orbit of (X, T) is dense in X. Of
course, if (X, T) is minimal, then (X, T) is point-transitive.

4) Let A= X and S T. 4 is said to be S-invariant if AS = [as|acA,
seS}t < A

Derivition 1.3. Let (X, T) and (Y, T) be transformation groups, and let
¢: X > Y be a continuous map. '

1) ¢ is said to be a homomorphism of (X, T) to (Y, T) if ¢(xt) = @(x)t
(xeX,teT). If p: X »Y is a surjective homomorphism, we write ¢: (X, T)
(Y, T). If such a surjective homomorphism ¢ exists, we write (X, T)
(Y, T) and call (Y, T) a homomorphic image of (X, T).

2 If ¢: (X, T)3(Y, T) is a homeomorphism, we write ¢: (X, T)
= (Y, T) and call ¢ an isomorphism of (X, T) to (Y, T). If such an isomor-
phism ¢ exists, we write (X, T) = (Y, 7).

Remark 14. If ¢: (X, ) (Y, T) and (X, T) jis point-transitive
(minimal), then (¥, T) is point-transitive (minimal). If R is a closed Ttinvariant
equivalence relation on (X, T) there is a canonical action of T. on the
quotient space X/R, and we denote this induced flow by (X/R, T).

DerFNiTion 1.5. -A transformation group (X, T) is said to be quasi-
separable if (X, T) is point-transitive and (X, T) > lim(X,, T), the inverse

. asR
limit transformation group of an inverse system (X, T); ¢, § = )., of
point-transitive transformation groups having compact metric phase spaces
[8, ‘Theorem 2.2]. '

In particular, a point-transitive transformation group with compact
metric phase space is quasi-separable.

ProposITION 1.6. Let (X, T) be a point-transitive flow such that T is a
connected abelian Lie group. Then (X, T) is quasi-separable.

Proof. According to [14, Proposition 1.2], each point-transitive flow
(X, T) with o-compact phase group is quasi-separable. From [11, p. 415],
each connected abelian Lie group is topologically isomorphic to a o-compact
group R”x T* for some n > 0 and k > 0. Therefore (X, T) is quasi-separable.
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II. Main Theorem of unicoherent point-transitive flows. To lay further

ground work for our results, we define several more specialized terms of

topological dynamics and discuss the topological property, unicoherence.

DeriNirioN 2.1, Let (X, T) be a transformation group. (X, T) is said to
be (uniformly) equicontinuous if for each index aeU, the unique uniform
structure of X, there exists feU such that fT< o It follows from [2,
Proposition 4.4] that (X,T) is equicontinuous if and only if (X, T) is almost
periodic.

DerinerioN 2.2 The proximal relation P of (X, T) is defined lo be
N {aT| we U}. Two points x,ye X are said to be proximal if for each ae U,
there exists te T such that (xt, yt)ea. (X, T) is said to be distal if P = 4, the
diagonal of X x X, and xeX is a distal point if xP = {x},

Derinimion 23, The equicontinuous structure relation (distal structure
relation) of (X, T) is defined to be the smallest closed T-invariant equivalence
relation Z'(S) on X such that (X/Z, T)is equicontinuous ((X/S, T)is distal). We
call X/X (X/S) the equicontinuous structure space (distal structure space) of
(X, T), and we note that (X, T) is equicontinuous (distal) if and only if £ = 4
(S = 4).

Remark 24, If (Y, T) is an equicontinuous (distal) homomorphic image
of (X, T), then (Y, T) is also a homomorphic image of (X/2, T) ((X/S, T)),
respectively. If (X, TV = (Y, T) and (X, T) is equicontinuous (distal), then
(Y, T) is equicontinuous (distal).

DeriNimioN 2.5. A point xe X is said to be almost periodic under T if
given a e U, there exist a syndetic subset A of T such that x4 < xa., (X, T) is
pointwise almost periodic if and only if each point of X is almost periodic.

Remark 2.6. From [4, Theorem 4.10], xe X is almost periodic if and
only if xT is a minimal set. If (X, T) is distal, then (X, T) is pointwise almost
periodic, and if xe X is a distal point, then x is almost periodic [1, Lemma
2]

DeriNrrioN 2.7. (X,T) is said to be locally almost periodic if given xe X
and a neighborhood U of x, there exists'a neighborhood V of x and a
syndetic subset 4 of T such that VA < U. If (X,T) is locally almost periodic,
then (X, T) is pointwise almost periodic.

DeriNrrioN 2.8. A unicoherent space is a compact, connected, locally
path-connected Hausdor{f space such that each continuous map ¢: X —S*
is homotopic to a constant map.

Remark 29. (See [10, p. 438], [13, p. 103]). Let X be a compact,
connected, locally path-connected Haunsdorff space. The following statements
are equivalent.

1) X is unicoherent. .

2) For each pair 4, B of closed connected subsets of X such that AUB
= X, the intersection AnB is connected.
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3) For each n > 1, each continuous map ¢: X — T" is homotopic to a
constant map, where T" = (S')" is the n-dimensional torus.

4) For each n > 1, each continuous map ¢: X — T" induces the zero
homomorphism ¢y4: 7y (X)— n, (T") between fundamental groups.

A flow (X, T) is called a unicoherent flow if X is unicoherent.

Several preparatory lemmas will be required before we can state the
main theorem of this section.

Lemma 2.10. Let G be a compact connected abelian topological group such
that G # {0}. Then there exists a closed subgroup H of G such that the quotient
group G/H is topologically isomorphic to T* for some positive integer k.

Proof. By [5, Theorem 9.5], there exists a closed proper subgroup H of
G such that G/H is topologically isomorphic to T* x F for some nonnegative
integer k and some finite abelian group F. Since G is connected, G/H and F
are also connected, which implies F = {0} and k > 0.

Lemma 211 (Gottschalk-Hedlund-Ellis structure theorem for equi-
continuous minimal flows [4, Theorem 4.48]). Let (X, T) be a flow with
abelian phase group T. The following two statements are equivalent.

1) (X, T) is equicontinuous and minimal.

2) There exists a group structure (X, ») on X which makes X an abelian
topological group, and there exists a continuous group homomorphism @: T— X
such that -

i) ¢(T) is dense in X.

ii) (X, T) is isomorphic to the transformation group (X, @, *, T) whose
action is defined by:

(x, ) >xx@() (xeX, reT).

The next lemma is essential to the proof of our main theorem.

Lemma 212 ([7, Theorem 2.2]). Let @: (X, T) (Y, T) be a homomor-
phism of a flow (X, T) onto a minimal flow (Y, T). Suppose that X is compact,
connected, and locally arcwise connected, that Y is locally arcwise connected
and semi-locally 1-connected ([13, p. 781), and that T'is a connected Lie group.
Then ¢4 (n, (X)) has finite index in m, (Y).

The . next lemma is an immediate consequence of the “Hahn-
Mazurkiewicz theorem” [6, Theorem 3-307.

Lemma 2.13. Each.compact locally path-connected Hausdorff space is
locally arcwise connected. Therefore, each unicoherent space is locally arcwise
connected.

Our final preparatory lemma states the primary result of this section.

Lemma 2.14. Let (X, T) be a unicoherent point-transitive flow where Tis g
connected abelian Lie group. Then (X, T) has no nontrivial equicontinuous
homomorphic images, or equivalently, T = X x X.

icm

The equicontinuous struciure relation of a unicoherent point-transitive flow 183

Proof. We show that X/Z, the equicontinuous structure space of
(X, T), is a one-point space.

Suppose on the contrary that X/X contains more than one point and
consider the equicontinuous flow (X/Z, T). Since (X, Ty~ (X/Z, T), Remark
1.4 implies that (X/Z, T) is point-transitive. Since (X/Z, T) is equicontinuous,
(X/Z, T) is also pointwise almost periodic. Therefore (X/Z, T) is a minimal set
by Remark 2.6.

By Lemma 2,11, there exists a group structure * on G = X/X which
makes G = X/I a compact abelian topological group, and there exists a
continuous group homomorphism ¢: T — G such that (X/X, T) is isomor-
phic to the flow (G, ¢, *, T) whose action is defined by: (x, t) = xx@(t)
(xeG, teT). By Lemma 2.10, there exists a closed subgroup H of G such
that G/H is topologically group isomorphic to T* for some k > 1. There is a
naturally induced transformation group (G/H, T) whose action is defined by:
(xH, t) = x*@(t)H (xe G, teT), and the canonical projection p: G — G/H is
a homomorphism of (G, @, *, T) onto (G/H, T). Since G/H is homeomor-
phic to T*=(SY)%, a standard result of homotopy theory implies that
7, (G/H) = my (S*) =~ Z* [14, Lemma 14].

Since (X, T) »(X/Z, T) and (X/Z, T) ~(G, @, *, T), there is a homo-
morphism : (X, T) 33(G, ¢, *, T). Consequently, py: (X, T)=3(G/H, T).
Now X is locally arcwise connected by Lemma 2.13, G/H is locally arcwise
connected and semi-locally 1-connected and (G/H, T) is minimal. Therefore
Lemma 2.12 implies (p) 4 (1 (X)) has finite index in 7, (G/H) ~ Z* But X is
unicoherent and G/H = T, so (py)4: ny(X) —n,(G/H) equals zero by
Remark 2.9.

We have reached a contradiction. Therefore, X/X is a one-point space.

We are now ready to state our “Main Theorem” which describes the
structure relations of a unicoherent point-transitive flow.

TueoreM 2.15. Let (X, T) be a nontrivial unicoherent point-transitive flow
where T is a connected abelian Lie group. The following conclusions hold:

(1) Z=XxX.

(2) (X, T) has no nontrivial equicontinuous homomorphic images; in par-
ticular, (X, T) is not equicontinuous.

3) S=XxX.

(4) (X, T) has no nontrivial distal homomorphic images; in particular,
(X, T) is not distal.

(5) (X, T) is not locally almost periodic.

(6) No distal point of (X, T) can have dense orbit in X.

(7) The set {¢| @: (X, T)~(X, T)} of automorphisms of (X, T) is not
universally transitive on X.

Proof. Conclusions (1) and (2) follow directly from Lemma 2.14.
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To prove (3), we show that the distal structure space X/S is a one-point
space. Suppose on the contrary that X/§ contains more than one point, and
congider the induced distal flow (X/S, T). Since (X, T) ~(X/S, T), Remark
14 implies that (X/S, T) is point-transitive, Therefore Proposition 1.6 implies
(X/S, T) ~ l}x_g(Y,,, T), the inverse limit of point-transitive flows (Y T)hjeq
having compact metric phase spaces.

Since (X/S, T) is nontrivial, there exists oe such that (Y, T) is
pont;ivial. Now Definition 2.3 and Remark 2.6 together imply that (“X/S, T)
is distal and minimal. Hence li‘r_n(Yﬂ, T) is also distal and minimal. Now

Befd :
Pat 1;::_2(}",, T) (¥, T) is a homomorphism, so (%, T) is distal and minimal
by Re.m.arks 2.4 and 14, respectively. Since (%, T) is compact, metrizable, and
nogtanl, a result of H. Furstenberg implies that (Y, T) has a nont’rivial
equicontinuous homomorphic image (Z,, T) [3, p. 499]. Thetefore, we have
(X, )3(X/S, T) :E‘{E(Yp’ T) %(Y,, T) >(Z,, T), which implies (X, T) has

a nontrivial equlcontlnuous hoﬂlolﬂolphlc image. I 18 COlltl:ldlCiS con-

Conc]usion 4) follows immediately from (3).

o ﬁTq prove ‘(5), suppose that (X, T) is locally almost periodic. Then

he m(:wn 27 {mphes that (X, T} is pointwise almost periodic. Let xeX

have dense.orbit in .X."I"h‘en X is an almost periodic point, so Remark 2.6

$1h€(1:1];:s s:gzs(ﬁ; TtI’) is m'lmmal. But this contradicts Theorem 1.10 of [14]
! a o . . g

hniooiacio 2 unicoherent minimal abelian flow cannot be locally

To prove (6), suppose xe X is a distal po; i
. (6), stal point. Then Remark 2.6 impli
g almost periodic. If x has dense orbit, then (X, T)is a minim:ll Is:,eltesb;'c
emark 2.6. But this again contradicts Theorem 1,10 ,of {141

Conclusion  (7) s aclusion’ (4) -ai
10081 (7) s a consequence of conclusion (4)j{§m;l [4, Theorem
An additional conclusion to Th i the ol
: eorem - 2.15 is the following:
(S:gntmu}c:us complex-valued function fi X = ¢ such that ! (,xr) : yzggf (x?i’f)}rl
by Lemms 214 snd [ Lo 13, oo, Ly conbion s impid
. » Lemma 3.3] when X is metrizable, and the
used for the metric case can be read; bl e
i e readily extended to a proof of the quasi
separable case. This result suggests an dppros o might oo fp prl
_ €. tlus result suggests an dpproac \ j
& pomnt-transitive continuous flow ($°, 13)) cou?d(":gtn:filsl: S R L, that

. I;emark ?..16. Let(Y, T) be a'nohfrivial hbmomcrphic ‘i'miwg( ; of a4
unicoherent poant-mam?uvei\~'@w ;'where~T'is -a connected abelidn “Lie
group. Then (Y, T) satisfies each conclusion of Theorem 2.15.

icm®

The equicontinuous structure relation of a unicoherent point-transitive flow 185

Proof. Conclusions (1) and (2) follow immediately from Lemma 2.14.
The remaining conclusions are proved using [8] and Theorem 1.10 of [14].

I11. Examples and discussion. In this section we construct some examples
of unicoherent point-transitive flows (S", R, n > k > 2, and use Theorem
2.15 to discuss their dynamical properties.

We conjecture that the proximal relation of a unicoherent point-
transitive flow of Theorem 2.15 is necessarily dense. Certainly if such a flow
in addition were minimal, Theorem 1.10 of [14], which proves several key
properties of a unicoherent minimal flow, states that P is dense and X' =§
= X x X. We think however that P might still be dense when(X,T) is point-
transitive because the conclusion XZ = § = X x X still holds in that case, just
as it does when (X, T) is minimal.

We begin our discussion with a basic example of a unicoherent point-
transitive flow. ‘

ExampLE 3.1. Let T= R n> 2. Then (T, T) the induced action of T on
its one-point compactification T'= TU{oo}, has the properties:

(1) (T, T) is a unicoherent point-transitive flow with two orbits, one of
which, {c0}, is a fixed point. o

(2) The proximal relation P of (T, T) equals Tx T.

Proof. The one-point compactification T'= R"U {0} of R" is homeo-
morphic to $", which is unicoherent. Now Tand {co} are the only orbits of
T. Hence (T, T) is point-transitive and has two orbits, one of which, {oo}, is
a fixed point. Therefore (1) is proved.

To prove P = Tx T, let x, ye R"U{co} and t,, =(m, m,...,meR", meZ,
m > 0. Then xt,— oo and yt,—co as m becomes infinitely large. Hence
(x, y)e P, proving (2).

We note that the flow just constructed has closed proximal relation and
is proximally equicontinuous. An open question related to conmstructing
unicoherent point-transitive flows is: Given n > 2, what is the least positive
integer k such that there exists a point-transitive action of R* on $"? In
particular, for n > 2, does there exist a point-transitive flow (8", R)? The next
examples show that, in constructing such flows, some reduction in dimension
from k = n is indeed possible. A preliminary result is required.

LemMA 3.2. A minimal continuous flow (T*, R) on the k-dimensional torus
T* = {(zy, 22, .-» 20l 1€ C, |z = 1, 1 < i <k} is defined by: (21,23, -+, 24), 1)
- (z,€", 2,67, ..., 2&™¥) (teR), where {m, 01, 0,...,%,} S R is linearly
independent over Q.

Proof. That each orbit of (T*, R) is dense is just a restatement of the
Kronecker approximation theorem (see [5, p. 435]).

We use Lemma 3.2 to construct a unicoherent point-transitive flow
having a dense but nonclosed proximal relation.
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ExampLE 3.3. For n >3, let $§2"% =C" 'U{w}, the one-point com-

pactification of C'"! = R*~2, and let {m, oy, 03, ..., %,—y} S R be linearly
independent over Q. Then a point-transitive flow (S*'~2, R") is defined by:
((Zh 2oy eeny zn»l)s ([1, rla e rn)) _)(2‘121 emltna 2‘2228“‘2"1’ LR} 2tnwlznwlela',~ lt")

(zeC, 1<i<n—1; ;eR, 1 <j< n), (o0, F) - co(fe R"). Then:

(1) This flow has infinitely many orbits, two of which, {0} and {o0}, are
fixed points.

(2) P=8""2x 8% 2_{(0, o), (c0, O)}. Therefore P is dense in $2"~2 x
% 8%"~2 but is not closed. ‘

Proof. (1) The map of C""! x R" to C""! we have defined satisfies all
properties required of an action, and the extended action of R" to
C""1u{oo} = 8272 is easily seen to be continuous at co. A standard
dimension-theoretic argument shows that (S>"~% R") has infinitely many
orbits, and Lemma 3.2 implies that each point (zy, z,,..., z,- ) €C"™4, 2, % 0
(1 <i<n—1), has dense orbit.

(2) To show P = S22 x §2"2_{(0, w0), (o0, O)}, Jet (x, y)e C*~ ! x C"~ !
and t,=(—n, —n,..., —n), neZ, n>0. Then xt,—0 and yt, -0 as n
becomes infinitely large. Hence (x, y)e P.

Let  (x, ))eS¥ 2 x 8§ 2—(C"" ! x C""1U{(0, 0), (0, 0)}), and t,
=(n,n,...,n)ekR’ neZ, n>0. Then xt,—~ o0 and yt, -0 as n becomes
infinitely large. Therefore (x, y)eP. Now 0 and oo are not proximal in
(8?72, R" because they are distinct fixed points. Hence P = $21=2 x §21-2
—{(0, ), (o0, 0)}. Consequently, P is dense in $*'~2x5%*~2 but is not
closed. ‘

Our next result shows how the techniques of Examples 3.1 and 3.3 may
be combined to produce flows having dense closed proximal relations.

ExampLe 34. For n>3, let §77% =(C""2x R)u{w}, the one-point
compactification of C""?x R = R*3, and let {, a, ay,..., %2} S R be
linearly independent over Q. Then a point-transitive flow (S>3 R is
deﬁn?d by: ((zil,zz,...,z ~2 B (ts b, oy 1) > (212071 227, 2t
e 27722, 0¢8N ) (26C, 1< i<n=2, teR;neR 1<j<n),
(0, )= 0 {fR"). Then:

' (1) (8*"~2, R" is point-trapsitive and has infinitely many orbits, one of
which, {co}, is a fixed point.

(2) P =58%"3x82"3 Therefore P is closed.

Proof. A straightforward exercise shows that ($?"~3, R") satisfies all
properties required of a transformation group, and Lemma 3.2 implies that
each point (z%, 225005 Zy-2, )EC" 2 xR, 2, #0 (1<i<n—2), has dense
orbit. By duplicating the proof of Example 3.1, it follows that P = §2n~3x
x 8%"~3, Therefore P is closed.
fouovl:jl:,:mii:l Sl(':l‘:{l]éllr mEconstruction, the two pr.evious exa.mples differ in the

pect: In Example 34, the proximal relation is closed; in
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Example 3.3, it is not closed. Hence the flow of Example 3.4 is proximally
equicontinuous, but that of Example 3.3 is not proximally equicontinuous.
Our results show that for »n > 3, a Euclidean group of dimension less than n
can act point-transitively on S". For instance, Example 3.3 shows that R® can
act point-transitively on $'4. Additional information concerning this question
would be desirable.

Examples 3.1, 3.3, and 3.4 support the conjecture, raised earlier, that the
proximal relation of a unicoherent point-transitive flow is necessarily dense.
Our next result lends added support to this conjecture.

ProPOSITION 3.5. Let (X, T) be a nontrivial unicoherent point-transitive
flow where T is a connected abelian Lie group. If either (X, T) is weakly
mixing or (X, T) has a fixed point, then P is dense in X x X.

Proof. If (X, T) is weakly mixing, Proposition 1.6 implies (X, T)
is quasi-separable. Now [14, Lemma 2.20] states that the product flow
(X x X, T), defined by ((x, y), £) = (xt, yt) (x, ye X, te T), of a weakly mixing
quasi-separable flow is also quasi-separable. Hence (X x X, T) is point-
transitive. Let (x,y)eXxX be a point having dense orbit. Then
(x, y) Tn4 # ©, implying that (x, y) T< P. Therefore P is dense in X x X.

If (X, T) has a fixed point, it follows that yTx yT< P, where y is some
point of X having dense orbit. Hence P is dense in X x X.

Thus, if the hypothesis of Theorem 2.15 is strengthened with the added
assumption that (X, T) is weakly mixing or has a fixed point, the conclusion
that P is dense readily follows. We note that the proof of Proposition 3.5
primarily depends upon this added assumption and not upon the unicoher-
ence of X. However, our results do suggest that if (X, T) satisfies the
hypothesis of Theorem 2.15, then (X, T) might have a.fixed point or be
weakly mixing. This conclusion certainly holds if X is a compact polyhedron
of nonzero Euler characteristic and T= R [13, p. 197] or if (X, T) is minimal
[14, Theorem 1.8]. If this conjecture were true, so would be our original
conjecture that the proximal relation of a unicoherent point-transitive flow is
dense.

IV. Summary. The results of Theorem 2.15 give useful information about
the properties a unicoherent point-transitive flow must possess. In particular,
if a point-transitive flow (S", R), n>2, does exist, it must be highly non-
equicontinuous and highly nondistal. Examples 3.3 and 3.4 show that some
reduction from k=n in the dimension of the group R* acting point-
transitively on S" is indeed possible. It is also evident that, in addition to the
property of unicoherence, the existence of fixed points also influences the
dynamical behavior of a transformation group.

To summarize our results as they apply to questions posed in this
paper, we state a final corollary to Theorem 2.15.


GUEST


188 M. D. Wochele

CoROLLARY 3.6. Let (X, T) be a point-transitive flow where X is a sphere,
real or complex projective space, or lens space (of dimension greater than one),
and Tis a connected abelian Lie group. Then (X, T) satisfies all conclusions of
Theorem 2.15 and Proposition 3.5.
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Connectivity properties in hyperspaces
and product spaces

by -
Charles Dorsett (College Station, Tex.)

Abstract. In this paper connectedness, local connectednesg, and point-wise Jocal connected-
ness and connectedness im kleinen in hyperspaces of product spaces and product spaces of
hyperspaces are investigated and the relationships between these comnectivity properties in
hyperspaces of product spaces and product spaces of hyperspaces are determined. In order to
include as many spaces as possible, the results in this paper are stated and proved for Rg and R,
topological spaces. .

1. Introduction. One of the earliest results about connectivity properties
in hyperspaces, due to Wojdyslawski [7] in 1939, is that for a metric
continuum (X, T), (2%, E(X)) is locally connected (Lc.) iff (X, T) is lc. Since
1939 mathematicians have continued the investigation of connectivity prop-
erties in hyperspaces. In this paper connectivity properties in hyperspaces of
product spaces and product spaces of hyperspaces are investigated. In order
to include as many spaces as possible, the results in this paper are stated and
proved for weak topological spaces. Listed below are definitions and
theorems that will be utilized in this paper.

DeFinition L1 A space (X, T) is R, iff for each 0e Tand x€0, {x} =0
[11.

DeriNrTioN 1.2. A space (X, T) is Ry iff for each pair x, yeX such that
m ;ém, there exist disjoint open sets U and V such that {x} = U and
yeviil

DerinmioN 1.3, Let (X, T) be a space, let 4 < X, and define 2%, C(X),
K(X), 8(A), and I(A) as follows: 2¥ = {F = X] F is nonempty and closed},
C(X)={Fe2X F is connected}, K(X)= {Fe2X| F is compact}, S(A)
= {Fe2¥ F <A}, and I(4) = {Fe2X| FnA+# Q}. Then the Vietoris top-
ology on 2%, denoted by E(X), is the smallest topology on 2¥ which satisfies the
conditions that if GeT, then S(G)eE(X) and I(G)e E(X) [6].

Tueorem 1.1. The product of an arbitrary family of nonempty topological
spaces is Ro iff’ each factor space is Ro 4]

TueoreM 1.2. If (X,T) is Ry, then (X, T) is Rq [S].

TugoreM 1.3. If (X, T) is Ry, then the following are equivalent: (a) X is
connected, (b) 2% is connected, and (c) K(X) is connected [2].
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