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A hereditarily indecomposable, hereditarily non-chainable
planar tree-like continuam

by

Lee Mohler and Lex G. Oversteegen * (Birmingham, Ala.)

Abstract. In [1] R.D. Anderson announced the existence of a hereditarily indecomposable
tree-like continuum in the plane containing no chainable subcontinuum. Anderson’s example was
never published. In [9], Ingram, exploiting constructions from his earlier papers [6] and [8], produced
a continuum satisfying all of the conditions of Anderson’s example except planarity, In this paper
we modify Ingram’s construction to produce a planar example *¥,

The idea of the construction is like Ingram’s in [9]: We begin with a hereditarily indecomposable
continuum of positive span. Into every chainable subcontinuum, another hereditarily indecomposable
continuum of positive span is inserted, yielding in the end a continuum of hereditarily positive span
and hence hereditarily non-chainable. The. difference between our construction and Ingram’s is
that he inserts the same continuum everywhere, whereas we choose our inserted continua from his
planar family [8], in order to get the whole construction to fit in the plane. Moreover, Ingram in-
serts triods, with infinite rays converging to them, into his factor spaces, which makes these spaces
non-planar. We will use finite approximations of such rays and indeed our factor spaces will be trees
(and hence planar). In what follows we will assume that the reader is familiar with Ingram’s papers [6],
[7], [8] and [9].

§ 1. Preliminaries. A continuum is a compact connected metric space. A con-
tinuum X is said to be free-like if it can be written as the inverse limit of a sequence
of finite trees. Alternatively, X admits arbitrarily fine open covers whose nerves
are finite trees (see [12]). Such covers are called tree-chains. A mapping f between
trees is said to be monotone if for every point y in the range of f, f ~1(y) is connected
(and hence a continuum). This is equivalent to saying that for every continuum K
in the range of f, f"1(K) is a continuum (see [10], p. 131). f is said to be atomic
if for every continuum A in the domain of f such that f(4)is non-degenerate, A
= f~Y(f(4)). Atomic maps were introduced by Cook in [4]. They are known to
be monotone (see [S]). From this fact it easily follows that atomic maps are her-
editarily monotone, i.e., monotone when restricted to any subcontinuum of the
domain. The continuum X is said to be hereditarily indecomposable if for every

* The second author was partially supported by NSF grant mumber MCS-8104866. -

*% The results of this paper were announced at the Fourteenth Spring Topology Conference
at the Virginia Polytechnical Institute, March 1981.
4%


GUEST


238 L. Mohler and L. G. Oversteegen

pair P, Q, of subcontinua of X with non-void intersection, either P Q or Q<P
A continuum X is said to have positive span if there exists another continuum C
and maps f, g: C — X such that f(C) = g(C), but for every x e C, f(x) % g(x).
Continua without positive span are said to have span 0. A continuum X is said
to be arc-like or chainable if it can be written as the inverse limit of a sequence of
arcs. (Alternatively X admits arbitrarily fine open covers whose nerves are topo-
logical arcs. Such covers are called chains ¢t simple chains). It is not difficult to show
that chainable continua have span 0 (‘). Thus any continuum having positive
span is non-chainable. The notion of span was introduced by Lelek in [11]. We
will not use it directly in this paper, but will rely heavily on Ingram’s results con-
cerning it in [9]. We now present several lemmas needed in the next two sections.

Lemma 1. Let I be the unit interval [0, 1] with the usual metric and let D
= {xy, %y, ...} be a dense subset of distinct points in 1. Let £>0. Then there is
a monotone mapping m of I onto I such that the points of I whose inverse images under
m are non-degenerate are precisely the points of D and such that m differs from the
identity map on I by less than ¢ (in the uniform metric).

Proof. We leave it to the reader to show the existence of maps lacking only
closeness to the identity. (Hint: Do the construction one step at a time using in-
verse limits. An inverse limit of arcs with monotone bonding maps is an arc. See [3])

Now let {x;,x,, ..., x,} be an initial subset of D which is s/2-dense in I
Relabel the x;’s if necessary so that x; <x,<...<x,. Let I}, I, ..., I, be a disjoint
collection of closed subintervals of [0, 1] (each of diameter less than &) such that
x;el;fori=1,2,..,n m will map each interval I; to x; and each open interval
[x:, X;4 11— (I; U I;,;) in a monotone fashion onto the interval (x;, x;,,) in such
a way that precisely the points of D in (x;, x;, ) have non-degenerate pre-images.
It is not difficult to verify that each point of I is moved less than ¢ by m. B

The following results were proved by Cook in [4].

LemMA 2. Let Y be a hereditarily indecomposable continuum and let X be a con-
tinuum which admits an atomic mapping f onto Y such that for every y € Y, ()
is either a point or a hereditarily indecomposable continuum. Then X is hereditarily
indecomposable.

LemMA 3. If the continuum X is an inverse limit of continua with atomic bonding
maps, then the projection map from X onto any of the factor spaces is atomic.

The following result was proved by Ingram in [9].

Lemma 4. Let Y be a continuum with positive span and let X be a continuum
which admits a monotone mapping onto Y. Then X has positive span.

LemMA 5 (hooking up triods). Let x;<x,<..<x, and y;<y,<...<p, be
itwo (finite) increasing sequences of points in I = [0, 1]. Let Ty, Ty, ..., T,, be disjoint
simple triods in the interior of the cell IxI. For each i = 1,2, ...,n let a, and b, be

Q] One»of the major unsolved questions in continua theory is whether continua of span 0 are
chainable, '
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distinct endpoints of T;. Then there are 2n disjoint arcs Ay, A,, ..., Ay, By, By, .y B,
in Ix I such that for each i=1,2,...,n one endpoint of A, is the point (0, x,) anc;
the other Is a;, and one endpoint of B, is the point (1, ¥:) and the other is b,.

Proof. Let Sy, S, ..., S, be disjoint simple closed curves in the interior of
I'x I whose bounded complementary domains are disjoint and contain Ty, Ty, ..., T,
respectively. Let 2 be a homeomorphism of I'x I onto itself which fixes the boundary
of the cell and sends each S; onto a circle with center (4, x,). Tt is easy to draw the
desired arcs in this transformed setting. Applying 2! yields the desired arcs in the
original setting. M

§ 2. The inverse system.. The desired example will be the inverse limit of a doubly
indexed system of {inite trees X, ; (7,7 = 1, 2, 3, ...) where the pairs (i, ;) are ordered
by the product partial order (i.e., (iy, /) <(iy, /,) if and only if iy <iy and j, <j,).
Bonding maps g;;: Xj;45 = X;; and Juit Xy = Xi; will be defined for all
i,j=1,2,3,.. The whole diagram will commute, so other bonding maps can
be defined by composition. The spaces X, 3,1 will be simple triods forall i= 1,2, ...
and the maps f;; will be “crooked Ingram maps” 2 la [8], modified slightly using
Lemma 1, so that the diagram will commute. The gi,;'s will be monotone maps
used to insert triods. The maps f;; will be modified crooked Ingram maps on the
inserted triods. Now for the details of the construction.

For each i = 1,2, ... let f{ be a “crooked Ingram map” of the triod Xiin
onto X, ;; i.e. f]is a composition of one of the maps f or g and a crookedness map
as defined in [8]. Choose the f}’s so that the inverse limit of the triods X;, with
bonding maps f; is a hereditarily indecomposable continuum X, of ﬁositive
span and such that every proper subcontinuum of X, ; is a pseudo-arc.

Note that the mappings f; may be taken to be piecewise linear. We will choose
them so that each triod X, can be written as a union of simple arcs meeting
only at their endpoints and such that f] restricted to any one of these arcs is a homeo-
morphism. We will call these the straight arcs of X ,. The bonding maps
Si1: Xigg 1 = X, will be obtained from the maps fj by modifying them on the
straight arcs of X, ; using Lemma 1. Note further that for any x e X, 3,1 and for
any j>1, the pre-image of x in X;, under the appropriate composition of maps
J' is finite.

Now let D, ; be a countable dense subset of X ; such that:

(i) No point of Dy, is an endpoint or the junction point of Xj ;, and

(i) For every xe& Dy ; and for every i>1, cach point of the pre-image of x
in X;, lies in the interior of a straight arc of X ,.

The elements of Dy | will be called the primary insertion points of X, ;. (Other
X,,/'s will have primary and secondary insertion points.) We will assume that Dy ;
and the other sets D, ; of primary insertion points to be defined below are equipped
with enumerations, so that we can speak of the “first”, “second”, etc. elements
of Dy ;. Using Lemma 1, define the map f; (1 X, — X, so that for any straight
arc 4 of X, 4, fi ;|4 is monotone, and precisely the points of D, in the range
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of f, |4 have non-degenerate pre-images in 4. Moreover, define f; ; so that it
differs from fby the (as yet unspecified) positive number &;. Thus for each x € D, 4,
fii(x) is a finite disjoint union of arcs in X, ;, each arc lying in the interior of
a straight arc of X, ;. The midpoints of these arcs will be called the secondary in-
sertion points of X, ;. The primary insertion points of X, , will be a countable dense
subset D, of the interior of f; (D, ), disjoint from the set of secondary insertion
points and such that:

(i) No point of D, is an endpoint or the junction point of X, ;, and

(ii) For every xe D, and for every i>2, each point of the pre-image of x
in X,y (under the appropriate composition of maps f*) lies in the interior of
a straight arc of X ;.

The union of the sets of primary and secondary insertion points in X, ; will
be denoted E, ; and will be called simply the set of insertion points of X, ;. Note
that E,; is dense in X, ;.

The general idea behind the insertion points is that they are the places where
triods will eventually be inserted via the monotone maps g, ;. We will always want
E; ; to be dense in X ;. The primary insertion points are points where insertions
are “started”. They must be defined for the parts of X ; which “can’t be seen” in
the previous factor spaces. These parts will be either arcs or triods which are
collapsed to points by the bonding maps running out of X; ;. The secondary insertion
points are points where insertions are “continued”, yielding hereditarily indecom-
posable continua of positive span as we pass to the inverse limit down a column,
) We may now inductively define the maps f; ;. Suppose that the sets D, ; and
E,; have been defined. Then using Lemma 1, define f, 10 Xjpuq,q = X, by
modifying f; on each straight arc 4 of X, in such a way that Jul4 is monotone
and precisely the points of E, ; in X, ; have non-degenerate pre-images in X110
Moreover, define f,; so that it differs from f; by less than the (as yet unspecified)
positive number ¢,. Then for each insertion point x in X, 1 f,,,_ll(x) will be a finite
union of simple arcs, each lying in the interior of a straight arc in X, ;. The mid-
points of these arcs will be called the secondary insertion points of Xy+1,1- The set
of primary insertion points will be a countable set D,y 4, disjoint from the set of
secondary insertion points, dense in the interior of (B, ;), and satisfying con-
ditions analogous to (i) and (ii) above for D, ;. The union of the sets of primary and
secondary insertion points, denoted £, ,, will be called simply the set of insertion
points of X4y 1. B,y ¢ will be dense in Xov1,10

It rémains to specify the numbers ;. By Lemma 1 they may be chosen as small
as we like. Using Brown’s theorem [2] (%), choose the ¢,’s so that the inverse limit
of the sequence (X, ;;f, ) is homeomorphic to the inverse limit of the sequence
(X,.15 fu)- Call this space X, 1.

Now to define the second column. X, 1,2 Will look like Xy ; except that a simple

7(’) Because of the use of induction in the definition of the Ja0’s, the hypotheses for Brown’s
theorém are not exactly satisfied. However, the proof of the theorem will go through in our setting.
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triod will be inserted at.the first point x of D, as follows: x divides X, ; uniquely
into two finite trees whose union is X, and whose intersection is {x}. Form the
disjoint union of the two trees. X; , will be this union together with a simple triod,
one of whose endpoints has been identified with the copy of x in one of the trees
and another of whose endpoints has been identified with the copy of x in the other
tree. The mapping gy 51 X5, — Xy,1 will be the natural monotone map collapsing
the inserted triod to the point x. X; 2,2 Will be constructed from X, by inserting
simple triods at each secondary insertion point in the pre-image of x under S
The mapping g, ;: X3,2 = X,,, will be the natural map collapsing the inserted
triods to points, Continue down the second column in this way: X, , will be con-
strycted from X, ; by inserting triods at the secondary insertion points in the pre-
image of x under the appriopriate composition of maps Ji,1- The mapping g, 4:
X,,2 = X, ; will be the natural monotone map collapsing the inserted triods to
points. )

Now to define the mappings f;, and the sets of primary and secondary in-
sertioni points in the X;,’s. First note that the secondary insertion’ points in any
X 1, i22, at which triods were inserted, lie in the middle of little arcs in X, ;,1 Which
collapse to points under f;_, ;. The little arcs thus get split into two pieces in X ,.
We will call these pieces the arcs adjacent to the corresponding inserted triods
in X;,. Thus each X, ,, i>2, falls naturally into three parts: the inserted triods,
the arcs adjacent to the inserted triods, and the rest of the space. Off the inserted
triods and the arcs adjacent to them, each map Ja2t Xypys = X, 2 will look just
like f, 1, so that the following diagram commutes:

X <X,
Jn, Tf n2
fn+1,1

Kov1, < Xors 2
Each arc adjacent to an inserted. triod in X, , will be mapped by Ju,2 onto the
“corresponding” inserted triod in X, ,, so that the above diagram continues to
commute. Finally, each inserted triod in X,,; , will map under Jfu,2 onto the cor-
responding triod in X, , so that the diagram continues to commute. We also need
to define the maps on the three parts so that they match up at the overlaps, preserving
continuity. The mappings on the inserted triods will be modified crooked Ingram
maps defined as on the triods in the first column. Primary and secondary insertion
points will also be defined for the inserted triods as they were for the triod in the
first column. The mappings of the triods need not be exactly the. same maps as in
the first column. ‘We will need some freedom in choosing the maps when we embed
this system in the plane. Rather the maps need to be chosen in the same way as
the maps in the first column. In particular they need to be chosen (using Brown’s
theorem) so that the inverse limit of any sequence of inserted triods running down
the second column is a hereditarily indecomposable.Ingram continuum. [8] of
positive span. In addition to the primary and secondary insertion points defined
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for the inserted triods, each X, » will contain insertion points which map to the
jnsertion points in X,y under g, ;. We will not give these insertion points any
special name. We just think of them as the pre-images of as yet “unused” insertion
points from X, 1. Note that the bonding map g,,, is one-to-one on these points,
so we may think of them as being “the same” as their-images in X, ;.

We have now inserted an uncountable family of hgreditarily indecomposable

6ontinua of positive span into X . That is, X 2, the inverse limit of the second
column, coniains such a family. In the end we will want to choose the maps on
fhe inserted triods so that the resulting family is planar. Below we will show that
the induced map from X, 5 10 Xey satisfies the hypotheses of Lemma 2, making
X, hereditarily indecomposable. This will be true for all continua X, ,, making
our example X, . hereditarily indecomposable.
'We must now set up an induction for constructing each column of spaces
Xipmi=1,2,.. Each column will insert another family of Ingram continua into
the inverse limit. The location. of the insertion will be determined by an unused
primary insertion point x in some previously defined factor space Xy, e A triod
will be inserted at x- (or more precisely, at its pre-image in Xy, n-1) and at all of
the- secondary insertion points associated with X running down the column, as
was done in the construction of the second column. We need to arrange the in-
duction so that all primary insertion points- (and hence all secondary insertion
points) in all factor spaces are eventually taken care of, Thus we need a numbering
scheme,. starting with 2 (the second column) which will tell us where to, make the
successive insertions. This will be a sequence of pairs of indices, (i), @),
(i®),J0) ((@),j@®), ... satisfying the following conditions:

M (@,j@) =1, D). o

(2) For all pairs (i,/), i,j = 1,2, ..., there are infinitely many natural num-
bers n such that (i(n), j(m) = (i,J).

(3) For all n, j(my<n. :

The first condition is just for consistency. It means that the construction already
described for the second column was done in the right place, i.e. it-involved.an
insertion at a primary insertion point in Xj 4. The second condition “assures that
there will be infinitely many columns reserved for the infinitely many primary in-
sertion points: in each factor space. The third condition is another consistency
condition, guaranteeing that the space into which an insertion is to be made lies
to the left of the nth column, i.e. has already been defined.

Now for the details of the induction. Suppose that all columns up to and
including the nth column have been constructed. For all i<i(n+1), let Xy 41
= X, and let g;,: X, 1 — X, , be the identity map. For all i<i(n+1)—1,
Tet i, p41-= f1,s- The rest of the column, from Xie+1),n+1 down, will be constracted
as the second column was from' the first. Xjo.1),»+y Will be constructed from
X,s+1),» DY inserting a triod at the pre-image in X;.1),, of the first unused primary
insertion point in Xy 1y, j+1)- The spaces X, 4y, i = i(n+1)+1, im+1)+2,..
will be constructed from the spaces X, by inserting triods at the pre-images in X;,,
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of the secondary insertion points in X; j,+1) associated with the given primary
insertion point in Xy, 41y, ja+1)- The mappings g; ,andfi 4, = in+1),i(n+1)+1,
i(n+1)+2, ... will be defined as they were for the second column, in particular so
that the diagrams )
8i,n
Xi,n < Xi ntl
Ji l,nT FERTE
Xx'+1,n — Xi+1,n+1
i+ 1,n

commute. Primary and secondary insertion points will also be defined in the inserted
triods as they were in the second column. Finally, the map fi¢+1)-1,n+1 Will collapse
the inserted triod in Xj41),+q1 to- a point and otherwise will look just like
Sins1)-1,0 50 that the diagram

Fitn+1)~1,n

Xt 1y-10 < i+ 1)— 1,41

Sim+1y=-1,n Sitn+1y=t,m+1

Xi(n+1),n<~ Xi(n+1),n+1

Fi(n+1),n .

commutes (recall that g;q.41y-1,, i the identity map).

§ 3. The example. In this section we will show that any space X, ,, which is
the inverse limit of an inverse system as described in § 2 is a hereditarily inde-
composable, tree-like continuum of hereditarily positive span. In the next section
we will show that by choosing the mappings of the. inserted triods properly, we
can make X, . embeddable in the plane. In what follows X, , will denote the
inverse limit of the nth column of spaces X;, with bonding maps f;,, and p,,,
will denote the projection of X, , onto the factor space X, - guw,. Will denote the
map from X, . to X, , induced by the maps g;, between the (n+1)st and nth
columns. :

PROPOSITION 1. X, ., is hereditarily indecomposable. R

Proof. X,,, is hereditarily indecomposable by construction. We will show
that each of the maps g,, , satisfies the hypotheses of Lemma 2, implying that all
of the spaces X, , are hereditarily indecomposable. Since X, , is the inverse limit
of these spaces, it follows easily that X, . is hereditarily indecomposable.

Let C be a subcontinuum of some X, .+ such that g, ,(C) is a non-degenerate
subcontinuum of X, ,. Let 2& g 319 +(C)). We wish to show that ze C. Suppose not.
Then there is an m such that p, ,+1(2) & Ppn+:(C). We may also assume that
Gunn(Pure 1(C)) = Purn(90 5(C)) is non-degenerate. Further, by hypothesis

gm,n(pm,v1+i(z)) € gm,n(Pm,n+1(C)) .

This means that P+ 1(2) must lie in a triod 7' which meets Pumnr1(C) and is col-
lapsed to a point by gy, . Since Ppys1(2) & Puups1(C)s Pmar1(C) does not contain
all of T. But then p,,4 ,+1(C) cannot meet any triod 7' which maps into T under
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Siuns1, because the non-degeneracy of (P m1(C)) guarantees that p,uy ,.1(C)
must contain a point outside any such 7' and the intervals adjacent to it. If
Pms1as1(C) contained a point in some 7", it would have to contain an entire
interval adjacent to T” by connectedness. But then Pups1(C) = fauns 1(p,,,.|. 1,n+1(C))
would contain all of T. Since py+1 n+1(2) € Py 1,w4+1(C)s Gms1,4 I8 One-to-one away
from collapsing triods and p,,4 ,+1(2) belongs to some triod T* or an arc adjacent
toa T,; it follows that gm+1,n(pm+1,n+‘1(z)) ¢ gm—%i,n(pm-!-l,u-l‘ 1(C)), ie. Pm+1 ,n(gw,n(z))
¢ Put 1 (00 o(C)), & contradiction. Therefore g, , is atomic. It is straightforward
to verify that if x e X, ,, then g;,‘,,(x) is either a point or a hereditarily indecom-
posable Ingram continuum. B

PROPOSITION 2. X, . has hereditarily positive span.

Proof. Let m,, denote the projection of X, ,, onto X, ,. Let C be a non-
degenerate subcontinuum of X, ., and choose a pair m,n such that m, ,(C) is
non-degenerate. Since the insertion points are dense in X, ,, 7, ,(C) must contain
an insertion point x,, in its interior. f,, 1(x,,) consists of a finite union of arcs, each
containing a secondary insertion point as its midpoint. We will call any one of
these arcs a full pre-image of x,,. x, separates X,,, uniquely into two open sets
which we may think of as “right” and “left”. Consequently fo (X, )~ {*,} can
be written as a union of two disjoint open sets, namely the set L of points mapping
to the left of x,, under £, , and the set R of points mapping to the right. Since x,, lies
in the interior of m,, ,(C), 41 (C) must have non-void intersection with both L
and R. A straightforward connectedness argument will show that z,,..; ,(C) must
contain a full pre-image of x,,. Thus 7,,,; ,(C) contains a secondary insertion point
Xn+1 10 its interior such that f, (X,41) = Xp-

Proceeding inductively with the above argument, we may find a point
X = (oo Xms Xy 15 Xy o) i Ty (€)= X, SUCh that the x,,.. s are all secondary
insertion points associated with the same primary insertion point (or more precisely,
the x;,.;'s are all associated with the pre-image in some X, ,, k<m, of a primary
insertion point in some X; ;, /<n). Thus there is an n'>n such that X, ,» contains
an Ingram continuum T of positive span which maps onto x under the natural
induced map. Since this map is atomic (see proof of the previous proposition;
compositions of atomic maps are atomic) and =, ,(C) is non-degenerate, T
STy w(C). By Lemma 3, 7, is atomic. Therefore 7, ,|C is monotone, so by
Lemma 4, C has positive span. B

§ 4. Planarity. We will show that X, ., can be made planar by thinking of
it as the inverse limit of spaces X, , with bonding maps f, , o gy+ 1. We will show
how to embed a cover with nerve X,,,, inside a cover with nerve X, , (cotre-
sponding to the map £, ) and a cover with nerve X,41,241 into a cover with nerve
X,+1,, (corresponding to the map g,.,,,) for each x. X, will then be the inter-
section of the unions of these covers.

We note that Ingram’s family [8] can be realized in the plane using covers
whose open sets have simple closed curves for boundaries and such that the
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boundaries of adjacent open sets meet in exactly two points. Our covers will satisfy
this same condition. Moreover, since our bonding maps on the inserted triods
differ from Ingram’s by an arbitrarily small amount, we may use the same covers
that he does in [8] for embedding the inserted triods.

We will describe the embedding of a cover corresponding to X, , into a cover
corresponding to X; ; and of a cover corresponding to Xj; 5 into a cover corre-
sponding to X, , and then indicate an inductive procedure for producing all of the
remaining finer covers.

X,,4 will embed in X ; exactly as Ingram’s X embeds in X, (°). In fact the
whole column X, ; will just be a collection of Ingram covers (for n>2 these covers
will not figure directly into the description of X, ., but we will need to look at
them to see how to embed other covers). Now the cover for X, , will look just
like the cover for X, , except that some of the open sets will get replaced by little
“triod chains” which fit inside those open sets. These correspond to the inserted
triods in X; , which map to points under g, ;. To embed Xj , into X, ,, first look
to see how Ingram’s cover X, ; embeds in X, . X, , will look exactly the same
except at those open sets in X, ; which have become triod chains and those chains
covering the associated arcs adjacent in X, ,. So begin by putting these non-ex-
ceptional open sets into the open sets in X, ,. This will leave a (finite) number of
“loose ends” impinging on two of the end links of each inserted triod chain in X5 5.
Note that for each such triod chain in X; , there will be an equal number of loose
ends impinging on those two end links. In fact the loose ends come in pairs, and
these pairs must be hooked up via triod chains and simple chains corresponding
to the inserted triods and their associated adjacent intervals in Xj ,. First choose
a triod chain for each pair of loose ends and embed these (at this point disjoint
from the loose ends) in their corresponding triod chains in X, ;. We may put as
many as we need in any given triod chain in X, , by going down far enough in
Ingram’s family of planar triod chain covers in [8]. Now all that remains is to hook
the triod chains up to the loose ends using simple chains (corresponding to the
arcs adjacent to the inserted triods in X;,). Note that the underlying spaces of
the triod chains in X, , are 2-cells. So Lemma 5 can be used to show how to do
the hooking up. A little extra care may be needed to make sure that each of the
simple chains passes through every link of the corresponding triod chain in X7 ,,
thus guaranteeing the ontoness of the mapping of the adjacent intervals into the
triods in X, 5. Xi,5 will be constructed from X , the same way that X, , was
constructed from X, .

Now proceed inductively to define the rest of the covers. To produce the cover
X,+1, embedded in X, ,, begin with the cover X, ., ; (as we began with the cover
X5, above). Produce the cover X, ., from it and an embedding of it into the
cover X, , by inserting triods and simple chains as we did for X5, above. Continue

(*) From now on we will use “X;,j” to stand both for the factor space Xi,j and for a cover
whose nerve is Xi,j.
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in this way across the (n+1)st row until X, (. has been constructed and an em-
bedding of 1t into X, ,. Finally, construct Xyt mrt from X410 the way that X, ,
was constructed from X, . ®

Remark. H. Cook has shown that X, ., is not hereditarily equivalent. It is
an open question whether there exists a hereditarily equivalent (plane) continuum
of positive span.
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Another universal methcompact developable
T,-space of weight m

by

J. Chaber (Vvarszawa)

Abstract. Let ™ be an infinite cardinal number. We use the d-line constructed in [Ch2] in order
to construct a simple universal metacompact developable Ty~ space of weight 1 analogous to a uni-
versal metric space of weight m constructed lmplxcnly in the proof of the Nagata—Smirnov ‘metri-
zation theorem. .

Let m be an infinite cardinal number. In [Ch2], we constructed a universal
metacompact developable T'i-space of weight m. The construction was based on
a method of constructing mappings into metacompact developable T-spaces
from [Chl].

In section one of this paper we give another construction of a universal meta-
compact developable T-space of weight m. This construction is related to a method
of constructing mappings into metacompact developable T;-spaces investigated
in [Ch3]. It is simpler than the construction in [Ch2] and Has its metric analogue.

In section two we generalize the ‘construction from [Ch2] in order to obtain
an orthocompact developable T;-space of weight 2™ containing all orthocompact
developable T;-spaces of weight m. The universal metacompact developable
Ty~ spacé of weight m constructed [Ch2] is contained in this space in a natural way.
We indicate some relations between the two constructions of umversal spaces
(Remark 2.7).

All our constructions are based on the d-line D (denoted by 7(0) in [Ch2]).
In section three we construct a d-interval D* and discuss the problem of cxtendmg
mappings into D and D¥*,

We use the terminology and notation from [E]. All mappings are assumed
to be continuous and all spaces are assumed to be T;-spaces. The last section
requires the knowledge of [Ch2].

The d-line D [Ch2] (a similar, but more complicated space has been con-
structed earlier in [HJ) is N"*, where N is the set of natural numbers and
N.= N\{0}. The topology of D is generated by the subbase

— (B): m, 121} U (B(i.)): n, 1, i1} U{D),
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