

On the category of n-groups

by

Jacek Michalski (Wrocław)

Abstract. Let $n = s \cdot k$. We introduce the notions of a free covering (k+1)-group and a covering (k+1)-group of an (n+1)-group, which are generalizations of analogous notions used by Post. This enables us to construct a functor $\Phi_s \colon Gr_{n+1} \to Gr_{n+1}$ the category of n-groups) which is left adjoint to the forgetful functor $\Psi_s \colon Gr_{k+1} \to Gr_{n+1}$. We obtain several theorems on commutativity of those functors with inductive and projective limits. We also prove a general theorem on the form of inductive limits of covering (k+1)-groups of (n+1)-groups.

1. Introduction. Several authors have investigated n-groups, but not much attention has been paid so far to the category of n-groups. This paper is an attempt to put together and systematize certain facts concerning categorical properties of n-groups. Although in most notions and theorems where n-groups and their homomorphisms occur they are considered from the external, categorical view-point, in some cases, of necessity, the internal approach is used, which means considering n-groups as sets with a certain structure and their homomorphisms as functions. This causes a certain inconsistency of notation. Namely, an n-group as a set with operations will be denoted by $\mathfrak{G} = (G, f)$ (or shortly (G, f)), whereas for the same n-group considered as an object in the category of n-groups simply the abbreviation G will be used. To avoid numerous repetitions, we assume that f and g always denote (n+1)-group and (k+1)-group operations, respectively, and we write (G, f) and (G, g) only to avoid a possible misunderstanding. The terms homomorphisms and morphisms will be used interchangeably, depending on which properties, internal or external, are to be emphasized.

The symbol $\alpha\colon A\to B$, where A and B are objects of the same category, usually means a morphism of that category. The identity morphism will be denoted by $e_A\colon A\to A$, or shortly e, if it is not misleading.

In this paper the term functor always means a covariant one. We shall use interchangeably the following terms: a small category and a diagram scheme; a functor from a small category and a diagram. The latter terms will be used especially in dealing with limits. The symbol $\mathcal D$ will always denote a small category and the symbol F a functor from that category $\mathcal D$ (i.e., F will denote a diagram).

For operations in n-groups the same notation as in [9] is adopted. Let us recall only the most common conventions:

37

$$f(..., x, ...) = f(..., \underbrace{x, ..., x}_{r}, ...);$$

$$f(..., x_{i-1}, x_{i}, x_{i+1}, ...) = f(..., x_{i-1}, x_{i+1}, ...).$$

Also most of the notions and theorems to which we refer here can be found in [9]. The notions of category theory used here can be found in any monograph in this field (e.g. [2], [14]).

Part of the results here presented have been announced in [7] and [8].

2. The functors Ψ_s and Φ_s . The category consisting of n-groups as objects and their homomorphisms as morphisms will be denoted (as in [7] and [8]) by Gr_n . Consequently, the category of groups will be denoted by Gr_2 . The definition of n-group given by Dörnte in [4] assumed that its carrier was nonempty. In considering the category of n-groups for n>2 it is convenient to admit the empty n-group. The empty n-group is an initial object in Gr_n . The category Gr_n always has final objects. They are one-element n-groups. In Gr_2 there exist zero objects: one-element groups.

The class of n-groups is a variety (cf. [5] and [12]); thus in Gr_n monomorphisms and injective homomorphisms coincide (cf. [2]).

Let $\mathfrak{G} = (G, g)$ be a (k+1)-group. Then the (sk+1)-groupoid $\mathfrak{G}_{(s)} = (G, g_{(s)})$ where $g_{(s)}$ is an (sk+1)-ary operation which is a simple iteration of the (k+1)-ary operation g, i.e.,

$$g_{(s)}(x_1, ..., x_{sk+1}) = \underbrace{g(g(...g(g(x_1, ..., x_{k+1}), x_{k+2}, ..., x_{2k+1}), ...), x_{(s-1)k+2}, ..., x_{sk+1})}_{s}$$

is already an (sk+1)-group (cf. [4], [9]). In certain situations we will write $g_{(\cdot)}$ to mean $g_{(u)}$ for some u=1,2,... In [5] it was shown that the resulting (sk+1)-group $\mathfrak{G}_{(s)}$ is a reduct (in the sense of [6]; note that in n-group theory the term reduct is also used in another sense) of the (k+1)-group \mathfrak{G} , i.e., every term operation in $\mathfrak{G}_{(s)}$ is a term operation in \mathfrak{G} . This leads to the forgetful functor Ψ_s : $Gr_{k+1} \to Gr_{sk+1}$. Note that for the case of s=1 the functor Ψ_1 is simply the identity functor. When it is not misleading we will write simply Ψ in place of Ψ_s . Like every forgetful functor, Ψ turns out to be a faithful functor. The functor Ψ thus reflects monomorphisms and epimorphisms. On the other hand, like every forgetful functor, Ψ preserves and reflects injective and surjective homomorphisms. Hence Ψ preserves monomorphisms.

In [9] the notion of a free covering k-group and covering k-group has been introduced. The definitions of these notions given here differ from the corresponding definitions of [9]. However, one can prove that in the case of nonempty n-groups (and in fact only such n-groups were considered in [9]) the two definitions are equivalent.

For the sake of description of the construction of the free covering k-group and for the investigation of the functors Ψ and Φ it will be convenient to treat (k+1)-groups and (n+1)-groups, rather than k-groups and n-groups. Henceforth, throughout the paper, we always assume n=sk (admitting k=1, s=1), s=mq; furthermore m and q may have the same indices.

DEFINITION 1. A pair $\langle A', \tau_A \rangle$ where $\tau_A \colon A \to \Psi_s(A')$, $A \in Gr_{n+1}$, $A' \in Gr_{k+1}$ is said to be a free covering (k+1)-group of an (n+1)-group A if for each $h \colon A \to \Psi_s(B)$, where $B \in Gr_{k+1}$, there exists a unique morphism $h^* \colon A' \to B$ such that $\Psi_s(h^*) \tau_A = h$.

The construction of a free covering group is due to Post (cf. [13]). Here we cite the construction of free covering (k+1)-groups as it was given in [7].

The set $Z_s=\{0,1,...,s-1\}$ where s=2,3,... together with the (k+1)-ary operation $\varphi(l_1,...,l_{k+1})\equiv l_1+...+l_{k+1}+1 \pmod s$ is a cyclic (k+1)-group of order s. We will denote it by $\mathfrak{C}_{s,k+1}$. Additionally, by $\mathfrak{C}_{1,k+1}$ we will denote the one-element (k+1)-group.

Let $\mathfrak{G} = (G, f)$ be an arbitrary nonempty (n+1)-group and let $c \in G$ be an arbitrary but fixed element of G. Form the set $G^{*s} = G \times Z_s$ and define a (k+1)-ary operation f^* in G^{*s} in the following way:

$$\begin{split} f^*\!\!\left(\!(x_1,l_1),\ldots,(x_{k+1},l_{k+1})\!\right) \\ &= \left(f_{(\cdot)}\!\!\left(\!x_1,\ c,\ldots,x_{k+1},\ c,\ \bar{c},\ c \right.\right), \varphi\left(l_1,\ldots,l_{k+1})\!\right) \end{split}$$

for $x_1, ..., x_{k+1} \in G, l_1, ..., l_{k+1} \in Z_s$.

The (k+1)-groupoid $\mathfrak{G}^{*s}=(G^{*s},f^*)$ together with a mapping $\tau_G\colon G\to \Psi_s(G^{*s})$ given by $\tau_G(x)=(x,0)$ is a free covering (k+1)-group of the (n+1)-group \mathfrak{G} in the sense of Definition 2 of [9] (cf. [9], Theorem 1) and hence also in the sense of Definition 1. Note that when s=1 the (n+1)-group \mathfrak{G} is isomorphic to the (n+1)-group \mathfrak{G}^{*1} and τ_G is an isomorphism.

PROPOSITION 1. If a pair $\langle A', \lambda_A \rangle$ is a free covering (k+1)-group of an (n+1)-group A, then the morphism $\lambda_A \colon A \to \Psi_s(A')$ is a monomorphism and the set $\lambda_A(A)$ generates the (k+1)-group A'.

With each free covering (k+1)-group $\langle A', \tau_A \rangle$ of the (n+1)-group A we can connect some morphism $\zeta_A \colon A' \to \mathbb{C}_{s,k+1}$. For a nonempty (n+1)-group A the morphism ζ_A is determined as in Coset Theorem (cf. [13] and Theorem 2 of [9]). It is easy to check that for the empty (n+1)-group A a free covering (k+1)-group $\langle A', \tau_A \rangle$ is, depending on k, the empty one (for k>1) or the one-element group (for k=1), whence $\zeta_A \colon A' \to \mathbb{C}_{s,k+1}$ is uniquely determined.

DEFINITION 2. A triple $\langle A', \lambda_A, \zeta_A \rangle$ where $\lambda_A \colon A \to \Psi_s(A')$, $\zeta_A \colon A' \to \mathfrak{C}_{q,k+1}$, $A \in Gr_{n+1}$, $A' \in Gr_{k+1}$, is said to be a covering (k+1)-group of index q of the (n+1)-group A if there exists a (qk+1)-group \widetilde{A} together with an embedding $\tau_{\widetilde{A}} \colon \widetilde{A} \to \Psi_q(A')$ such that $\langle A', \tau_{\widetilde{A}} \rangle$ is a free covering (k+1)-group of the (qk+1)-group \widetilde{A} , $\Psi_m(\widetilde{A}) = A$, $\Psi_m(\tau_{\widetilde{A}}) = \lambda_A$, and the morphism ζ_A is determined by $\langle A', \tau_{\widetilde{A}} \rangle$.

On the category of n-groups

As in each variety, in Gr., every surjective homomorphism is a regul

Note that if the (n+1)-group A is nonempty, the number q and the morphism ζ_A are uniquely determined by the pair $\langle A', \lambda_A \rangle$ and, conversely, the morphism λ_A is uniquely determined by the pair $\langle A', \zeta_A \rangle$ (cf. [9], Theorem 2 and Definition 3). If the (n+1)-group A is empty, each number q with q|s can be treated as an index of $\langle A', \lambda_A \rangle$.

PROPOSITION 2. Let A be a nonempty (n+1)-group. A pair $\langle A', \lambda_A \rangle$ is a covering (k+1)-group of A if and only if λ_A is a monomorphism and the set $\lambda_A(A)$ generates the (k+1)-group A'.

The pair $\langle G^{*s}, \tau_G \rangle$ is a quasireflect of the object $G \in Gr_{n+1}$ with respect to the forgetful functor Ψ_s : $Gr_{k+1} \to Gr_{n+1}$ (cf. [14]). This enables us to define the functor Φ_s : $Gr_{n+1} \to Gr_{k+1}$ by $\Phi_s(G) = G^{*s}$ for $G \in Gr_{n+1}$, which is a left adjoint functor to Ψ_s . Note that to guarantee the correctness of this definition we choose in each nonempty (n+1)-group (G,f) an element $c_G \in G$ and then by $\Phi_s(G)$ we mean the (k+1)-group (G^{*s},f^*) constructed as in [7] for a previously given element c_G . The procedure of choice is not essential, since all functors obtained by this way are naturally equivalent. Therefore when investigating the preservation properties of Φ_s we may choose the elements c_G in the most convenient way. As in the case of Ψ , we also now admit writing Φ in place of Φ_s . And similarly to the case of Ψ , the functor Φ_1 is the identity functor.

Let $\mathfrak{A}=(A,f)$, $\mathfrak{B}=(B,f)$ be (n+1)-groups and $h\colon \mathfrak{A}\to \mathfrak{B}$. Fix elements $c_A\in A$ and $c_B\in B$ to be used in the construction of the free covering (k+1)-groups. Then (cf. [9]) $\Phi_s(h)=(\tau_Bh)^*$, whence

$$\Phi_s(h)(x,l) = \left(f(h(x), \underbrace{h(c_A), ..., h(c_A)}_{ik}, \overline{c_B}, \underbrace{c_B, ..., c_B}_{n-1-lk}, l\right).$$

Observe that if we take $c_B = h(c_A)$, the above formula is simplified. In fact, for the functor Φ_s determined by such a choice we have $\Phi_s(h)(x, l) = (h(x), l)$. Hence

PROPOSITION 3. The functor Φ preserves and reflects injective and surjective homomorphisms.

In Gr_n the class of injective homomorphisms is equal to the class of monomorphisms. Thus, in view of Proposition 3, Φ preserves and reflects monomorphisms (cf. [1], [3]). Note that the last remark results also from the fact that Φ is a faithful functor (since the first canonical transformation $\tau_G\colon G\to \Psi_s\Phi_s(G)$ is a monomorphism, cf. [2]). Being such a functor, Φ reflects epimorphisms. On the other hand, being a left adjoint functor, Φ preserves epimorphisms (cf. [3]). Hence and by Proposition 3 we obtain

COROLLARY 1. In the category Gr_n the class of surjective homomorphisms is equal to the class of epimorphisms.

Recall that a monomorphism $\mu\colon U\to A$ is said to be a regular monomorphism (cf. [2], p. 41) if, for any mo phism $\gamma\colon X\to A$ such that for each pair $\alpha\colon A\to Y$, $\beta\colon A\to Y$ the equality $\alpha\mu=\beta\mu$ implies the equality $\alpha\gamma=\beta\gamma$, there exists a morphism $\gamma\colon X\to U$ such that $\mu\gamma'=\gamma$. In a dual way we define the notion of a regular epimorphism.

As in each variety, in Gr_n every surjective homomorphism is a regular epimorphism (cf. [2]). Hence one can obtain

COROLLARY 2. In the category Gr_n every epimorphism is a regular epimorphism. Proposition 4. The functor Φ reflects regular monomorphisms.

Proof. Let a morphism $\Phi_s(\mu)$: $\Phi_s(A) \to \Phi_s(B)$, where $A, B \in Gr_{n+1}$, be regular. The morphism $\mu \colon A \to B$ is a monomorphism. Take an arbitrary $\gamma \colon X \to B$, where $X \in Gr_{n+1}$, having the following property: for every pair $\alpha \colon B \to Y$, $\beta \colon B \to Y$ from the equality $\alpha \mu = \beta \mu$ it follows that $\alpha \gamma = \beta \gamma$. One can show that $\Phi_s(\gamma)$ also has this property. Hence there exists a morphism $\eta \colon \Phi_s(X) \to \Phi_s(A)$ such that $\Phi_s(\mu) \eta = \Phi_s(\gamma)$. According to Corollary 6 of [9] it follows that $\eta = \Phi_s(\delta)$ where $\delta \colon X \to A$ and $\mu \delta = \gamma$. This proves that μ is a regular monomorphism.

COROLLARY 3. In the category Gr_n every monomorphism is a regular monomorphism.

3. The relations of the functor Φ_s to inductive and projective limits. As we mentioned above, the class of n-groups is a variety. The category Gr_n is therefore a complete category with respect to inductive and projective limits for all diagram schemes including the empty diagram scheme (cf. [2]). The functor Φ , being a left adjoint functor, preserves inductive limits. We show even more, namely that Φ also reflects inductive limits.

Lemma 1. Let categories \mathcal{K}_1 and \mathcal{K}_2 be complete with respect to inductive limits, If a faithful functor $\Lambda\colon \mathcal{K}_1 \to \mathcal{K}_2$ preserves inductive limits and reflects isomorphisms, then Λ reflects inductive limits.

PROPOSITION 5. [L; $\{\alpha_D: F(D) \to L\}_{D \in \mathcal{D}}$] is the inductive limit of $F: \mathcal{D} \to Gr_{n+1}$ if and only if $[\Phi_s(L); \{\Phi_s(\alpha_D): \Phi_sF(D) \to \Phi_s(L)\}_{D \in \mathcal{D}}]$ is the inductive limit of $\Phi_sF: \mathcal{D} \to Gr_{k+1}$.

COROLLARY 4. If $[L'; \{\gamma_D: \Phi_s F(D) \to L'\}_{D \in \mathscr{D}}]$ is the inductive limit of $\Phi_s F: \mathscr{D} \to Gr_{k+1}$, then there exists an object $L \in Gr_{k+1}$ unique up to an isomorphism, a family $\{\alpha_D: F(D) \to L\}_{D \in \mathscr{D}}$ and an isomorphism $\eta: L' \to \Phi_s(L)$ such that $\Phi_s(\alpha_D) = \eta \gamma_D$ for every $D \in \mathscr{D}$. Moreover, $[L; \{\alpha_D: F(D) \to L\}_{D \in \mathscr{D}}]$ is then the inductive limit of $F: \mathscr{D} \to Gr_{k+1}$.

The above corollary shows that the inductive limit of free covering (k+1)-groups is a free covering (k+1)-group, i.e., the class of free covering (k+1)-groups of (n+1)-groups is closed with respect to inductive limits. Note that we now regard free covering (k+1)-groups of (n+1)-groups as certain (k+1)-groups (to be exact, such (k+1)-groups G for which there exist epimorphisms $\zeta: G \to \mathcal{C}_{s,k+1}$). Being a free covering (k+1)-group of (n+1)-group is then an inner property of the (k+1)-group itself but not of the pair (the form of the epimorphism is not essential here).

PROPOSITION 6. If $[L'; \{\pi_D: L' \to \Phi_s F(D)\}_{D \in \mathscr{D}}]$ is the projective limit of $\Phi_s F: \mathscr{D} \to Gr_{k+1}$, where \mathscr{D} is a nonempty category or k=1, then there exists an object $L \in Gr_{n+1}$ such that $\Phi_s(L)$ is isomorphic to L'.

Proof. Let $[G, \{\gamma_D: G \to F(D)\}_{D \in \mathcal{D}}]$ be the projective limit of $F: \mathcal{D} \to Gr_{n+1}$ where \mathscr{D} is nonempty. The family $\{\Phi_s(\gamma_D)\}_{D\in\mathscr{D}}$ is compatible with $\Phi_sF:\mathscr{D}\to Gr_{k+1}$. Then there exists a unique morphism $\mu: \Phi_s(G) \to L'$ with $\pi_D \mu = \Phi_s(\gamma_D)$ for $D \in \mathcal{D}$. By Corollary 6 of [9] the object L' is a free covering (k+1)-group of an (n+1)group L. Hence L' is isomorphic to $\Phi_s(L)$.

Now, let the object $L' \in Gr_2$ be the projective limit of $\Phi_s F: \mathcal{D} \to Gr_2$ where \mathcal{D} is the empty category. Then L' (as a final object in Gr_2) is a one-element group. But a one-element group is a free covering group of the empty (n+1)-group. This completes the proof.

Thus the class of free covering (k+1)-groups of (n+1)-groups is closed with respect to projective limits (where free covering (k+1)-groups of (n+1)-groups are understood simply as a subclass of the class of (k+1)-groups, as in the remark to Corollary 4). It is worthwhile to add that the object L is not uniquely determined and depends on the choice of the morphism γ_D (cf. Corollary 6 of [9]). Proposition 6 is (regarding projective limits) essentially weaker than Corollary 4 (regarding inductive limits). The functor Φ need not preserve a cartesian product. For example, let $\mathfrak{A}=(A,f_A)$, $\mathfrak{B}=(B,f_B)$ be finite (n+1)-groups. Then $\mathfrak{A}^{*s}=(A\times Z_s,f_A^*)$, ** $\mathfrak{B} = (B \times Z_s, f_B^*)$, whence $\mathfrak{U}^{*s} \times B^{*s} = (A \times Z_s \times B \times Z_s, f_A^* \times f_B^*)$. On the other hand, $(\mathfrak{A} \times \mathfrak{B})^{*s} = (A \times B \times Z_s, f_{A \times B}^*)$, which shows that the (k+1)-groups $\mathfrak{A}^{*s} \times$ $\times\mathfrak{B}^{*s}$ and $(\mathfrak{U}\times\mathfrak{B})^{*s}$ are not isomorphic. However, under additional conditions set upon the diagram scheme 20 one can obtain

THEOREM 1. Let \mathscr{D} have a final object. Then $[L; \{\pi_D: L \to F(D)\}_{D \in \mathscr{D}}]$ is the projective limit of $F: \mathcal{D} \to Gr_{n+1}$ if and only if $[\Phi_s(L); \{\Phi_s(\pi_D): \Phi_s(L) \to \Phi_sF(D)\}_{D \in \mathcal{D}}]$ is the projective limit of Φ .F.

Proof. Let E be a final object of \mathcal{D} , i.e., for each object $D \in \mathcal{D}$ there exists a unique morphism $\sigma_D : D \to E$. We first prove that Φ_s preserves projective limits.

Let $[L; \{\pi_D: L \to F(D)\}_{D \in \mathcal{D}}]$ and $[L'; \{\gamma_D: L' \to \Phi_s F(D)\}_{D \in \mathcal{D}}]$ be the projective limits of $F: \mathscr{D} \to Gr_{n+1}$ and $\Phi_s F: \mathscr{D} \to Gr_{k+1}$, respectively. The family $\{\Phi_s(\pi_D)\}_{D \in \mathscr{D}}$ is compatible with $\Phi_s F$; thus there exists a unique morphism $\delta \colon \Phi_s(L) \to L'$ with $\gamma_D \delta = \Phi_s(\pi_D)$ for $D \in \mathcal{D}$. Since $\Phi_s(L)$ and $\{\Phi_s F(D)\}_{D \in \mathcal{B}}$ are free covering (k+1)groups, there exist epimorphisms $\zeta_L \colon \Phi_s(L) \to \mathfrak{C}_{s,k+1}$ and $\zeta_D \colon \Phi_s F(D) \to \mathfrak{C}_{s,k+1}$ for $D \in \mathcal{D}$ (cf. [9], Theorem 2). Note that $\zeta_D \Phi_s(\pi_D) = \zeta_L$ and $\zeta_E \Phi_s F(\sigma_D) = \zeta_D$, $\zeta_Y \Phi_s F(\alpha) = \zeta_X$ if $\alpha \colon X \to Y$, for every $D, X, Y \in \mathcal{D}$. Hence $\zeta_D \gamma_D = \zeta_E \gamma_E$, which proves that the morphisms $\zeta_D \gamma_D$ are equal to each other for every $D \in \mathcal{D}$. Denote these morphisms by ζ' , i.e., $\zeta'=\zeta_D\gamma_D$. The morphism $\zeta'\colon L'\to \mathfrak{C}_{s,k+1}$ is an epimorphism since $\zeta'\delta=\zeta_L$. Thus $\langle L',\zeta'\rangle$ is a free covering (k+1)-group of the (n+1)-group $G=\zeta'^{-1}(0)$ (cf. [9]). Furthermore, there exists an isomorphism $\eta \colon \Phi_s(G) \to L'$ such that $\gamma_D \eta = \Phi_s(\alpha_D)$ where $\alpha_D \colon G \to F(D)$ for $D \in \mathcal{D}$. Hence $\Phi_s(F(\alpha)\alpha_X) = \Phi_s(\alpha_X)$. The last equality shows that the family $\{\alpha_D\}_{D\in\mathcal{B}}$ is compatible with F. Then there exists a unique morphism $\beta \colon G \to L$ such that $\pi_D \beta = \alpha_D$ for $D \in \mathcal{D}$. Thus $\Phi_s(\pi_D) \Phi_s(\beta) \eta^{-1} \delta = \Phi_s(\pi_D)$ for $D \in \mathcal{D}$, which shows that $\Phi_s(\beta) \eta^{-1} \delta$ $=e_{\Phi_s(L)}$. On the other hand, the equality $\zeta'\delta=\zeta_L$ implies the existence of a morphism

 $\delta \Phi_s(\beta) \eta^{-1} = e_{L'}$. So δ is an isomorphism, which proves that

$$[\Phi_s(L); \{\Phi_s(\pi_D): \Phi_s(L) \to \Phi_sF(D)\}_{D \in \mathscr{D}}]$$

is the projective limit of $\Phi_s F: \mathcal{D} \to Gr_{k+1}$.

The proof of the converse theorem is similar to that of Proposition 5. The only facts needed are the completeness of Gr_{n+1} and faithfulness of Φ and the preservation of projective limits, as shown. This completes the proof of Theorem 1.

Corollary 5. If $[L'; \{\gamma_D: L' \to \Phi_s F(D)\}_{D \in \mathcal{D}}]$ is the projective limit of $\Phi_s F: \mathcal{D} \to \mathcal{D}$ $ightarrow Gr_{k+1}$ and ${\mathcal D}$ is a small category with a final object, then there exists an object $L{\in}Gr_{n+1}$ unique up to an isomorphism, a family $\{\pi_D \colon L \to F(D)\}_{D \in \mathcal{D}}$ and an isomorphism $\varrho \colon \Phi_s(L) \to L'$ such that $\Phi_s(\pi_D) = \gamma_D \varrho$ for each $D \in \mathcal{D}$. Moreover,

$$[L; \{\pi_D \colon L \to F(D)\}_{D \in \mathcal{D}}]$$

is then the projective limit of $F: \mathcal{D} \to \mathbf{Gr}_{n+1}$.

It turns out that Proposition 6 is a particular case of a more general statement on inductive limits of covering (k+1)-groups of (n+1)-groups. Let \mathcal{D} be an arbitrary, nonempty diagram scheme.

THEOREM 2. If $[L'; \{\gamma_D: F'(D) \to L'\}_{D \in \mathscr{D}}]$ is the inductive limit of $F': \mathscr{D} \to Gr_{k+1}$, where $\langle F'(D), \lambda_D, \zeta_D \rangle$ are covering (k+1)-groups of indices q_D of the (n+1)-groups F(D) and $\Psi_s F'(\alpha) \lambda_X = \lambda_Y F(\alpha)$ for each morphism $\alpha: X \to Y$, then L' is also a covering (k+1)-group of index q= g.c.d. $\{q_{\rm D}\}_{{\rm D}\in\mathscr{D}}$ of the (n+1)-group $\delta(L)$ where $[L;\{\alpha_D\colon F(D)\to L\}_{D\in\mathcal{B}}]$ is the inductive limit of $F\colon \mathcal{D}\to Gr_{n+1},$ and δ is the morphism induced by $\{\Psi_s(\gamma_D)\lambda_D\}_{D\in\mathcal{D}}$.

Proof. Let $[L; \{\alpha_D: F(D) \to L\}_{D \in \mathcal{D}}]$ be the inductive limit of F. The family $\{\Psi_s(\gamma_D)\lambda_D\}_{D\in\mathscr{D}}$ is compatible with F, and so there exists a unique morphism $\delta \colon L \to \Psi_s L'$ such that $\delta \alpha_D = \Psi_s(\gamma_D) \lambda_D$ for $D \in \mathcal{D}$. Since $\langle F'(D), \lambda_D, \zeta_D \rangle$ are, by assumption, covering (k+1)-groups of indices q_D of F(D), it follows that there exists a unique family of epimorphisms $\{\xi_{\alpha}\colon \mathbb{C}_{q_{X},k+1} \to \mathbb{C}_{q_{Y},k+1}\}_{\alpha\in\mathscr{D}}$, where $\alpha\colon X\to Y$, with $\xi_{\alpha}(0) = 0$ and $\xi_{\alpha}\zeta_{X} = \zeta_{Y}F'(\alpha)$ (cf. [9], Theorem 4). Let $q = \text{g.c.d.}\{q_{D}\}_{D\in\mathcal{D}}$. Then for each $D \in \mathcal{D}$ there exists one (and only one) epimorphism $\xi_D \colon \mathbb{C}_{q_D,k+1} \to$ $\to \mathbb{C}_{q,k+1}$ with $\xi_D(0) = 0$. From the definition of ξ_D it follows that for every morphism $\alpha: X \to Y$ the equality $\xi_Y \xi_\alpha = \xi_X$ holds. Then the family $\{\xi_D \xi_D\}_{D \in \mathscr{D}}$ is compatible with $F': \mathcal{D} \to Gr_{k+1}$. Hence there exists a unique morphism $\zeta': L' \to Gr_{k+1}$ $\to \mathfrak{C}_{q,k+1}$ such that $\zeta \gamma_D = \xi_D \zeta_D$ for $D \in \mathcal{D}$. This equality shows that ζ is an epi-

Let $a' \in \delta(L)$, i.e., $a' = \delta(a)$ where $a \in L$. The (n+1)-group L, being the inductive limit of F, is generated by the set $\bigcup \alpha_D(F(D))$, whence

$$a = f_{(.)}(\alpha_{D_1}(a_1), ..., \alpha_{D_l}(a_l))$$

where $a_i \in F(D_i)$ for i = 1, ..., l and $l \equiv 1 \pmod{n}$. Hence

$$\begin{split} \zeta(a') &= \zeta \delta \left(f_{(\cdot)} (\alpha_{D_1}(a_1), ..., \alpha_{D_l}(a_l)) \right) \\ &= \zeta \left(f_{(\cdot)} (\Psi_s(\gamma_{D_1}) \lambda_{D_1}(a_1), ..., \Psi_s(\gamma_{D_l}) \lambda_{D_l}(a_l)) \right) \\ &= \varphi \left(\xi_{D_1} \zeta_{D_1} (\lambda_{D_1}(a_1)), ..., \xi_{D_l} \zeta_{D_l} (\lambda_{D_l}(a_l)) \right) = \varphi(0, ..., 0) = 0 \,, \end{split}$$

where f denotes an (n+1)-group operation on L and also on $\Psi_s(L')$ and φ denotes (as usual) the (k+1)-group operation on $\mathfrak{C}_{s,k+1}$. Thus $\zeta(\delta(L))=\{0\}$, i.e., $\delta(L)\subset\subset \zeta^{-1}(0)$. Let $b'\in L'$. The (k+1)-group L', as the inductive limit of F, is generated by the set $\bigcup_{\substack{D\in \mathscr{B}\\D\in\mathscr{B}}} \gamma_D(F'(D))$, whence $b'=g_{\{\cdot\}}(\gamma_{D_1}(a'_1),\ldots,\gamma_{D_l}(a'_l))$ where $a'_l\in F'(D_l)$ and $l\equiv 1\pmod k$. Moreover, the (k+1)-groups $F'(D_l)$ are generated by the sets $\lambda_{D_l}(F(D_l))$, and so we get $a'_l=g_{\{\cdot\}}(\lambda_{D_l}(a_{i1}),\ldots,\lambda_{D_l}(a_{ij_l}))$ where $j_l\equiv 1\pmod k$ for $l=1,\ldots,l$. Hence

$$\begin{array}{l} b' = g_{(\cdot)}(\gamma_{D_1}(a_1), \ldots, \gamma_{D_l}(a_l)) \\ = g_{(\cdot)}(\gamma_{D_1}(g_{(\cdot)}(\lambda_{D_l}(a_{11}), \ldots, \lambda_{D_l}(a_{1j_1}))), \ldots, \gamma_{D_l}(g_{(\cdot)}(\lambda_{D_l}(a_{l1}), \ldots, \lambda_{D_l}(a_{lj_l})))) \\ = g_{(\cdot)}(\delta\alpha_{D_1}(a_{11}), \ldots, \delta\alpha_{D_l}(a_{lj_l})), \end{array}$$

where g denotes a (k+1)-group operation on L' and also on F'(D). Then the (k+1)-group L' is generated by the set $\delta(L)$, which proves that the pair $\langle L', \varepsilon \rangle$, where ε is the inclusion of $\delta(L)$ into $\Psi_{\varepsilon}(L')$, is a covering (k+1)-group of the (n+1)-group $\delta(L)$. Let q' be the index of that covering (k+1)-group. Then there exists an epimorphism $\zeta'\colon L'\to \mathbb{G}_{q',k+1}$ such that $\zeta'^{-1}(0)=\delta(L)$. Hence $\zeta'^{-1}(0)=\zeta^{-1}(0)$ (since $\delta(L)=\zeta^{-1}(0)$), which shows that there exists an epimorphism $\mu\colon \mathbb{G}_{q',k+1}\to \mathbb{G}_{q,k+1}$ such that $\mu\zeta'=\zeta$ (cf. [9], Lemma 1). From this equality it follows that q|q'. Now, let $a'\in\zeta_D^{-1}(0)$ for a certain $D\in\mathcal{D}$. Then $a'=\lambda_D(a)$ for a certain $a\in F(D)$. The morphism $\zeta'\gamma_D\colon F'(D)\to \mathbb{G}_{q',k+1}$ is an epimorphism, since $\zeta'\gamma_D(\lambda_D(F(D)))=0$. From the equality $\zeta'\gamma_D(a')=\zeta'\delta\alpha_D(a)=0$ it follows that $\zeta_D^{-1}(0)=\zeta(\zeta'\gamma_D)^{-1}(0)$. This proves by Lemma 1 of [9] the existence of an epimorphism $\mu_D\colon \mathbb{G}_{q_D,k+1}\to \mathbb{G}_{q',k+1}$ such that $\mu_D\zeta_D=\zeta'\gamma_D$. Thus $q'|q_D$ for each $D\in\mathcal{D}$, whence q'|q. This proves that q'=q.

4. The relations of the functor Ψ_s to inductive and projective limits. The functor Ψ , being a right adjoint functor, preserves projective limits. On the other hand, Ψ reflects projective limits, since Gr_{k+1} is a complete category, Ψ is a faithful functor and Ψ reflects isomorphisms.

Hence we immediately get

1

PROPOSITION 7. $[L; \{\pi_D \colon L \to F(D)\}_{D \in \mathscr{B}}]$ is the projective limit of $F \colon \mathscr{D} \to Gr_{k+1}$ if and only if $[\Psi_s(L); \{\Psi_s(\pi_D) \colon \Psi_s(L) \to \Psi_s F(D)\}_{D \in \mathscr{B}}]$ is the projective limit of $\Psi_s F \colon \mathscr{D} \to Gr_{n+1}$.

Corollary 6. If $[L'; \{\gamma_D: L' \to \Psi_s F(D)\}_{D \in \mathscr{D}}]$ is the projective limit of $\Psi_s F: \mathscr{D} \to Gr_{n+1}$, then there exists an object $L \in Gr_{k+1}$ unique up to an isomorphism and a family $\{\pi_D: L \to F(D)\}_{D \in \mathscr{D}}$ such that $\Psi_s(L) = L', \ \Psi_s(\pi_D) = \gamma_D$ for each $D \in \mathscr{D}$. Moreover $[L; \{\pi_D: L \to F(D)\}_{D \in \mathscr{D}}]$ is then the projective limit of $F: \mathscr{D} \to Gr_{k+1}$.

From Corollary 6 it follows that the projective limit of (n+1)-groups derived from (k+1)-groups (cf. [9]) is an (n+1)-group derived from a (k+1)-group. We shall prove a similar theorem for inductive limits, for the case of s>1, but under additional conditions set upon \mathcal{D} . For the case of s=1 the functor Ψ , being the identity functor, obviously preserves and reflects all limits.

THEOREM 3. Given a diagram $F\colon \mathscr{D}\to Gr_{k+1}$, suppose \mathscr{D} has an initial object I and $\Psi_sF(I)$ is not an initial object in Gr_{n+1} (s>1). Then $[L; \{\sigma_D\colon F(D)\to L\}_{D\in\mathscr{D}}]$ is the inductive limit of $F\colon \mathscr{D}\to Gr_{k+1}$ if and only if $[\Psi_s(L); \{\Psi_s(\sigma_D)\colon \Psi_sF(D)\to \Psi_s(L)\}_{D\in\mathscr{D}}]$ is the inductive limit of $\Psi_sF\colon \mathscr{D}\to Gr_{n+1}$.

Proof. Let $[L; \{\sigma_D\colon F(D)\to L\}_{D\in\mathscr{B}}]$ and $[L'; \{\gamma_D\colon \Psi_sF(D)\to L'\}_{D\in\mathscr{B}}]$ be the inductive limits of F and Ψ_sF , respectively. Denote (as usual) the (k+1)-group operations on F(D) by g, and the (n+1)-group operation on L' by f. Let I be an initial object in \mathscr{D} , i.e., for each object $D\in\mathscr{D}$ there exists a unique morphism $\alpha_D\colon I\to D$. Take an arbitrary element $c_0\in F(I)$. We shall prove that the element $d=\gamma_I(\bar{c}_0)$, where \bar{c}_0 is the skew element to c_0 in the (k+1)-group F(I), is an s-skew element to $c=\gamma_I(c_0)$ (cf. [10]). In fact, take an arbitrary element $x\in L'$. The (n+1)-group L', as the inductive limit of Ψ_sF , is generated by the set $\bigcup_{g\in\mathscr{D}}\gamma_D(\Psi_sF(D))$, and thus $x=f_{(r)}(\gamma_{D_I}(x_1),\ldots,\gamma_{D_r}(x_r))$ where $r\equiv 1\pmod{n}$ and $x_i\in \Psi_sF(D_i)$ for each $i=1,\ldots,r$. Then

$$\begin{split} f(d, & \overset{s}{c}, \overset{(k-1)s}{,} \\ f(d, & \overset{s}{c}, & x) = f(\gamma_I(\overline{c}_0), \gamma_I(c_0), f_{(?)}(\gamma_{D_1}(x_1), \dots, \gamma_{D_r}(x_r))) \\ & = f_{(?)} \Big(f(\gamma_{D_1} \varPsi_s F(\alpha_{D_1})(\overline{c}_0), \gamma_{D_1} \varPsi_s F(\alpha_{D_1})(c_0), \gamma_{D_1}(x_1)), \gamma_{D_2}(x_2), \dots, \gamma_{D_r}(x_r) \Big) \\ & = f_{(?)} \Big(\gamma_{D_1} \Big(g_{(s)} \big(F(\alpha_{D_1})(\overline{c}_0), F(\alpha_{D_1})(c_0), x_1 \big) \Big), \gamma_{D_2}(x_2), \dots, \gamma_{D_r}(x_r) \Big) \\ & = f_{(?)} \Big(\gamma_{D_1}(x_1), \dots, \gamma_{D_r}(x_r) \Big) = x, \end{split}$$

which shows that condition 1° from the definition of an s-skew element (cf. [10]) is fulfilled. Similarly one can prove that f(c, d, x) = x.

Now, take arbitrary elements $x_1,\ldots,x_{n+1-k}\in L'$ and fixed $i=1,\ldots,n+1-k$. Let $x_i=f_{(\cdot)}(\gamma_{D_1}(y_1),\ldots,\gamma_{D_r}(y_r))$ where $r\equiv 1\ (\mathrm{mod}\ n)$ and $y_j\in \Psi_sF(D_j)$ for $j=1,\ldots,r$. Then

$$\begin{split} f(x_1,...,x_i,d,&\overset{k-1}{c},x_{i+1},...,x_{n+1-k}) \\ &= f_{(\cdot)}(...,x_{i-1},\gamma_{D_1}(y_1),...,\gamma_{D_{r-1}}(y_{r-1}),f(\overset{(k-1)s}{c},d,\gamma_{D_r}(y_r)),d,\overset{k-1}{c},x_{i+1},...) \\ &= f_{(\cdot)}(...,\gamma_{D_{r-1}}(y_{r-1}),c,f(\overset{(k-1)s-k}{c},d,\gamma_{D_r}(y_r),d,c),x_{i+1},...) \\ &= f_{(\cdot)}(...,\gamma_{D_{r-1}}(y_{r-1}),c,f(\gamma_{D_r}\Psi_sF(\alpha_{D_r})(c_0),\gamma_{D_r}\Psi_sF(\alpha_{D_r})(\bar{c}_0),\gamma_{D_r}(y_r), \\ &&\overset{k}{f}(\gamma_{D_r}\Psi_sF(\alpha_{D_r})(\bar{c}_0),\gamma_{D_r}\Psi_sF(\alpha_{D_r})(c_0),x_{i+1},...) \end{split}$$

$$\begin{split} &= f_{(\cdot)}(\dots,\gamma_{D_{r-1}}(y_{r-1}),c,\gamma_{D_r}(g_{(s)}(F(\alpha_{D_r})(c_0),F(\alpha_{D_r})(\bar{c}_0),\gamma_r,\\ &\qquad \qquad F(\alpha_{D_r})(\bar{c}_0),F(\alpha_{D_r})(c_0))),x_{i+1},\dots)\\ &= f_{(\cdot)}(\dots,\gamma_{D_{r-1}}(y_{r-1}),c,f(\gamma_{D_r}\Psi_sF(\alpha_{D_r})(c_0),\gamma_{D_r}\Psi_sF(\alpha_{D_r})(\bar{c}_0),\gamma_{D_r}(y_r),\\ &\qquad \qquad \gamma_{D_r}\Psi_sF(\alpha_{D_r})(c_0),\gamma_{D_r}\Psi_sF(\alpha_{D_r})(\bar{c}_0)),x_{i+1},\dots)\\ &= f_{(\cdot)}(\dots,\gamma_{D_{r-1}}(y_{r-1}),c,f(c_0),\gamma_{D_r}(y_r),c,d),x_{i+1},\dots)\\ &= \dots = f(x_1,\dots,x_i,c_1,d,x_{i+1},\dots,x_{n+1-k}). \end{split}$$

In a similar way we prove that

$$f(x_1, ..., x_i, d, c, x_{i+1}, ..., x_{n+1-k}) = f(c, d, x_1, ..., x_{n+1-k}).$$

This shows that the second condition from the definition of an s-skew element is also fulfilled. Thus (cf. [9], Theorem 5 and [10], Proposition 1) the (n+1)-group (L', f) is derived from a certain (k+1)-group (A, g), i.e., $\Psi_s(A) = L'$. The (k+1)-group operation on A is described by the formula

$$g(x_1, ..., x_{k+1}) = f(x_1, ..., x_{k+1}, d, c)$$
.

Let $x_1, \ldots, x_{k+1} \in F(D)$. Then

181

$$\gamma_{D}(g(x_{1},...,x_{k+1})) = \gamma_{D}(g_{(s)}(x_{1},...,x_{k+1},F(\alpha_{D})(\bar{c}_{0}),F(\alpha_{D})(c_{0})))
= f(\gamma_{D}(x_{1}),...,\gamma_{D}(x_{k+1}),d,c) = g(\gamma_{D}(x_{1}),...,\gamma_{D}(x_{k+1})),$$

which shows that $\gamma_D = \Psi_s(\beta_D)$, where $\beta_D \colon F(D) \to A$, for $D \in \mathcal{D}$. By the faithfulness of Ψ it follows that the family $\{\beta_D\}_{D \in \mathcal{D}}$ is compatible with $F \colon \mathcal{D} \to Gr_{k+1}$. Then there exists a unique morphism $\delta \colon L \to A$ such that $\delta \sigma_D = \beta_D$ for $D \in \mathcal{D}$. One can prove that δ is an isomorphism. Therefore $[\Psi_s(L); \{\Psi_s(\sigma_D) \colon \Psi_sF(D) \to \Psi_s(L)\}_{D \in \mathcal{D}}]$ is the inductive limit of Ψ_sF .

COROLLARY 7. Let \mathscr{D} have an initial object I and let F be a diagram such that $\Psi_sF(I)$ is not an initial object in Gr_{n+1} (s>1). If $[L'; \{\gamma_D: \Psi_sF(D) \to L'\}_{D\in\mathscr{D}}]$ is the inductive limit of Ψ_sF , then there exists an object $L \in Gr_{k+1}$ unique up to an isomorphism and a family $\{\sigma_D: F(D) \to L\}_{D\in\mathscr{D}}$ such that $\Psi_s(L) = L'$, $\Psi_s(\sigma_D) = \gamma_D$ for each $D \in \mathscr{D}$. Moreover, $[L; \{\sigma_D: F(D) \to L\}_{D\in\mathscr{D}}]$ is then the inductive limit of F.

This shows that for s>1 the class of (n+1)-groups derived from (k+1)-groups is closed with respect to the inductive limits of the diagrams $F: \mathcal{D} \to Gr_{n+1}$ where \mathcal{D} has an initial object and F(I) is not an initial object in Gr_{n+1} .

The functors Φ and Ψ , being adjoint functors, have numerous dual properties. Hence also free covering (k+1)-groups and derived (n+1)-groups, being objects of the form $\Phi_s(A)$ and $\Psi_s(A)$, respectively, also have many dual properties. Examples

are contained in Proposition 5 and Proposition 7, Theorem 1 and Theorem 3. But not all facts listed in Section 3 have their counterparts in Section 4. The class of free covering (k+1)-groups is closed with respect to projective limits, whereas the class of derived (n+1)-groups is not closed with respect to inductive limits. An example is given by the free product of two derived (n+1)-groups from (k+1)-groups, which is even a primitive (n+1)-group, i.e., is not derived from any (k+1)-group where k is an arbitrary divisor of n (cf. [11]).

References

- [1] В. А. Артамонов, Свободные п-группы, Мат. Заметки 8 (1970), pp. 499-507.
- [2] М. Ш. Цаленко, Е. Г. Шульгейфер, Основы теории категории, Москва 1974.
- [3] G. Čupona and N. Celakoski, On representation of associatives into semigroups, Maked. Akad. Nauk. Umet. Oddel. Prirod. — Mat. Nauk. Prilozi 6 (1974), pp. 23-34.
- [4] W. Dörnte, Untersuchungen über einen verallgemeinerten Groppenbegriff, Math. Z. 29 (1929), pp. 1-19.
- [5] B. Gleichgewicht and K. Głazek, Remarks on n-groups as abstract algebras, Colloq. Math. 17 (1967), pp. 209-219.
- [6] H. Lausch and W. Nöbauer, Algebra of Polynomials, Amsterdam 1973.
- [7] J. Michalski, On some functors from the category of n-groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), pp. 437-441.
- [8] Inductive and projective limits of n-groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), pp. 443–446.
- [9] Covering k-groups of n-groups, Arch. Math. (Brno) 17 (1981), pp. 207-226.
- [10] On s-skew elements in polyadic groups, Arch. Math. (Brno) 19 (1983), pp. 215-218.
- [11] Free products of n-groups, Fund. Math. 123 (1984), pp. 11-20.
- [12] D. Monk and F. M. Sioson, On the general theory of m-groups, Fund. Math. 72 (1971), pp. 233-244.
- [13] E. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), pp. 208-350.
- [14] Z. Semadeni und A. Wiweger, Einführung in die Theorie der Kategorien und Funktoren, Leipzig 1979.

Received 26 January 1981; in revised form 7 June 1982