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" On the category of n-groups
by

Jacek Michalski (Wroctaw)

Abstract. Let n = s'k. We introduce the notions of a free covering (k+1)-group and a
covering (k+1)-group of an (n-+ 1)-group, which are generalizations of analogous notions used by
Post. This enables us to construct a functor Ps: Gyt —Gr+y (Gry —the category of n-groups)
whicn is left adjoint to the forgetful functor W, Gryty—>Gry+1. We obtain several theorems on
commutativity of those functors with inductive and projective limits. We also prove a general
theorem on the form of inductive limits of covering (k-+1)-groups of (n+1)-groups.

1. Introduction. Several authors have investigated n-groups, but not much
attention has been paid so far to the category of n-groups. This paper is an at-
tempt to put together and systematize certain facts concerning categorical proper-
ties of n-groups. Although in most notions and theorems where n-groups and
their homomorphisms occur they are considered from the external, categorical
view-point, in some cases, of necessity, the internal approach is used, which means
considering n-groups as sets with a certain structure and their homomorphisms
as functions. This causes a certain inconsistency of notation. Namely, an n-group
as a set with operations will be denoted by 6 = (G,f) (or shortly (G,f)), whereas
for the same n-group considered as an object in the category of n-groups simply
the abbreviation G will be used. To avoid numerous repetitions, we assume that f
and g always denote (n-1)-group and (k+1)-group operations, respectively, and
we write (G,f) and (G, g) only to avoid a possible misunderstanding. The terms
homomiorphisms and morphisms will be vsed interchangeably, depending on which
properties, internal or external, are to be emphasized.

The symbol a: A — B, where A and B are objects of the same category,
usually means a morphism of that category. The identity morphism will be de-
noted by e,: 4 - 4, or shortly ¢, if it is not misleading.

In this paper the term functor always means a covariant one. We shall use
interchangeably the following terms: a small category and a diagram scheme;
a functor from a small category and a diagram. The latter terms will be used es-
pecially in dealing with limits, The symbol & will always denote a small category
and the symbol F a functor from that category 2 (i.e., F will denote a diagram).

For operations in n-groups the same notation as in [9] is adopted. Let us
recall only the most common conventions:
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Also most of the notions and theorems to which we refer here can be found in [9].
The notions of category theory used here can be found in any monograph i in this
field (e.g. [2], [14)).

Part of the results here prescnted have been announced in [7] and [8].

Ximgs Xipgs o) -

2. The functors ¥, and &,. The category consisting of n-groups as objects
and their homomorphisms as morphisms will be denoted (as in [7] and [8]) by G¥,.
Consequently, the category of groups will be denoted by Gr,. The definition of
n-group given by Dorate in [4] assumed that its carrier was nonempty. In con-
sidering the category of m-groups for x>2 it is convenient to admit the empty
n-group. The empty n-group is an initial object in Gr,. The category Gr, always
has final objects. They are one-element n-groups. In Gr, there exist zero objects:
one-element groups.

The class of n-groups is a variety (cf [5] and [12]); thus in Gr, monomorphisms
and injective homomorphisms coincide (cf. [2]).

Let & = (G, g) be a (k+1)-group. Then the (sk+1)-groupoid G, = (G, 9¢)
where g, is an (sk+1)-ary operation which is a simple iteration of the (k+1)-ary
operation g, i.e.,

g(s)(xla' '3 sk+1)

= g(g 9(9(3‘-'1; woos Xt 1)s X 2o ooes Xaa1)s ): X(s—1)k+25 *o0s xsk+1)_

S

is already an (sk+1)-group (cf. [4], [9]). In certain situations we will write gey to
mean g, for some u = 1,2, ... In [5] it was shown that the resulting (sk+1)-group
G, is a reduct (in the sense of [6]; note that in n-group theory the term reduct
is also used in another sense) of the (k-+1)-group ®, ie., every term operation
in G, is a term operation in ®. This leads to the forgetful functor ¥,: Gry. -
- Grg.y. Note that for the case of s = 1 the functor ¥, is simply the identity
functor. When it is not misleading we will write simply ¥ in place of ¥,. Like every
forgetful functor, ¥ turns out to be a faithful functor. The functor ¥ thus reflects
monomorphisms and epimorphisms. On the other hand, like every forgetful functor,
¥ preserves and reflects injective and surjective homomorphisms. Hence ¥ pre-
serves monomorphisms.

In [9] the notion of a free covering k-group and covering k~-group has been
introduced. The definitions of these notions given here differ from the corresponding
definitions of [9]. However, one-can prove that in the case of nonempty n-groups

(and .in fact only such #-groups were considered in [9]) the two definitions are
equivalent.

icm°

On the category of n-groups 189

For the sake of description of the construction of the free covering k-group
and for the investigation of the functors ¥ and & it will be convenient to treat
(k+ 1)-}groups and (n+ 1)-groups, rather than k-groups and n-groups. Henceforth,
throughout the paper, we always assume n = sk (admitting k = 1, s = 1), s = mg;
furthermore 7 and g may have the same indices.

DErmNITION 1. A pair {4’,1,) where 1,: A— ¥ (A4"), A€ Gr,y, A €Gryy
is said to be a free covering (k+1)-group of an (n-+1)-group A if for each h: A ¥ (B),
where B € G, ., there exists a unique morphism h*: 4’ — B such that ¥ (h*) 7, = h.

The construction of a free covering group is due to Post (cf. [13]). Here we
cite the construction of free covering (k+1)-groups as it was given in [7)].

The set Z, = {0, 1, ..., s—1} where s = 2,3, ... together with the (k+1)-ary
operation @(ly, oy leyy) = L+t lpyy+1(mods) is a cyclic (k+1)-group of
order 5. We will denote it by €. Additionally, by €., we will denote the
one-element (k-+1)-group.

Let G = (G,f) be an arbitrary nonempty (n+1)-group and let ce G be an
arbitrary but fixed element of G. Form the set G*° = G x Z and define a (k+1)-ary
operation f* in G** in the following way:

s a1 e 1))

f*((xls 11)9

Itk etk n—=1-o(..lke 1)K
= (fylogs €sovis Xpapy G G ¢ Yo @y ey Bews))
for Xy, o, X401 €G, lyy o, hpy € Z.

The (k+1)-groupoid G** = (G**, f*) together with a mapping 15: G- ¥(G*’)
given by 14(x) = (x,0) is a free covering (k-+1)-group of the (n+1)-group & in
the sense of Definition 2 of [9] (cf. [9], Theorem 1) and hence also in the sense of
Definition 1. Note that when s =1 the (n+1)-group ® is isomorphic to the
(n+1)-group G*! and 14 is an isomorphism.

PROPOSITION 1. If a pair (A’, 1, is a free covering (k+1)-group of an (n+1)-
group A, then the morphism 1 A — P (A') is @ monomorphism and the set 1 ,(A)
generates the (k+1)-group A'.

With each free covering (k+1)-group {A4’,7,> of the (n+1)-group 4 we can
connect some morphism {,: 4~ € y4. For a nonempty (n+1)-group 4 the
morphism {, is determined as in Coset Theorem (cf. [13] and Theorem 2 of [9]).
It is easy to check that for the empty (n-+1)-group 4 a free covering (k--1)-group
{4, ) is, depending on k, the empty one (for k>1) or the one-element group
(for k = 1), whence {4: 4"~ €,y is uniquely determined.

DEFINITION 2. A triple {4’, A4, (> where A, A — P (A), {4 A= € puy,
A€Gr, .y, A’ € Greyy, is said to be a covering (k+1)-group of index g of the (n+1)-
group A if there exists a (gk+1)-group A together with an embedding 75: A— ¥, (A")
such that <A, 13> is a free covering (k+1)-group of the (gk+1)-group 4, !F’,,,(Z)r
= A, ¥, (t3) = 1, and the morphism {, is determined by <{4’, 73>.
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- Note that if the (n+1)-group A is nonempty, the number ¢ and the morphism
L, are uniquely determined by the pair ¢4', 1,> and, conversely, the morphism 1, is
uniquely determined by the pair {4', {,> (cf. [9], Theorem 2 and Definition 3).
If the (n+1)-group 4 is empty, each number g with g|s can be treated as an index
of {A4', 4.

PROPOSITION 2. Let A be @ nonempty (n+1)-group. A pair {A', A,> is a cover-
ing (k+1)-group of A if and only if 1, is a monomorphism and the set A ,(A) generates
the (k+1)-group A'.

The pair {G*, 14> is a quasireflect of the object G e Gr,,,; with respect to
the forgetful functor ¥y: Gty — Gryyq (cf. [14]). This enables us to define the
functor. &5 Gr,y1 — Griyy by B(G) = G* for G e G¥,.,, which is a left adjoint
g‘unctor to ¥,. Note that to guarantee the correctness of this definition we choose
in each nonempty (n+1)-group (G,f) an element cge G and then by $(G) we
mean the (k+1)-group (G*:, f*) constructed as in [7] for a previously given el-
elz?ent ¢g. The procedure of choice is not essential, since all functors obtained by
this way are naturally equivalent. Therefore when investigating the preservation
Properties of &, we may choose the elements c; in the most convenient way. As
in the case of ¥, we also now admit writing @ in place of @,. And similarly to the
case of ¥, the functor @, is the identity functor.

EZet ?1[= (12,{),]325 =§B,f) be (n+1)-groups and A: A — B. Fix elements
¢y and cp € B to be used in the construction of the i -
Then (cf. [9]) k) = (tzh)*, whence fros oavering (k +1)-grovpe.
DM (x, 1) = (F(h(G), hlcy), ..., h(ey), B, €5y vy CB), l) .
»' )13 n—1=lk
Observe that if we take cz = h(c,), the above formula is simplified. In fact, for
the functor &; determined by such a choice we have &,(h)(x, 1) = (h ), D). H’ence

ProrosiTiON 3. The functor & preserves and reflects injective and surjective
homomorphisms. .

In Gr, the class of injective homomorphisms is equal to the class of mono-
morphisms. Thus, in view of Proposition 3, @ preserves and reflects monomeorphisms
(cf. [11, [3]). Note that the last remark results also from the fact that & is a faithful
functor. (since the' first canonical transformation 75: G — ¥, B(G) is a ‘mono-
morphism, cf. [2]): Being such a functor, & reflects epimorphjsn;s. On the other

hand, being a left adjoint functor, & i i
s , @ preserves epimorphisms (cf, [3]).
by Proposition 3 we obtain : ? (¢ BD. Hence and

COROLLARY 1. In the category G, the class of surjecti
" surjective J i A

equal to the class of epimorphisms. 4 ik

. Recall that.'a ‘monomorphism u: U— A is said to be a regular monomorphism
(c'. 2], p. 41) if, f?r any mo phism y: X — A such that for each pair a: 4 — Y,
ﬂ’. ,fY - );]the e};lu;hty ap = Puimplies the equality «y = By, there exists a morphism
y": X'— U such that pyy" = y. In a dual i i
AR Y val way we define the notion of a regular epi-
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As in each variety, in Gr, every surjective homomorphism is a regular epi-
morphism (cf. [2]). Hence one can obtain

COROLLARY 2. In the category Gr, every epimorphism is a regular epimorphism.

PROPOSITION 4. The functor & reflects regular monomorphisms.

Proof. Let a morphism ®(u): D(4) — ®(B), where A, Be Gr,, 4, be regular.
The morphism pu: A > Bis a monomorphism. Take an arbitrary y: X - B, where
X e Gr,., having the following property: for -every pair ot B—= Y, f: B—> Y
from the equality au = Pu it follows that ay = By. One can show that $(y) also
has this property. Hence there exists a morphism 7: P(X) = B(A) such that
& ()n = D,(y). According to Corollary 6 of [9] it follows that n = ¢,(6) where
§: X —» A and pué = y. This proves that u is a regular monomorphism.

COROLLARY 3. In the category Gr, every monomorphism is a regular mono-
morphism.

3. The relations of the functor &, to inductive and projective limits. As we
mentioned above, the class of n-groups is a variety. The category Gr, is therefore
a complete category with respect to inductive and projective limits for all diagram
schemes including the empty diagram schéme (cf. [2]). The functor &, being a left
adjoint functor, preserves inductive limits. We show even more, namely that @
also reflects inductive limits.

LEmMA 1. Let categories A 'y and A , be complete with respect to inductive limits,
If a faithful functor Az A"y — A 5 preserves inductive limits and reflects isomorphisms,
then A reflects inductive limits.

PROPOSITION 5. [L; {0tp: F(D) = L}pegl is the inductive limit of F: D — Gry4y
if and only if [8,(L); {®(ap): & F(D)—®(L)}peal is the inductive limit of &F: D~
= Gryyq-

COROLLARY 4. I [L'; {yp: ®,F(D)— L'}peslis the inductive limit of &, F: D~
—» Gry41, then there exists an object L € G, unique up to an isomorphism, a Sfamily
{ap: F(D) - Lipeo and an isomorphism n: L' = ®(L) such that $ap) = nyp for
every De @. Moreover, [L; {op: F(D)— L)pegl is then the inductive limit of
F: @ — Gry.q.

The above corollary shows that the inductive limit of free covering (k+1)-
groups is a free covering (k+1)-group, i.e., the class of free covering (k+1)-groups
of (n+1)-groups is closed with respect to inductive limits. Note that we now
regard free covering (k-+1)-groups of (n-+1)-groups as certain (k+1)-groups
(to be exact, such (k-+1)-groups G for which there exist epimorphisms {: G —

— €, p+1). Being a free covering (k+1)-group of (n+1)-group is then an inner
property of the (k--1)-group itself but not of the pair (the form of the epimorphism
is not esoential here). ‘ )

ProrosiTioN 6. If [L'; {mp: L' — & F(D)pesl is the projective limit - of
& F: D ~ Gryyy, Where D is a nonempty category or k =1, then there exists an
object L € Gr,.1 such that ®(L) is isomorphic to L.
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Proof. Let [G, {y5: G — F(D)}p.qg] be the projective limit of F: & — Gty y
where & is nonempty. The family {®,(yp)}peg is compatible with &,F: & — G¥yp1.
Then there exists 4 unique morphism p: &,(G) — L' with myu = D (yp) for De 9.
By Corollary 6 of [9] the object L’ is a free covering (k+1)-group of an (n+1)-
group L. Hence L' is isomorphic to &(L).

Now, let the object L' & Gr, be the projective limit of &, F: D - Gr, where
9 is the empty category. Then L' (as a final object in G¥,) is a one-element group.
But a one-element group is a free covering group of the empty (n+1)-group. This
completes the proof.

Thus the class of free covering (k+1)-groups of (n+1)- groups is closed with
Tespect to projective limits (where free covering (k- 1)-groups of (n+1)-groups
are understood simply as a subclass of the class of (k- 1)- groups, as in the remark

* to Corollary 4). It is worthwhile to add that the object L is not uniquely determined
and depends on the choice of the morphism y, (cf. Corollary 6 of [9]). Proposi-
tion 6 is (regarding projective limits) essentially weaker than Corollary 4 (regarding
inductive limits). The functor & need not preserve a cartesian product. For example,
let A =(4,f), B=(B,f; be finite (n+1)-groups. Then A* = (4 XZ, 15,
*B = (BxZ,,[f3), whence U*xB* = (AxZ,xBxZ,, f¥x f5). On the other
hand, (WxB)* = (4x BxZ,, f¥.5), which shows that the (k+1)-groups A**x

xB* and (A x B)** are not isomorphic. However, under additional conditions set )

upon the diagram scheme 9@ one can obtain

THEOREM 1. Let 9 have a final object. Then [L; {np: L » F(D)}peol is the
projective limit of F: 9 — G, if and only if [D(L); {B(mp): By(L) > B, F (D)} pes]
is the projective limit of ®,F. : )

Proof. Let E be a final object of 9, i.e., for each object D e P there exists
a unique morphism ¢,: D — E. We first prove that @, preserves projective limits.

Let [L; {np: L » F(D)}p.s] and [L'; {rp: L' - ®,F(D)}p.5] be the projective
limits of F: 9 ~ Gr,,, and D F: D - Gry..q, Tespectively. The family {@(np)}pes
is compatible with @,F; thus there exists a unique morphism &: $ (L)~ L' with
Y06 = &(np) for DeP. Since dL) and {®,F(D)}p.q are free covering (k+1)-
groups, there exist epimorphisms {;: ®(L)— Cox+1 and {p: O,F(D) - k1 for
DeZ (cf. [9], Theorem 2). Note that LnPymp) = {1 and (B, F(op) = Ly,
{y® F(a) = Ly if «: X > ¥, for every D, X, Ye2. Hence {,y, = {zyp, which
proves that the morphisms {,y, are equal to each other for every D e &. Denote
these morphisms by ¢/, ie., ' = {p¥p. The morphism {': L' — Q,,.q is an epi-
morphism since {'6 = ;. Thus <L, ¢’y is a free covering (k+1)-group of the
(n+1)-group G = {'71(0) (cf. [9]). Furthermore, there exists an isomorphism
7: @G — L’ such that ypn = D (ap) Where wy: G - F(D) for De®. Hence
®(F(0)ag) = B (xy). The last equality shows that the family {ap)}p.q is compatible
with F. Then there exists a unique morphism f: G — L such that 7,8 = oy for
Deg. Thus @ (n,)S(B)n~16 = D((np) for De D, which shows that D (Byn~16

= ¢o,@)- On the other hand, the equality {'5 = ¢, implies the existence of a morphism

s
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u: L —» G such that 5 (p) = § (cf. [9], Theorem 4). Hence D (appup) = (Dfl(falcﬁz;
B-y the faithfulness of @, we get apif = dp 1.01' D e, whence uf = eg.
80,(B)n ! = er. So J is an isomorphism, which proves that

5

[BL); {B(mp): B(L) — BF(D}pes]

is the projective limit of $.F: 2 — Grk+.1. o o
th:: ;roof of the converse theorem is similar to that of Proposition 5. The

only facts needed are the completeness of an+1 and faithfulnessf o;‘ ’IQ‘; ea:)rrl: n;:hle

preservation of projective limits, as shown. This completes ?he .pro? 'o . @—;
COROLLARY 5. If [L'; {yp: L' = ®,F(D)}peal is the pro;ectz.ve lzmztb({f T;JZG,.

—Gry..y and D is a small category with a final object, then there exists ;n 2 ],-e;, morph;;’ ;

unique up to an isomorphism, a family {np: L = F(D)}pea and an isom

o: ®(L) =~ L' such that O{np) = yp0 for each D e@. Moreover,

[L; {mp: L — F(D)}pesl

is then the projective limit of F: @ — Gryyy. '

It turns out that Proposition 6 is a particular case of a morse
general statement on inductive limits of covering (k4 1)-groups of (n+1)-groups.

Let @ be an arbitrary, nonempty diagram scheme. . ,

TeroreM 2. If [L'; {yp: F'(D) = L'}peal is the inductive limit of F': @ - Gryyq,
where (F'(D), Ap, LpY are covering (k+1)-groups of indices qp of tlze'(n+1)-gro:4{):
F(D) and ¥, F'(6)Ax = Ay F(a) for each morphism o: X— Y, th;n L' is aals'& ;1 ivoh;re

i = the (n+1)-group
ing (k+1)-group of index q = gc.d. {qD}D-E..,,‘ of .
[Lg" ?{aD: F(D) = L}pegl is the inductive limit of F: @ = Gry.y, and 0 is the
morphism induced by {¥(yp)*p}pes- o '
pProof Let [L; {ap: F(D)~ L}pea] be the inductive limit of F. The fa;nly
8 © i i here exists a unique morphism
¥ Aptpeq is compatible with F, and so t ] ;
g' SI(in)» ‘ID’}lI)/gsuch that day, = ¥(yp)Ap for De P. Since (F .(D), Ap, Loy ar:,h b};
as;sumptioin, covering (k+1)-groups of indices gp of F(D), it folliws th.ag( —}e;:f
exists 2 unique family of epimorphisms {&,: €ppps1 Coyht1tacdr W er«:i u{. } ,
with £,0) = 0 and &lx = {yF'(e) (cf. [9], Theorem 4).. Let q.= g.c‘. ‘Gq,, Dai.
Then ;or each D e @ there exists one (and only one) eglmorphlsm Ept Cpp et
- ¢ with &€,(0) = 0. From the definition of & it follows. that for ever'y
mor;ﬁ;;tn a: X — Y the equality £y, = & holds. Then the family {fpc,,}.m_oi is
compatible with F': & — Gr,,.,. Hence there exists a unique mor.phmn% L -
- . such that {yp = &plp for De®. This equality shows that { is an epi-
q.k+
hism. ' A
rnol-pLet a €8(L), ie., a = 5(d) where aelL. The (n+1)-group L, being the
b A ") .
ipductive limit of F, is gepel'ated by the set DggaD(F(D)), whenc:

a= f(-)(@D;(al) seens .“D,(az))
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where a;€ F(D;) for i =1, ..., and I = 1 (mod 7). Hence

{@) =106 (f(~)(°‘m(al), s O‘D.(az)))
4 (f(-)(‘l’s(?m) Ap{ay), ..., ¥(yp) }vm(at)))
= ‘P(fnlgm(}m,(al))’ s Ep, (D.(;Lnx(ar))) = ¢(0,..,0)=0,

where f denotes an (r-+1)-group operation on L and also on Y(L) and ¢ denotes
(as usual) the (k+1)-group operation on €., Thus {6y = {03}, ie., S(L)
<{7X0). Let ' € L'. The (k+1)- group L, as the inductive limit of F, is generated
by the setD(EjQ'yD(F’(D)), whence &' = g(yp,(al), ..., ¥n,(a})) Where d} € F'(D)) and
I'=1(mod k). Moreover, the (k+1)-groups F'(D)) are generated by the sets

Ap(F(D)), and so we get af = 96 (Ap @), oy Apfay;)) where ;=1 (mod k)
for i =1, ...,1 Hence

b= g(-)()’m(%): oy )’D;(“t)) -
= 9(~)(?D;(&7(~)(/1D1(a11), ey 11)1(‘1111))), s ?’D,(g(o(}ml(ﬂu), ey 1»,(”11,))))
= g(‘)(éocpl(a“), vy 5“1),(’111',)) s

where g denotes a (k+1)-group operation on L’ and also on F'(D). Then the
{(k+1)-group L’ is generated by the set 6(L), which proves that the pair (L', &),
where & is the inclusion of §(L) into Y(L"),is a covering (k+ 1)-group of the (n+1)-
group 6(L). Let ¢’ be the index of that covering (k+1)-group. Then there exists
an epimorphism {: L' - €., such that {""Y(0) = 5(L). Hence Y0y <L H0)
(since §(LY={~%(0)), which shows that there exists an epimorphism u: Corpi1—
= Q41 such that uf’ = ¢ (cf. [9], Lemma 1). From this equality it follows that
qlg’. Now, let o’ & {3, *(0) for a certain D e 9. Then a’ = Jy(a) for a certain g e F(D).
The morphism {'y,: F'(D) — €41 i an epimorphism, since C’yD(,lD(F(D))) = 0.
From the equality {'y,(a) = {"Sap(a) = 0 it follows that {p 1(O)C(L"'y,,)‘l(o).
This proves by Lemma 1 of [9] the existence of an epimorphism ;: Conts —

= €41y such that uplp = {"yp. Thus ¢'|gp for each D e 9, whence ¢’|q. This
proves that ¢’ = ¢,

‘ 4. The relations of the functor ¥, to inductive and projective limits. The functor P,
being a right 4djoint functor, preserves projective limits. On the other hand,
¥ reflects projective limits, since Gr,.1 is a complete category, ¥ is a faithful functor
and ¥ reflects isomorphisms.

Hence we immediately get

ProrosiTION 7. [L; {ny: L—F(D)}p.g) is the projective limit of Fi I—Gry,

i and only if [P(L); {¥(np): V(L) > ¥ F(D))pegl is the projective limjt of
Y. F: 9 - Gr,,,.

COROLLARY 6. If [L'; {yp: L' — Y F(D)}pegl is the projective limit of W.F::

D > q’rn+1, then there exists an object L e GFy...y unique up to an isomorphism and
a family {ny: L — F(D)}p.q such that Y(L) =L, ¥(np) = yp for each De9.
Moreover [L; {ny: L = F(D)ipeg] is then the projective limit of F: @ — Gre,,.
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From Corollary 6 it follows that the projective limit of (n+1)-groups derived
from (k+1)-groups (cf. [9]) is an (n+1)-group derived from a (k+1)-group.
We shall prove a similar theorem for inductive limits, for the case of s>1, but
under additional conditions set upon 2. For the case of s = 1 the functor ¥, being
the identity functor, obviously preserves and reflects all limits.

THEOREM 3. Given a diagram F: 9 — Gy, suppose & has an initial object T
and W F(I) is not an initial object in Gf,,( (s>1). Then [L; {op: F(D) - L}p.sl
is the inductive limit of F: @ — Gryy, if and only if [P(L); {P(op): P,F(D)—
= Y (D)}pes] is the inductive limit of Y. F: @ — Gr,yyq.

Proof. Let [L; {op: F(D) ~ L}p.o] and [L'; {yp: ¥,F(D) — L'}p.s] be the
inductive limits of F and W,F, respectively. Denote (as usual) the (k+1)-group
operations on F(D) by g, and the (n-+1)-group operation on L’ by f. Let I be an
initial object in 9, i.e., for each object De P there exists a unique morphism
ap: I — D. Take an arbitrary element c, € F(I). We shall prove that the element
d = y,(%), where &, is the skew element to ¢, in the (k+1)-group F(I), is an
s-skew element to ¢ = y,(cy) (cf. [10]). In fact, take an arbitrary element x e L.
The (n-+1)-group L', as the inductive limit of Y F, is generated by the set

U yo(¥F(D)), and thus x = fuy(yp,(x1)s ..., px,)) where r =1 (modn) and
Ded

x;€ Y F(Dy) for each i = 1,...,r. Then

& (k~1)s s (k—1)s
fd, ¢ ,x) =f(ple), 21(00) s Sy Wpy (1) oo’ ¥0,(%.))
] (k—1)s
=fu (f('YD;TSF(%J (€0), 70, s F(atp,) (o), Y0, (%4)), ¥pa(X2)5 v ‘Vnr(xr))
s (k—1)s

= f(-)()’b.(g(s)(F(“D,) (Co) > Flap,)(eo)s x1))> Ypa(%2)s +oes YD,(xr))

= f(')(ybl(xl)’ sy 'yDr(xr)) =X,
which shows that condition 1° from the definition of an s-skew element (cf. {10p

(k—1)s s
is fulfilled. Similarly one can prove that f( ¢, d,x) = x.
Now, take arbitrary elements xy, ..., %,4;.,€ L’ and fixed i = 1, ..., n+1—k.
Let x; = fra(yp,(71), ++o» ¥.(»)) where r=1(modn) and yye Y,F(D)) for
J=1,..,r Then
k-1

f(xla ey Xy d: C oy Xigds ones x1|+1-k)
1

(k—1)s ? k~
=f(~)(-'-: Ximgs T0y(P1)s ore 10 (Pr-1)>FC ¢ L d,yp.(¥)),d, ¢, X4y, )
Kk (k—1)s—k s k=1
=f(‘)("'=yl7.._.1(yr—1)= C,f( 4 ,d, yD,-(yr): d, 4 )’xH«l»-")
k (k—1)s~k s
= f(-)("" Y0es(Pr=1)s €5 S (90, W F(0p,) (Co)» 70,9 s Flotp,) (Eo) s V0. (¥n)s

k=1
V0. ¥ F(0p,) (Co)s Yo, Yo F (@in,) (€0)) s X115 ---)
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(':—1);—-:

= f (-)( . J’D..-;(J’r—1)s c, ?D,(g (s)(F (o, )(Co) F (“D,) (YIS
k=1

F(etp,) (Co) F(“D..)(Co))) xi+1’-")
(k—1)s—k

=f(-)( s Py s (Pr1)s € f(?v,q’ F(ap )(Co) 0. % F(“D, (Zo)» 7»,(y,),
k-1

0, ¥ F(eip,) (o) anlp F(ap,)(€0))s %1415 )
k  (k=1)s—k s k—1
=f(~)(~“a 'yD.-q(yr—i): C,f( 4 H ds yD.—(J’r): C , d): Xig1s -")
k=1
= o = f{Xgy s Xy € 3y Xppts eees Xppg—p) -
In a similar way we prove that
k-1 k=1

f(xla vy Xy d’ C 5 Xipts ""xn+1-—k) =f( ¢, da Xy e xn+l~k) -

This shows that the second condition from the -definition of an s-skew element
is also fulfilled. Thus (cf. [9], Theorem 5 and [10], Proposition 1) the (n+1)-group
(L', ) is derived from a certain (k+1)-group (4, g), i.e., ¥,(4d)= L'. The (k+1)-
group operation on . 4 is descrlbed by the formula

s=1 (k=1)(s=1)

Gy ey Xgpr) = fxps s Xers 4, € )

Let Xy, ..., X341 € F(D). Then
s—1 (- 1)(s—1)
71)(9 (315 wres Xptr 1)) = VD(Q(s)(xh wees X1, F(0p)(80), F(“D)(Co)))

s=1 (k—1)(s=1)
=f(?p(x1)= woos YoGier1)s @ ¢ ) = g(’VD(%)s s ')’D(xk+1)) s

which shows that y, = ¥ (By), where S,: F(D)—> A, for D € 2. By the faithfulness
of ¥ it follows that the family {85}y is compatible with F: @ — Gry..,. Then
there exists a unique morphism §: L — A4 such that do;, = B, for D € 2. One can
prove that d is an isomorphism. Therefore [¥(L); {¥(0p): Y. F(D)~>VY(L)}peal
is the inductive limit of ¥ F.

CoROLLARY 7. Let @ have an initial object I and let F be a diagram such that
W, F(I) is not an initial object in Gr,.( (s>1). If [L'; {yp: Y. F(D) - L'}pegl is the
inductive limit of W F, then there exists an object L e Gr,., unique up to an iso-
morphism and a family {ep: F(D)~L}p.q such that W(L) = L', ¥(op) = yp for
each D e 9. Moreover, [L; {op: F(D) = L}peg) is then the inductive limit of F.

This shows that for s>1 the class of (n+1)-groups derived from (k+1)-
groups is closed with respect to the inductive limits of the diagrams F: & — Gr,,,
where 2 has an initial object and F(I) is not an initial object in Gr,..,.

The functors @ and ¥, being adjoint functors, have numerous dual properties.
Hence also free covering (k+1)-groups and derived (n+1)-groups, being objects
of the form @(4) and ¥(4), respectively, also have many dual properties. Examples

icm
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are contained in Proposition 5 and Proposition 7, Theorem 1 and Theorem 3. But
not all facts listed in Section 3 have their counterparts in Section 4. The class of
free covering (k+1)-groups is closed with respect to projective limits, whereas

the class of derived (n+1)-groups is not closed with respect to inductive limits.

An example is given by the free product of two derived (n+1)-groups from (k+1)-
groups, which is even a primitive (n+1)-group, i.e., is not derived from any (k+1)-
group where k is an arbitrary divisor of n (cf. [11]).
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