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Ramified analysis and the minimal S-models of higher
order arithmetics*

by

Zygmunt Vetulani (Poznan)

Abstract. We discuss the minimal f-models of 4, in terms of ramified analysis. A f-
interpretation of 4, in A, i obtained, which leads from a f-model to the minimal f-model of
A, We propose an alternative notion of constructibility for A4,. We generalize the notion of
ramified analysis and we prove (by Jensen's methods) a generalization of the theorem on
“correspondence in levels” between the hierarchy of constructible sets L and the ramified
analysis RA. All proofs and lemmas are formulated for n = 3. However, they work for n>3.

Chapter I

Introduction. The present investigation was inspired by the following
question, formulated by K. Apt and W. Marek ([1], p. 226): “Can the
smallest f-model of 4, (n > 2) be characterized “from below” similarly to the
“ramified analytical” characterization in the case of 4,?” The answer we give
is positive.

Higher order arithmetics, and especially the second order arithmetic A5,
have been throughly investigated since the fifties: particularly in Warsaw by
Professor Mostowski and his colleagues and students. It was Mostowski’s
idea to classify models of A, with respect to the notion of well-foundedness:
p-models (i.e., models with respect to which the notion of well-ordering is
absolute) were carefully investigated.

The class of all f-models of 4, has a nice property: there exists a
smallest f-model of A4,. This model was investigated by R. O. Gandy [4]
and others. Gandy proved that this is exactly what we call ramified analysis.
The proof of this fact was obtained by recursion-theoretic methods by using
the properties of the notion of hyperjump; unfortunately, it does not
generalize to the higher order cases. (This is not very surprising: let us recall
here some very important differences between A, and A3, such as for
example different positions of the notion of well-ordering and also of
constructibility. See [1]) A strong connection between constructibility and

* This paper is a part of the doctoral dissertation presented at the University of Warsaw
in 1977.
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ramified analysis was first established by Boolos [2], who proved that
RA, = P(w) n L,. We shall generalize R. Jensen’s proof of this result. Let us
recall also one important result obtained by Zbierski [10]: it shows the
equivalence (in the sense of interpretability) of the arithmetic 4, and the set
theory ZFC™ + “P""2(w) exists”. Zbierski discusses the formula “4 is a
well-founded tree” (Tree (4)) and shows that for all axioms ¢ of ZFC™ +
+“P"" 2 () exists” we have A, ¢"™*. The model theoretic counterpart of
this theorem establishes the correspondence between f-models of arithmetics
and standard models of set theory.

Tureorem (Zbierski [10]). 1. If M is a standard transitive model of
ZFC™ +“P" %(w) exists”, then Ar"(M) is a f-model of A,.

2. If N is a B-model of A,, then the trees of N with the relation of
isomorphism of trees and the relation of being a maximal proper subtree form a
model which is isomorphic to a standard transitive model M of ZFC™ +*P"" 2 (w)
exists”, so that N = Ar"(M).

We shall give below a very natural generalization of ramified analysis
for n > 3 and we shall show its properties. The main feature of our proofs is
the absence of any recursion-theoretic notions and methods. This constitutes
the main difference between our results and those mentioned above ([1], 2],
[4]). A possible generalization of recursion-theoretic methods of Gandy,
Boolos, Putnam and others would require an essential development of the
recursion-theoretic technique to higher type objects. A general question arises
in. which scale would it be possible?

To solve the problem of Apt and Marek we introduce generalized
ramified analysis in the following way:

DerFintTION 1.1,

RAY = (o, RAP, ...,

RA™ = {w, RA™,
where

RAS™ = Pi(0) N HF,

RAQY, 5 D'(RAM) = subsets of RA{~! definable over RAM by
L(A,)formulas with parameters from RA{ (here RAM® = w),

RAPM = U RA$™ for AeLim, RA™ = URAQ'”

We call thxs structure ramified analysis because for n=2 it is just the
usual ramified ‘analysis. In the Chapter IIl we prove the Main Theorem
claiming the existence of the f-interpretation of A, in A4, which defines in
every f-model the ramified analysis RA™.

Norations. 1. Variables. We shall use letters m, n, i, k, t to denote
natural numbers; ¢, ¥ will denote formulas or their Gddel numbers, capitals
will usually denote the highest order objects (classes) and small letters the
lower order objects (sets or numbers).

RAE")"'_I’ €, +, ' <, O: 1>1
RA™™ 1 e, +,, <, 0,1,

icm

Ramified analysis and the minimal B-models of higher order arithmetics 3

2. Pairing functions. In lIst-order Peano arithmetic we can define a
function J being a “one-one” mapping defined on pairs of natural numbers
onto all natural numbers. It is possible to write a formula “{x, y)" =z"
defining the pair {x, y)>" of two objects x and y (of ordersi and j respectively)
as an object z of the order max(i, j). One can do this by using the function
J. Also one can code n-tuples of objects of order smaller than or equal to
i as an object of order i.

3. Coding. We shall use this term in two different meanings.

a. XnYo(Ea)(b)(beX « {a, bY'eY) ¢ (Ea)(X = (1)),
where X = (Y)‘“’H(b)(he)( > {a, b)Y’ eY), We then say that Yis a code of
the family {X: XnY‘ We define similarly anX for a and X of different
order. Dom(Y) 5 {a: (Eb)({a, b)'€Y)}. We can imagine that the family
coded by Y is numerated by the elements of Dom(Y).

b. We also say that X codes the relation A iff (a, by €X « {a,b)eA.

In particular, the class X codes a tree iff

~ X codes a partial ordering with no loops,

— there exists the unique maximal element in the partial ordering
coded by X,

— every linear subordering of the ordering coded by X is finite.

When X codes a tree, we write Tree(X) or X eTrees. It is easy to write
the formula of L(A,) defining trees.

Chapter 11

Definability of RA. The purpose of this chapter is to formalize the
notion of ramified analysis in the language of arithmetic, which yields a
formula which is absolute with respect to f-models. This will be accom-
plished in Theorem 1. The method of proof of this theorem was presented by
Mostowski [7] for the f-models of KM and can be directly translated to our
case. This permits us to omit all details and to restrict ourselves to some
general remarks concerning the proof.

Tueorem 1 (formulated here for n = 3). Let M = (Fy, Fy, €, ...
model of Az, n being the height of M. Then, for i=1,2

1. there exist formulas ra;(-,*) and ra;(*) such that

acRAD & Lo, Fy, Fy, €, ..0Fra(T, a)

aERA-(BM And <CO, Fiv FZ’ €, ...>|=rai(a),

where T is a code of a well-ordering of order-type a and TeF,,

2. RAQY < F,,

3. RA(“”( A1~ in the general formulation) does not contain any
well-ordering of type 7.

> be a p-

and
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Our aim is to write down in an appropriate way the formulas ra (-, *)
and ra;(-), which are the arithmetical reconstruction of the set-theoretical
definition of ramified analysis. The difficultics which we have to overcome
are typical for the problems of formalization of mathematics in arithmetic.
One of them is the nonexistence of objects which are collections of elements
of different ranks. It is also impossible to discuss explicitly collections of
classes, even as small as pairs. (We can not apply here Kuratowski's notion
of pair.) We overcome this difficulty by emploing pairs x, y>" and codes. In
particular, we can write down formula Bord (X), which says that the class X
is a well-ordering by using the same formula as in the set theory bul with
{+, )" instead of Kuratowski’s pairing function,

Another important problem is connected with induclive definitions. The
main difficulty here is due to the absence of ordinal numbers, and so we are
reduced to work with well-orderings. The problem is that, is general, there is
no distinguished well-ordering of a given order type. We have to prove
additionally that a construction whete a well-ordering of a given type is to be
used does not depend on the particular choice of the well-ordering. In our
proof we define ramified analysis by using sequence-constructors whose
domains are well-orderings. The totality of these sequence-constructors deter-
mines objects of ramified hierarchy. It is important to show that any two
sequence-constructors based on isomorphic domains (well-orderings) produce
the same objects.

To be able to reconstruct the definition of R4 in arithmetic we first
have to reconstruct the notion of satisfaction. We write a formula
Sat(X, Y, ¢, i, @, b), where X, Y code some families of objects and #, d, b
code some finite sequences of objects, with the following property:

Mk=Sat(X, Y, ¢, 7, @,b)

= <o, {a: anX}, {A: AqY}, €, .. >k o[, X, YO

for any w-model M. This formula has to represent the inductive defini-
tion of satisfaction. For example, one of its inductive conditions is:
Sat(X, ¥, xVex®, a, b) « X@eY®. Sat(...) is I1? in all w-models of As
(generally Sat(...) is IT" ! in all w-models of A,). Using the formula Sat(...),
we can define the class D'(X, Y) coding the family of classes which are
definable over the structure coded by X, Y, ie. (D'(X, )™ is a code (in any
w-model M) of the family Def'(Kw, {a: anX}, {4: AnY}, e, ...>). Now we
are able to write the formulas ra,(T, a) which, informally speaking, express
what follows: “a is an object of rank i which is produced by a suitable
sequence-constructor whose domain is the well-ordering T™. ra;(a) is the
formula (ET) (Bord(T)é&ra,(T, a)). If T is a “true” well-ordering of order
type o, then Mi=r1a,(T, a) iff ae RAZ™ for any B-model M. This fact may be
proved by induction with respect to «. As a by-product of his reasoning
Mostowski got the existence of a definable well-ordering of RA ([7]). This is
also true in our case.
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Chapter III

Correspondence theorem. We shall now discuss the main technical lemma
of our work. Investigating the usual ramified analysis, Boolos [2] discovered
the following interesting fact (we use the term “correspondence theorem” in
referring to it): R4, = P(w) N L, for o < f,. For some o this correspon-
dence of levels in ramified and constructible hierarchies was known before
from Kleene’s result about hyperarithmetical sets: 4} = RA,,,. Therefore,
RA,, = P(w)N L, and, by relativization, R4,z = P(w) N Ly} (let us remark
that any admissible ordinal is of the form wf for some xeP(w)). The
recursive-theoretical proof given by Boolos seems not to generalize to the
higher order cases. Anyway, another proof found by Jensen (unmblished [6h
can be adapted to our case. We shall briefly outline this proof in the present
chapter. ' ' ‘

The following theorem (formulated here for RA®) is our main technical
lemma..

THEOREM 2 (on correspondence in levels).

(*) RALBM = Pi (w) a Lm+a for

(n. denotes the first n-gap, see [1], [8])

We shall prove this theorem by induction: that is why some infor-
mations about the “fine structure of constructibility” will be used (Lemmas
34 and 3.5). , o

Notice. The proof we shall outline below works in ZFC™ + P. (w)
exists” (here for n = 3). This observation plays the fundamental role in the
considerations of the next chapter. .

Proof. It can easily be observed that only the nonlimit step in Fhe
induction is nontrivial. Let us assume (#),. (#),+ results from the following
equations for i =1, 2: P'(w) L, = Def (Ar’ (L,)- The inclusions > are

o<ng and i=1,2.

' easy because of the definability of Ar?(L,) in L,. (Let us recall that

A’ (L) = (o, P(@)n L, PP(@) N Ly, &, ...> and Ar®(L,) is called the 3th
order arithmetic of L,). To prove the inclusions = we shall attempt to code
the whole L as a definable subset of Ar®(L,). Then we_shall exp}ore 1'3he fax_:t
that the isomorphism between natural numbers and theirs codes in Ar?(L,) is
definable in Ar®(L,). It is convenient to consider separately two cases:
welim and o¢Lim.

Let o = p-+1.

DerinirioN 3.1, 1. Let EeP?(w). We say that E is a copy for L, iff
(EH)(H: Fld(E) 'L, & (@) () (Ca, bY €E < H(a)e H (b))

2. Let FeP?(w). We say that F is a copy for <, iff
(EH)(H: FId(F) o L, & (a)(b)(<a, by e F « H(a) <aH(b))).
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(<, i8 Phe canonical constructible well-ordering of L,; F: X 5! Y means
that F is a bijection from X into Y).

The following lemma is due to Boolos:

Lemma 3.1 (G. Boolos [2], see also W. Marek, M. Srebrny [8]). Ifyis
not a 3-gap, then there is a copy for L, in P2(w) " L,yy. The same holds for a
copy of <,.

Having in RA{®, the copies for L, and <,, we can easily define

over RAG), a copy of L,. Thi i
over RAZ; 1 Py o 1s permits us to define elements of P!(w)n L,

The limit case is more complicated.

Let aeLim.
. }Jnfortunately it is not clear how to define a copy for (3
in this case. Instead, we define uniformly fragments opfysuch :a c:;; ri /:rcol()Ii:gs)
for I'J,,', B < a. This may be done with the aid of ramified languagt’z &stl:e [90)
Intu1t1ve1y: terms of the ramified language RLg (ramified language of rank S'
where S is a code for a well-ordering f < «) are names for constructible sets,
from L,. True atomic f-formulas give a copy of Ly;. The point is we have
to be able to pick in Ar'®(L,) the collection of true well-orderings of len th
B for all B <a. To do this we take the set W, = {R: R codes a well-orderigng

& ReP*(@) N Ly & (EB).(Ef )., f: FId(R)'S ) and we show the following
two lemmas.

Lemma 3.2. The supremum of order t

. iy ypes of el ) W,

(ie, sup(S) =a). f elements of W, equals «
SeW ,,

LemMma 3.3. W, is definable over Ar®(L,).

To prove Lemma 3.2 we shall use two facts establi
Devlin [3], p. 95). established by Jensen (see

. Lemma 34 (.T‘ensen). If BeLim and B is not pr.-closed (i.e., is not closed
with respect to primitive recursive functions), then there is a cofinality function
g definable over L, and such that g: cf(f) li»lﬂ cofinally.

Lemma 3.5 (Jensen). If B is pr.closed and f <m,, then there exists a
Junction f in Def(Ly) such that f: P"“"(w)nL,oi‘: L.

Prqof of Lemma 3.2. We show by induction that for every f<qa
there exists an REVV;, such that R > B. For feLim we analyse separately
two cases: 1. B is pr.closed, 2. it is not. Here we use Jensen’s two lemmas
presented above. The case where f¢Lim is trivial

To prove Lemma 3.3, the fine point of our proof, we need several facts
about the ramified language RLg, where SeP?(w)n L,. This is a language
.whosc terms can serve as names for constructible sets (see [9]). It is
important to define this language in terms of arithmetic. What we do is to
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use a Godel style inductive definition with the aid of the pairing function
{+, > For example (5, ¢, )" will be a formula (intuitively ¢ & ), if ¢
and y are. Then we define in the usual way all fundamental syntactic notions
connected with Rlg, in particular Ty — the class of terms, Flg — the class
of formulas and FI¢ — the class of variableree formulas. We define
satisfaction j=g for RLg formulas and realization ||*|ls for RLs terms. The
following property holds: :

L, = {lltlls: te Tz} =}I%*(x =x)|| for S such that S=ua,

a being the last element in R and %° being the abstraction operator in RLs.

We shall also use the following lemma. Its straightforward but tedious
proof will be omitted.

Lemma 3.6, Let aeLim. 1. The following relations are definable over
Ar3(L): “teTy", “peFls”, “peFIg".

2. There is a formula @ such that, for each D, SePX(@)n L,

D ={¢: peFl§ & 59} = Ar* (L) O(D, S).

3. If S, Re P*(w) N Ly, then {¢: ¢eFl§ & =5 @le P*(w) N L,.
4, Any order homomorphism (isomorphism) H of S and R belonging to
P?*(w) N L, may be extended in a natural way to the homomorphism (isomor-

phism) H of Ty wFlg and Ty UFlg, which also belongs to P2(w) N Ly.

To finish the proof of the definability of W, over Ar¥(L,) we analyse two
cases. The first of them is: there is no ReP?*(w)nL,, R being a linear
ordering of type «+t and such that RMWeW,, for y<a, where 7 is an
arbitrary order type, empty or not. (If S is a code of a well-ordering, then S
is its initial segment of type v), Our Lemma 3.3 then follows from the fact
that R e W, & Ar® (L,) = Bord (R) (because Ar®(L,) has the -property). In the
opposite case, ie., if a well-ordering R with the above property exists, it is
enough to show that the set {R™: v <a} is definable over Ar3(L,) (because

W, = {S: (EH)p2(p)nr, (EV)a(H: S'SR™)). To do this we need two facts
(true if oeLim). .

Fact 1. (B)a (ED)PZ'(m}er,,l Ar3 (Lu) }= (& (Ds R(ﬁ)).

Fact 2. For each aeFId(R) such that R | a has the order type a+7 and
each D e P?(w)n L, we have A (L) 1@ (D, R1a) (@ is the formula from
Lemma 3.6). .

This completes the proof of Lemma 3.3.

Lemma 3.7. Let ¢ be a formula of L(ZF). Then there exists a formula

@ of L(A;) such that
La}= q)[zla ARRE ] Zk]HAra(L«”: (/_)[RI: rery Rks tls LR ] tk]

where RieW,, t;€ Ty, z; = e, -
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The proof of this lemma is by induction. Let ¢ be a bounded formula
from L(ZF) and R;eW,, t;€Tx, zi = ||tllg;-

LiE=olz, ..., z] > (Epe Lyl @z, 005 2] “"(ES)WO((ESO -~ (ES)(EH)
:..(EH,C) (Ety) ... (Ef) (“S; are initial segments of S isomorphic to R; via
isomorphisms H;” & (H) (“H is a common extension of isomorphisms H, to
terms and formulas of RLg, such that H(t) =" = =g H (@) [t}, ..., 1,’,:])3.

To verily those equalities we use the well-known properties of k=g and
li*lls- From the definability of syntactical notions of RL and from the
definability of W, it follows that the last sentence can be relativized to

Ar3(L).

The inductive step: we use the following equivalence.

L= (Ex)@(x) (21, ..., 2]
oA (L)l (ER)(E)(“ReW,” & “te Ty” & G(R, )[Ry, ..., Ry, t1, ... 1],

CoroLrarY. There is a formula € such that, for new,
nea« Ar®(L)=E[R,, R, n, t,],
where R, is a code of a well-ordering of type ®, ReW,, t,c Ty, lltdlg =a and n

is a term of the ramified language which denotes n.

Now we can easily obtain the inclusions we need to complete the proof
of Theorem 2. For example: let ae P?(w)n L,. Then

a={beLl,;: L= o[b,..]}
We show that

bea>Ar® (L) = (ER)(E)(‘ReW,” & “te Ty & G(R, t, ...) &
& (n)(neb —&(R,, R, n, 1)).

for a certain ¢.

It follows that aeDef?(Ar®(L,)).

Chapter IV

The Main Theorem: ra(-) is a standard f-interpretation of A in 45,
: We are ready‘now to prove the main theorem about ithe ramified
analysis ra(*) (formulated below for Aj).

Tugorem 3 (ra-theorem). 1. Formulas ra, (), 1a,(*) from Theorem 2
(Cﬁapter 10) give a standard (') interpretation of Ay in A, ie., Az 0™ for all
axioms ¢ for As. For an arbitrary f-model M= Ay the equalities
RA®Y = (1a, ()™ hold.

2. My = {w, RA®"*, RA®2 e, +,+, <,0,1) is the smallest B-model
Jor A;.

(Y) “standard” means here that e, +, -, ... are interpreted by themselves.
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3. The following inequalities hold: By <&} <E3=n3 (Bo<&l< ...
o< E g by in the general case).
4, Myl= Vera.
5. ra is a fi-interpretation, i.e.,
Ay b= (5)(ra, (8) = (Bord (S))" «» Bord (5))).
(B, is the first 2-gap, n, is the first n-gap, & = (uf)[RAP" = RAZY] and
“‘“1
V=ra abbreviates (for A,) the conjunction Y\ (x®)(ra; (x®)).)
i1

Notice. The formula ¥ =ra may serve as a new form of the axiom of
constructibility.

Proof, The existence of the smallest f-model of A4, is well known and
follows from the Characterization Theorem for Gaps (Srebrny [8]). From
this theorem it follows that the smallest f-model for A4, equals Ar"(L,)
(where 7, is the first n-gap) and its height equals r,. Now from the
Correspondence Theorem (Chapter III) we get 2.

3 follows easily from 2.

4 follows easily from 1 and 2.

We shall now sketch the proof of 1. As we have noticed, both the
theorem of Srebrny and the Correspondence Theorem can be carried in the -
theory ZFC ™ +“P(w) exists”. From this remark it follows (in ZFC™ +“P(w)
exists”) that RA® is the smallest f-model of A, (RA® exists as a definable
class in this set theory).

More precisely:

Lemma 4.1. ZFC™ +“P(w) exists” |- (p’“‘(s), where ¢ is an axiom of A
and ®® its relativization to the L(ZF)formula defining a class RA®
(arithmetical operations and constants being replaced by their set-theoretical
definitions).

Using Zbierski’s theorem we obtain:

LEMMA 4.2. Aj |- (RAPTRSESES for all axioms @ of As.

(If y is a ZFHformula, then by W™ we denote its translation into
L(A3) obtained by relativization of variables to the collection of trees and by
replacing € by Eps and = by Eq. Now it is clear that (RACTreesEmsEa i
L(Az)-formula.)

For each formula i € L(A43) the following equivalence holds:

(WRA”))Trces.Eps.Eq P I//(RA(B))Trccs,ET:s,Eq‘Eps,E“‘ n%Trecs’.Trecs’ <Trees gTrees, 1 Trees .
This equivalence is easily provable by induction with respect to . The

right-hand side of this formula will be abbreviated to Y RACNTe and the left-
hand side to (1//""(3))““‘. We then have the following lemma:

LemMA 43. A3 RAPITrees o a1l axioms ¢ for Aj.
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Formulas (RA®)T™s with 4T T etc, give a nonstandard inter-
pretation of A; in A;. Now we shall find out how to pass from this
interpretation to a standard one.

Let M be a f-model of 4;. From Zbierski’s theorem it follows that trees
from M form a model of set theory uniquely isomorphic to a standard
transitive one. The collapsing isomorphism is called “realization”. It follows
that a fragment of this realization is definable in A,. This definable fragment
is just the restriction of the isomorphism in question to trees coding

arithmetical objects. Informally speaking, we define in A4; functions g and f

such that: .

1. g = (tree coding arithmetical object — its realization).

2. f = (object a > tree coding object a).

3. g is a surjection and f is defined everywhere.

4. gof is an identity.

We shall limit ourselves to giving only the definition of the function g.

Let t, be a natural number which codes (via the pairing function J) the
canonical tree for n. Such coding can be done uniformly. Moreover, we may
assume that the relations “meFId(t,)” and “m <, r” as well as the function
(nt—1t,) are recursive (m <, r means that m is less than r in the sense of the
tree coded by t,).

We define g by means of formulas gy, g;, g5.

go(T, n)y 4p TeTrees & (EX) (“X is bijection of FId(T) and Fld(t,)” &
& (M) () (©) () (e, mY e X & {d, rY'eX = (m <,r<{c, dYeT))
go(T, n) says that T is isomorphic to the canonical tree for N,
g+ 1 (T, A) p TeTrees & (T")(T'Eps T (Ea)g, (T', a)) &
: & (a)(ac A (ET)(T'Eps T & g, (T', a)))

gr+1(T, A) says that A is a set of objects which are coded by the maximal
proper subtrees of T. (Let us recall that

XEps Y ¢ (EQ)pmex vy (X Eq(Y)a)
and

XEBS Y b (Ea)Amlx(Y) (X = (Y)a):
see also [1], p. 204)

LemMa 4.4 (homomorphism lemma).
L Aa - (T e (D) 1ree (T BA T 9(T) = 9(Ty)),
2

2. A5+ (T)R ATrees ((\Z{ (Ex™g,(T, x(i)))’

3. A3 I_ (’TI)RATrm(TZ)RATrus(TlEps'IE Hg(Tl)Eg(TZ))!
4. A3} g5 (RA™) = o,

icm°
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S, sk (T))(T3)(T) (Y TEps™
A (T 4+ TYEQT, « g(Ty)+¢(Ty) = g(T),
6 s (T)(T) (T () TEps0™
~((T " T T <g (1) 9(T) = g(T)),
7. As b (T)(T) X\ TBps™ = (T,Eps Ty ¢ (Ty) < g (T2),
8. 4007 = 0, go (17} = 1.

The homomorphism lemma shows that g is a definable homomorphism
of a nonstandard model ¢ RA™®, Eps, Bq, +™, ... ) onto {g"RA™, g,
=, +,... ), i, onto a standard one: taking the superposition of the in-
terpretation of Zbierski with the function g, we obtain the required
standard interpretation of A, in A;. We have proved that A} f RATS
for all axioms ¢ of A;.

All that remains to be proved is Lemma 4.5.

2
Lemma 45. A3 M\ (g7 (RA®H)™ = raf).
i=1

The proof is by induction. First we introduce the relation A(T) (for any
given T), which is defined as follows:

<a, by e A(T) @ (On(T)I™ & (ET)(ET)(LEp T& LEpT&
& a = max(T) & b = max(T) & T,EpsT;).

If Tis a tree which codes an ordinal number, then A(7)is a well-ordering of
its almost maximal elements. We have A: On™* — Bord. Conversely: for
every X such that Bord(X) there is a tree T such that A(T) is isomorphic to
X. This may be shown by induction (in 4,); namely, we show by induction
that

' (@100 (B Trress (O"Tm’(T) & A(T) = X fa).

Employing A(-) we can reformulate the lemma to get a form more con-
venient for induction (in A43):

(X)Bord ( T}l‘mn (OnTroes ( T) & A (T) =X
- _/22(1\(a) [(ES)(Se RAT™ & g;(S, @) > ra;(X, a)]).

We leave out the tedious details of this induction.

The remaining part of 1 is contained in Theorem 1 in Chapter II. To
complete the proof of Theorem 3 it remains to prove 5.

We use essentially the same methods as in the proof of 1. Let Ar® be
a formula defining the “full arithmetic> Ar®(V) and let Bord(T) be
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the arlthmetlcal definition of the class of well-orderings, ie., Bord(T)
« Bord*® (7). Let us recall that the f-property of RA was established

in ZFC™ +“P(w) exists”, ie.,
ZFC™ +“P(w) exists” - (T)(Te RA — (Bord® (T) < Bord(T))).
Now we can employ Zbierski’s theorem as in 1.
A3 (1), rrees (Bord™)T=esE0584 (T) s Bord ™m0 ( T)),
Ag (), rs (Bord? *4™e.= (g (7)) e Bord# ™=95= (4 (7)),
As - (5)(S eg” (RA™) — (Bord ¢ *4™™h<= (§) e Bord(S))),
Az - (S),. (Bord™ (S) +» Bord (8)).
This means that A;|- “ra has S-property”.

Chapter V
Other nice properties of ra. Reflection. In Chapter 1V it was proved that
ra is an inner model of A4;. Zbierski’s theorem shows that it is reasonable
to regard A; as a set theory. Following this line we can investigate some
characteristic properties of the set-theoretical universe, such as for example
the property of reflection with respect to a given hierarchy of objects. We

shall establish that reflection with respect to ramified analytical hierarchy
holds.

DeriniTION 5.1,
1. “ra becomes stabilized on X” HBord(X) & (ra(X, ) =ra(X+1, ) &
& (V) (Y2 X —(ra(Y, ") #ra(Y+1, )))
2. “ra does ot stabilize” ¢>(X)y,,(71°1a becomes stabilized on X7).
(Y2 X means that Y is isomorphic to an initial segment of X).
Now we are ready to formulate and to prove the reflection principle.
THeorEM 4 (Principle of reflection).
1. A3 [“ra(') becomes stabilized on X”—»(Y),;md(cp)[Yz X
~(EZ)soa(YZ Z 2 X & (p)(ra(Z, p)
- (ra(X, )= e p) =ra(Z, ) o [pI))]],
2. Az [“ra(") does not stabilize” ~ (¥)gyry (EZ)yre( Y% Z &

& (p)(ra(Z, p) = (@™ (p) P)(p(p))))] (for all formulas o).
Proof. Let us now introduce two abbreviations (in L(ZF)):
a. “RA becomes stabilized on ao” 4 (RAyy+; = RA,, &
& (Blag (RAy # RAy, ). '

b. “RA does not stabilize” <> (a)(1“R4 becomes stabilized on o).
It is well known (W. Marek M. Srebrny [8]) that L,, is pointwise
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definable and satisfies the principle of reflection (45 is the first 3-gap). From
this it follows that

ZFC™ +“P(w) exists” - “RA satisfies the principle of reflection”,
i.e.,
ZFC™ +“P(w) exists” | («) (“RA becomes stabilized on «”

d (B)a (q))Form (Ely)m (}’ > ﬁ & (p)RA),(RAao }= fP [P] HRA'y '= (f) [p])))
and

ZFC~ +“P(e) exists” |- (“RA does not stabilize”

(B EN(B <7 & Blea, (0™ () = 0™ (1))

for alIAformulas . ‘
We can apply, as usual, Zbierski’s theorem to the following formula:

*) Az (Dhres ((“RA becomes stabilized on T7)™™*
—(T)(T"EpsT— (ET)[T'EpsT" & T"EpsT&
& (), 1rees (P c1ves (RAT = @ [P] > RA 7 b= 0 [p])™])).
The formula (“RA becomes stabilized on T »)Trees je., the formula
“RAT™ = RATT: & (T") g 1vees (T'Eps T— RATS, 5 RAT™)”
is equivalent in 43 to the formula
§"RATE = g"RAyr 1y & (T)(T'Eps T— g RAY 1) = g"RATE)”

and by virtue of Lemma 4.5 is Aj-equivalent to “ra(-)
pamely to the formula

ra(A(T+1), ) =ra(A(T),

) becomes stabilized”,

) & (Xgora [ X T A(T) - (ra(X, ) #ra(X+1, N

(here g”A is the image of 4 by g). So in A, the formula “ra(-) becomes
stabilized on A(T)” is equivalent to the formula (“RA becomes stabilized
on T”)Trces‘

We make use of a lemma stating that
Az [SAT™ (N, Ny, f(9), [ (7D, ] (7). f (¥{72)
Hsat(Yle- YZ’ @, m, Py, Pz)]n

where Sat is arithmetical but SAT is a set-theoretical formula of satisfaction,
N; is such that

Ayl [XnN; <> (ES)(SEpsN; & ¢;(S, X))]  for

g; are functions defined in Chapter IV and ¥; = {X: XuN;}. (Incidentally this
fact is useful in the proof of Lemma 4.5 in Chapter IV).

i=1,2,
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Using this and () together with Lemma 4.5, we obtain the principle of
reflection. :

Another nice property of the inner model ra is established in the
following theorem. It corresponds to the absoluteness (with respect to the
class of constructible sets) of the notion of constructibility.

THEOREM 5. A;}-ra™ =ra.

Before beginning the proof we introduce some auxiliary notions.

DrrINITION 5.2 We say that (Y, ..., "™ 1) is a rransitive system of
Jormulas of L(A,) if and only if the only free variable in ' is of order i and
1. A [n//’:(a“)) & b Veg® o i~ 1] for i=2,3,...,n~1,

2. A, [¥ (@, )~ (¥ (@) & Y B))]-

ExaMmpLE. (ra;( ), taz( ), ..., ra,—;{ )) is a transitive system of formulas
of L(4,).

DeFiNiTION 5.3. TC, T, Ty, T, are A,-definable operations such that
T= (x> {a: aex}u{<a, bY": (Ec):(<a, b) =¢)})
and

T(X) 7 T(X),
T (X) g TL(X) v T'T(X),
TCX)z U T(X).

nEM

(TC(X) is a kind of transitive closure of X

The following easy lemma is a counterpart to the lemma on absolute-
ness of A% -formulas with respect to standard transitive models of ZF.

Lemma 5.1. 1. Formulas of the form (EX"™ ") (@ (XY, ..., ))TC‘X(";”’ are
upward absolute with respect to transitive systems of formulas.

2. Formulas of the form (X"~ Y)(p(X®™ Y, ...))Tc(x("“’ are downward
absolute with respect to transitive systems of formulas.

By a careful analysis of I17"! and 27~! definitions of ramified analysis
we obtain:

LemMA 5.2. There exist formulas P; and Q, such that:
Ayt [ra (0, -2 > (X O)P (X070, o, oo™y
and
Al L2 () > (X0 (X0, - ojree =iy,

Theorem 5 ‘follows eqsily from the above lemmas and from the fact that
(ra,(+), ra,(+)) is a transitive system of formulas of L(4;).

Notici. For n = 2 the theorem immediately follows from the absolute-
ness of (41)"?-formulas with respect to ra(-).
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I dedicate this paper to my Friend R.Z. Kufner.
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