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subset of X x 3. Apply the Kondo Uniformization theorem for coanalytic sets to
obtain a coanalytic uniformization for D, i.e., get a coanalytic set B< D such that
B* is a singleton whenever D* # &. Let A = (¥ xZX)~B. Then,

() 4 is an analytic subset of % x X,

(ii) For each xe Z, 4™ = {y € Z: (x, y) € 4} is either X or ¥ minus a point.

Define a multifunction F: ¥ — X by F(x) = A% Then,

(a) As each A" is dense in X, F is By-measurable, By being the Borel ¢-field
on X.

(b) For each xe X, F(x) is open in X.

(€) Gr(F) = A is analytic in ZxZ.
However, F admits no By-measurable selector. Indeed, 4 admits no coanalytic
uniformization, a fortiori, no Borel uniformization. For if not, let E<A4 be a co-
analytic subset of X x ¥ such that E* is a singleton for each x € X. As C is universal
for the coanalytic subsets of X x X there is x* € X such that £ = c*", Novi/, there
is a unique y* € X such that (x*, y¥)e E. Tt follows that D*" = y* and con-
sequently, that (x*, y*)e B. But Ec4. So (x*,y*)e 4 = T xX¥—B, which leads
to a contradiction.

Added in proof: Theorem 1.1 has been extended to an arbitrary measurable space
(T, A) by the author in his doctoral dissertation: Measurable sets in product spaces and their
parametrizations, Indian Statistical Institute, Calcutta 1981.
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Homology with models
by

Daryl George (Delaware)

Abstract. A general type of topological homology theory is developed using the left derived
functors of the left Kan extension or the equivalent André derived functors. The homology theory is
based on a model category and a coefficient functor from the model category to the category of
abelian groups, It is shown that if the model category contains a singleton and is closed under prod-
ucts with the unit interval, and the coefficient functor is homotopy invariant, then the homology
theory satisfies the Eilenberg-Steenrod axioms. It is also shown that, in certain cases, these hypo-
theses can be weakened considerably. By appropriate choices of the model category both singular
homology and an exact version of Vietoris-Cech homology are obtained as examples of the general
theory.

1. Preliminaries and notation. Let M be a small, full subcategory of a category T,
J: M — T be the inclusion functor, and A be an abelian category with colimits and
enough projectives. Functor categories are denoted with brackets. Thus, [, %] is
the category whose objects are functors from It to 9 and whose morphisms are
natural transformations between these functors. The left Kan extension along J,

Lan,: [, A] - [T, A]
is defined by
Lan; F(x) — lim F(M)
M=X

where F is an object of [, 2], X is an object of T, and the colimit is over the category
of M-objects over X. (See [M2] or [H-S] for more details.) If a: M — X is a mor-
phism in T (i.e., an M-object over X), then

ay: F(M) — Lan; F(X)

denotes the injection into the colimit at o.

Since 2 has enough projectives, so does [, AL. Thus, any object F of [M, A]
has a projective resolution P, — F — 0. The left derived functors of the left Kan
extension are defined by

L,Lan,F = H(Lan,P,).

3 — Fundamenta Mathematicae CXXII/L
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Assume further that % is AB-4 [G] and let (C,F, 0,) be the André chain complex
of F. Thus,

CFX) = [I F(My),

{00y +en s O,
where M, 8.5 M, 2 Xis a chain of morphisms with o;, 0<i<n~1, in M and
&, in . The injection of F(M,) into C,F(X) at the component indexed by (¢, ..., ;)
is denoted by ¢{ay, ..., &,p. Further details, including the definition of 9, can be
found in {A]. The André derived functors of F are defined by

A F = H(CyF).
If f X - Y is a morphism in %, then C,F(f): C,F(X)—~ C,F(Y) by
CnF(X)L<a0: [A3E] ‘xn> = L<°‘09 '-'af“n> H

and 4,F(f) is obtained by taking homology.

Let G be a function from the objects of Mt to the objects of A. (G need not be
defined on morphisms, so it is not necessarily a functor) ‘The functor Eg: M—A
defined by

EsM') = ][] G(M) on objects M’ of M,
MM

where the coproduct is over all 9t-objects over M', and by Eg(f)ida) = ¢{ fa)

on morphisms f: M’ — M" of M, where ¢« is the injection into the coproduct

at the component indexed by a: M — M’, is called an elementary functor. Thus,

the objects of the André chain complex are elementary functors.

1.1. LemMA. Let F be an object of [, W] and Eg, - F — 0 be a resolution of F by
elementary functors. Then, for any n>0, H,(Lan, E;,), A,F and L,Lan; F are naturally
equivalent. In particular, any chain morphism <. Eg, — CyF compatible with augmen-
tations induces a homology isomorphism.

Proof. This follows from the fact that elementary functors are Lan;-acyclic.
See [A], [U1], and [U2]. B

For amorphismf: X — Yin T, define C,F(X, f, X) = coker C,F(f). 8, passes
to cokernels and C,F(X,f, ¥) is a chain complex in 2. The homology objects of
this chain complex are denoted 4,F(X,f, X).

Any commutative - diagram

x—Lsy
"l lf’ “in I
XI f, 9' YI

induces a chain morphism
CF(@, B): CGF(X,f, ¥Y) - C,F(X',f, ¥').
In homology this is 4,F(x, B).
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If /' is monic in T, then each C,F(f) is monic in A and
0 C,F(X) —SED ., C,F(X) 240y C,F(X,f, ¥) > 0

is a short exact sequence, where ¢,(f) is the projection onto the cokernel. This short
exact sequence yields a long exact sequence :

o= A (XL f,Y) D 4 F(X) AetED L 4 F(X)

and d, is natural.
If 7, is a morphism of chain complexes, its mapping cone is denoted by MC(z,).
1.2. LemMA. Iff: X — Y is monic in X and Py — F = 0 is a projective resolution
of F in [, U], then

HW(MC(Lan, Py( 1)), Hy(MC(CyxF(F))) and A,F(X,f,Y)

are naturally isomorphic.
Proof. This follows from the five lemma and the compaiison theorem [Ml] |
The following lemma will be needed in Section 5.
13. LemM& Let J: Mo N, T N> I, and J = T'J": M > T be inclusion
funetors. If F: M — W satisfies L,Lan;. F = 0 for all n>0, then

L,Lan; F = L, Lan,(Lan;. F).
Proof. If P, — F— 0 is a projective resolution of F in [, A}, then
Lan;. Py — Lan,;.F — 0

is a projective resolution of Lan,.F in [9,9%]. B

2. The homology objects. In this section a sequence of homology objects, for
both single spaces and pairs, and a boundary operator are defined. These homology
objects are objects of the category of pro-abelian groups. The definition and prop-
erties of this category (which can be found in [Ma] and [Mo], and, in more generality,
in [G]) will be reviewed here to establish the notation.

Henceforth, % will be the category of abelian groups and Pro-2l will be the
category whose objects are inverse systems (4(d), {p<{d, d">}, D), or just (4, p, D),
where D is a directed set, 4(d) is an abelian group for all de D, and, for d'>d,
pLd',d>: A(d') — A(d) is a group homomorphism such that

pLd" dy = pld',dypLd”, d")

when d''>d'>d. A morphism f: (4, p, D) - (B, ¢, E) of inverse systems of abelian
groups consists of a pair (f, {f{e>}) where f: E — D is a function, and, for each
eeE, f{e): A(f(e))— B(e) is a group homomorphism such that, for e, &' € E
with e’ >e, there exist a de D with d>f(e), f(e') and g<{e',ed>f{e>pLd,F(e)»
= p{d,f(e)y f<e). The morphisms of Pro-2l are obtained by identifying f and
g: (4,p, D) —» (B, g, E) if for every e € E there exist a de D with d=F(e), g(e)
and f<edp{d, f (&) = g{e>p<d, §(e)>.

3+
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A morphism 12 (4, p, D) - (B, ¢, E) in Pro-2 is a special morphism if D = £
and f = 1. Pro-21 has zero objects, kernals, cokernals, images, and exact sequences
[Ma]. In particular, a sequence of special morphisms is exact if it is “pointwise”
exact. [Ma, 4.4].

Let Zop denote the category of topological spaces and continuous functions.
For an object X of op, let Cov(X) denote the set of all collections of subsets of X
whose interiors cover X. Cov(X) is a directed set under refinement and we write
Yz if Y refines ¥, €T op is the category of covered topological spaces. Its objects
are of the form, (X, %) where X is a topological space and % & Cov(X). A morphism
fi (X, %) - (X,¥) in $Top is a continuous function f: X — ¥ such that
U=f~Y(¥). The forgetful functor S: ¥F op — T op, defined by S(X, %) = X,
S(f) = f, has a right adjoint R: Jop > 4T op by R(X) = (X, {X}), R(f) = /.
Let M, be a small, full subcategory of T op and M = R(M,). M is called the model
category. A coefficient functor is a functor F: M — A Note that Rly,: Mo — M
is an isomorphism of categories with inverse S|y, and any F: IR — 2 is equivalent,
by composition with S|g, to a functor Fy: My — . Thus, it is only a slight abuse
of terminology to call M, the model category and a functor Fy: M, — 2A the coef-
ficient functor.

2.1. DeriNITION. For each object (X, %) in 7 op‘, let
H/(X,%)=L,Lan, F(X, %) .
Let Hy: Jop — Pro-U be the sequence of functors defined by
H(X) = (HX, %), p{%, V", Cov(X))
where, for =7,
PRU V> H(X, %)~ H(X, V)

is induced by Iy: (X, %) - (X, ¥") in €T op.

If f: X— Y in Jop, then H,(f) is defined by

H(f) = (7L {f O] 7 e Cov(X)))

where f71: Cov(Y) —» Cov(X) and f{(¥>: H(X,f '(¥))~ H(X,¥) is the
‘morphism in % induced by f: (X,f'(¥)) — (X, ¥") in ¥T op.

2.2. Note. By 1.1, an equivalent definition of H,(X) results from taking

H (X, %) = A, F(X, %) in 2.1. It will sometimes be convenient to use this alternate
definition (as in the following definition)

2.3. DerINITION. Let (X, 4) be a topological pair with inclusion map j: 4 — X.
In €7 op, j induces morphisms j<%): (4,j~ (%)) — (X, %) for each % e Cov(X).
If H,(j, %) denotes the group 4, F((4,7 (%)), j<U), (X, %)) (defined in Section 1),
then Hy(X, A4) is defined by
_ '_ - H(X 4) = (Hj, %), p U, Uy, Cov(X))
where, for %' =% in Cov(X),

S
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plu, Uy HAj, U~ H{j, %)
is the morphism 4,F(14, 1x). :
If 2 (X, A) - (X, B) is a map of pairs, then kf’ = fj where f' = f], and
k: B~ Y is the inclusion map. The pair (f',f) induces
f<V> Ht(]:f“l(’yf)) - 'H'n(ka V)
for every ¥ € Cov(X). H,(f) is defined to be

(fL{f <> ¥ e Cov(X))).

By definition, H,(4) is an object of Pro-2 indexed by Cov(4). The next lemma
shows that, for a topological pair (X, 4), H,(4) is naturally isomorphic to an object
indexed by Cov(X).

2.4. LemMA. Let (X, A) be a topological pair with inclusionj: A —~ X. Let H(A)x
denote the object

(H(A, 77 @), p< @), J (), Cov(X))
of Pro-. Then, there exists an isomorphism
@ (X, A): H(4) —» H(A)x in Pro-2A.

Proof. ¢ (X, 4) = (i™%, {luua, -t @yl % e Cov(X)}).Its inverse in Pro-2 is

V,(X, 4) defined by

l/fn(X: A) = (‘pn: {l//n<V>l vV e COV(A)})

where 1f,: Cov(4) — Cov(X) is defined by choosing, for each 7" e Cov(4),
a §(¥") e Cov(X) for which j~*(f(¥)) = ¥". Then, each ,{¥") is defined to be
the identity on Hy(4,7"). ®

Let f: (X, 4) — (¥, B) be a map of topological pairs and j: 4 — X and
k: B— Y be inclusions. Define H,(f)x,v: H,(dx— H,(B)y by

H()xy= (f-lz {fx,y('VN Ve COV(X)})
where fi (¥ Hy(4,j 7)) - H,(B, k™*(¥7)) is induced by
Fla (7772 ) = (B, k™ ()

With this definition (X, 4) + H,(4)y becomes a functor on the category of
topological pairs. It is easily established that

(/)n(X: A) Hn(A) - H-n(A)X

is a natural equivalence when (X, 4) + H,(4) is also considered as a functor on
the category of topological pairs.

2.5. PrOPOSITION. Let (X, A) be a topological pair with inclusion j: A — X.
Then, there exist natural transformations 8,(j): H (X, A) ~ H,.(4) and a long exact
sequence
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o H(A) = H(X) > H(X, A) - 2D H, (4~ .
in Pro-2L.
Proof. For % e Cov(X),j: (4,j *(@#)) - (X, %) is monic. Thus, the long
exact sequence of André derived functors (from Section 1) is

o> H(A, "YW — HLX, %)~ HNj, %) PRI/ “_1(,43.,'”1(%)) -
So, in Pro-9, the long sequence of special morphisms
e Hrt(A)X e l{D<X) s n(X: A,) - 'I!?.E-Q_,;,_ H’,,ML(A)X Ea SO

is exact, where §,(j) is thc special morphism induced by the family
{8,(j, )| % e Cov(X)}, because it is “pointwise” exact. Let ¢,(X, 4) be as in 2.4
and 9,()) = @ X, A" a0 H(X, A) — H,. (A). Then, a, is natural and

o= H(A) = H(X) —» H(X, A) -2 i1, (A) > ...

is exact in Pro-9l, B

We can now verify that (H,, 8,) satisfies the Eilenberg-Steenrod axioms, (—4
and 7. [E-8]. (Axioms 5 and 6 are considered in the next two sections.) Axioms 1
and 2 require that each H, be a functor and it is clear from the definitions that these
are satisfied. Axiom 3, which requires that 9, be natural, is satisfied as a result of 2.5,
Also, by 2.5, axiom 4, the exactness axiom, is satisfied, We consider axiom 7, the
dimension axiom, next.

2.6. Lemma. If a singleton space {x} is an object of My, then H,({x}) = 0 for
n>0, i.e., Hy satisfies the dimension axiom.

 Proof. Since ({x}, {x}) is an object of 9, Py({x}, {x}) - F({x}, {x}) is cxact,

and, thus, H,({x}) is the trivial group indexed by a singleton directed set, which
is a zero object in Pro-2(. M

3. The homotopy axiom. Let I denote the unit interval and suppose M, is closed
under products with 7, i.e., if M is an object of My, then M x I is an object of M.
Define a functor T: Mk — M by T(M, {M}) = (M x I, {MxI})and T(f) = fx1,.
Then, forte I, i 1g — T'isthe natural transformation defined by i(M)(m) = (m, t).
for me M. As before, let Py - F > 0 be a projective resolution of F in [902, N].

3.1. LEMMA. Py(io) and P,(i}): Py — P,T are homotopic. .

il:1':1-0 of. This follows from the comparison theorem [M1] since P, T is exact
on M. A

3.2.-LeMMA. Let % € Cov(X'x I). Then, there exist a ¥ e Cov(X)and a ke N
such that for j=0,..,k~1, each

Vx [l,J;*-__l
k' k

Proof. This follows from the compactness of I and the tube lemma. B

is. contained in some Ued.

e

icm

Honiology with mo dels 39

For % € Cov(XxI), let ¥"and k be as in 3.2 and let o: (M, {M}) = (X, ¥")
be a morphism in ¥Z op. Define, for

j+1t
J=0,.,k=1,g;: MxI—>MxIby gim,t)= <m,17).

It follows from 3.2 that g; is a morphism in ¥Jop from (MxI, {MxI}) to
(MxI, (x 1)~ @) Let iy(M): (M, {M}) —~ (M x1I, (ax1)"(@)) be the mor-
phism induced in ¥Zop by i(M). .
3.3. Lemma. Lan, P, (io(M)) and Lan;P.(i1(M)) are homotopic.
Proof. Lan,P(ij(M)) = Lan, Py(g;io(M)) = Lan,Pu(g)P+(io(M)) and
Lan, Po(iie (M) = Lan; Py(g ) Po(iy(M)) .
By 3.1, Py(io(M)) and P.(i;(M)) are homotopic. So, for j =0,..., k-1,
Lan, Pu(ij(M)) and Lan, P (i 15(M))

are homotopic and the result follows. H
For e, let i(X): X — XxI by i,(X)(x) = (x,t). Then, for % € Cov(XxI)
and ¥ e Cov(X) as above, i(X): (X, ¥") » (Xx I, %) in $T op.
3.4. LemMa. There exists a homotopy Dy(X, %) between
Lan, Py(io(X)) and  LanPy(iy(X)): Lan;Py(X, ¥) — Lan; Pu(Xx 1, %) ,
and, if j: A — X and j;: AxI— XxI are inclusion maps, then
Lan; Py(jp) D*(A :JFI(JZ/)) = Dy(X, %) Lan;Py(j) -
Proof. For each a: (M, {M}) » (X, ¥") in 4T op, let Dy(ex) be the homotopy
of 3.3 between Lan;P,(i4(M)) and Lan;Py(i1(M)) as morphism from
La}IJP*(M, {M})
to
Lan, P (M x I, (a+1)" (%)) .
Note that D,(x) depends only on M and the cover (xx1 "Xy of MxI. Define
DX, U): LanyP(X, ¥ — LangP,, (X % I, %)
by
D (X, a)idoy = LangPyy (= 1) D, (@) i1y
where, as before, i¢ay denotes the ath injection into the colimit. '
A direct verification then shows that Dy(X, %) is the required chain homotopy
and that it is natural with respect to inclusions. B
For a topological pair (X, 4), let i(X, A) denote the map of pairs induced
by 7#(X).
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3.5. LEMMA. Let (X, A) be a topological pair and j: A = X be the inclusion map.
For each % € Cov(XxI) there exists a ¥ e Cov(X) such that

Hy(io(X, 4)) = Ha(ir(X, A)): Hy(J, ¥~ HylJr, %) .

Proof. The mapping cone of Lan,Py(j) has homology isomorphic to H,(j, ¥’
and the mapping cone of LanP,(j,) has homology isomorphic to H,(jy, %). The
chain homotopy of 3.4, which is natural for inclusions, can be extended to a homo-
topy between these mapping cones and the existence of such a homotopy implies
the result, M

3.6. THEOREM. Suppose WM, is closed under products with unit interval and F is
- homotopy invariant. Let f and g: (X, A) = (X, B) be homotopic maps of topological
pairs. Then,

Hy(f) = Hylg): Ho(X, 4) » Hy(Y, B).

Thus, H, satisfies the homotopy axiom.

Proof. Let h: (X'xI, AxI) - (Y, B) be a homotopy between f and g. Then,
f = hiy(X, A) and g = hi;(X, 4). By the definitions of H,(X, A) and equality of
morphisms in Pro-2, it is sufficient to show that for each % e Cov(X xI) there
exists a ¥" e Cov(X) such that

Hi(io(X, 4)) = H(is(X, ) Hy(j, ) = Hy(jr, %) .

This is established in 3.5, M

4. The excision axiom. In this section the characterization of the homology

* objects in terms of André derived functors is used to verify that the excision axiom

is satisfied.

Let (X, A) be a topological pair with inclusion j: 4 — X and let % e Cov(X).
Then, C,((4,77* (%)), J, (X, %)) is defined in Section 1 to be

coker (C,F(j)): C,F(4,i @) ~ C,F(X, %).

Henceforth, it will be denoted by C,F(f, %) for brevity.

4.1. LeMMa.

CnF (.] 3 %) = H F (]”0)

{A0s 40y Un)

where the coproduct is over all chains of morphisms

(M03 {MO}) il: e (Mm {Mn}) i'; (Xs %) )

With 0o, ., Oy in M and «, in €T op, for which o,(M,)¢A.
Proof. Recall that C,F(j): C(4,j (@) — C,F(X, %) is defined by

CnF(j)l<ﬁ03 sers ﬁn> = I<p0= '-‘>jﬂn> .

Thus, the index set of C,(X, %) can be partitioned into the set of all [CTTN
for which a, (M, )% A4 and the set for which (M) S A. Then,

icm

Homology with models 4]
InlCuF(j) = H F(MO)
{&0yeees Zn)

where the coproduct is over the first set in the partition. The result follows. M
Let U be an open subset of X with U <Int A. Define 7: Cov(X—U) = Cov(X)
by
()= {Fa(X=U) Ve?}u {Int4}.

By the previous lemma

ch(ja E(V)) = ]_I F(M0>
[CITY

where o,(M,) & 4. But o,(M,) is contained in some element of %(¥") because {3£,}
refines oy *7(¥). Thus, o,(M,)SV n (X—U) for some Ve, and so a, factors
through the inclusion map k: (X—U, A—U) — (X, A). This justifies the following
definition.

For ¥ € Cov(X—U), define

_ ol?y: G, 8@) = G, %),
where i: A—U — X-U is the inclusion map, by
TzK"I/.)’(aO: '"’A‘X"> = 1{0lg; -re» Oy—15 Bw

where o, = kf,. Then, 7/,{¥"-is a chain map and z,{#") is defined to be H,(z,(¥")).

4.2, TueoreMm. H,(k): H{X—U, A—~U) —~ H(X, A) is an isomorphism for all
n>0. Thus, H, satisfies the excision axiom.

Proof. The morphism 1,: H (X, 4) - H(X—U, 4-U) in Pro-21, defined by

Ty = (’E: {71|<V>| Ve COV(X— U)})5
is an inverse of H,(k) in Pro-20. M

5, Summary of results and examples. The results of the previous sections can
now be summarized.

5.1. THEOREM. Let My be a small, full subcategory of T op which is closed under
products with the unit interval and has a singleton space as an object. Let F: My — A
be a homotopy invariant functor. Then, the construction of Section 2 yields a homology
theory on T op with values in the category Pro-2L. M

The hypotheses that 9, be closed under products with the unit interval and
contain a singleton space imply that 9, contains all cubes, I”. This is a severe re-
striction on the subcategories of Zop that can serve as model categories. The fol-
lowing corollary will replace this restriction with a much weaker one.

Tn the statement of the corollary, the dependence of the homology theory on
the model category and the cocfficient functor is important. We will write
Hy( ; My, F) for the homology sequence with model category My and coefficient
functor F to emphasize this dependence.
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Let M, be any small, full subcategory of 7 op which has a singleton as an object.
Let %, be the smallest full subcategory of J op which contains M, and is closed
under products with the unit interval. Let J': R(IMp) — R(,) be the inclusion
functor and F: M, — A.

5.2. COROLLARY. If for every object (M, {M}) of R(Wiy),

L,Lan, . F(M,{M}) =0, for n>0,
then
Hy( 3 My, F) = Hy( ; Ty, Lang. F).

TIn this case, if Lang. F is homotopy invariant, then Hy(; My, F) satisfies the axioms
for a homology theory. R

Proof. This follows directly from 1.3. B

5.3. ExaMPLE (Singular Homology). Let M, be the full subcategory of Fop
whose objects are standard simplicies 4", n = 0, 1, ..., G be a fixed abelian group,
and F: 9 — A be the constant functor with Valuc G

For a topological space X and an open cover % of X, the chain complex
{C:“E(X L), 04} of U small singular simplicies of X with coefficient group
G = F(4", {4"}) is defined by

Cins(x, ) = [ {F(, (4] a: (4", {4"}) = (X, %)} in €T op
and

(X, 2): CIX, ) > CES(X, ) by 8(X, W) = T, (—D'oy(X, %)
i=0
where
o (X, U): CX, Uy » C(X, %) by culed = ey

for a: (4", {4"}) = (X, %) in €T op and e;: (4"1, {4"7*}) — (4", {4"}) the affine
map of 4" onto the ith face of A". An augmentation &: C5"J — F is defined by
(4", {4"N1ay = F(a) for o: (4°, {4°}) — (4", {4"}).

For f: (X, %) - (Y,¥") in ¥Top, C(f): C3M(X, U) — CH"(Y, ¥7) s
defined by CI"(£)iduy = 1 fu) for a: (47, {4"}) — (X, %).

Each Ci™ is an elementary,functor on 4.7 op, and the chain complex of groups
C,f"g(A"‘, {4™) - F(4™, {4"}y'~ 0 is well known to be exact for any standard
simplex 4™ Thus, the chain complex of functors C3"8J — F —» 0 is a resolution of F
by elementary functors. By 1.1, any natural transformatlon C"‘"“ = CyF (CyF is
the André complex) whose restriction is compatible with augmc.ntations induces
a homology isomorphism. One such natural transformation, t,, is given by
(X, U)elady =11, ..., 1, a) where oz (4", {4"})—~ (X, %) and 1 denotes the identity
on (4", {4"}).

Thus, H,(t4) defines a special 1somorphlsm between the inverse system

(HY™X, ), y<%, ¥y, Cov(X)) and H,(X),

icm°

where
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HPS (X, ) = H(CR™ (X, )

and

PUL Ty = HY(L): HYM (X, ) — HPS(X, )
when #B¥. ‘

For a topological pair (X, ) with inclusion j: 4 — X, CI"(X, 4, %),
& Cov(X), is defined to be the cokernal of the monomorphisny
CE Y O (A, () > CRS (X, ) .
The natural transformation t,, passes to cokernals, inducing a chain map
T X, A, W) C¥X, A, ) — CoF((A,77100), 1, (X, %))

which is natural for maps of pairs. By the five lemma, each T,(X, 4, %) induces

a homology isomorphism. Thus, F,(7,) defines a special 1somorp111sm between the
inverse system

(I‘Iﬁi"g(‘/\’, AU, U, ¥y, Cov(X)) and  H(X, A)
where :
HE™8 (X, 4,9 = H,(CI™(X, A, %))
and
FCU, Py = HI(1,, 1y): HE(X, A, %) — HP'NX, A, 7)
when # =¥,
Let sd be the subdivision chain map on the singular chain complex [S, p. 177 ff}.
Then if %>, there exist n e IV such that

sd's CENR(X, A, U) —~ CR™8(X, 4,7

Furthermore, sd” is o chain equivalence with homotopy inverse Cy(ly, 1,). Thus,
each §{#, ¥y is an isomorphism and,

limH"“‘“(X A, %) = HI™(X, 4)

(Here, If"‘““( X, A, %) dmotu, the standard singular homology sequence of the pair
(X. A) which is identical to [["““()& A, {X}) as defined above.) This implies that
the limit over open covers preserves the exactness of the long singular homology
sequence of a topological pair.

Note that the category W, of standard simplicies does not satisfy the hypo-
theses of Theorem 5.1 — 4"x [ is not a standard simplex. It does, however, satisfy
the hypotheses of Corollary 5.2.

5.4, Exampie (Vietoris-Cech Homology). The model category, My, for
Vietoris-Cech Homology consists of all finite sets [n], nelV, with the discrete
topology and all (continnons) functions between them. F: M — 9 is, again, a con-
stant functor. The Vietoris-Cech chain complex is defined by
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VX, ) = TL{F(nD] e ([n], {[n]}) - (X, 4}

and 8, Cy(X, %) - C_y(X, %) by 9, = ¥, (—1)'d), where d,1¢a) = i<ae} and
=0

éb: [n—1] — [n] by ei(k) if k<i and ei(k) = k+1 if k=i
Note that each C) is an elementary functor. A chain contraction of C:([n], [}
is given by choosing a point n, € [1] and defining

et Gl (1)) = Clontlnd, {In1) by mrdad = (&>

where

a: ([k], {[k1}) — (], {I]}) @ ([e+17, {Tk+111) ~ ([n1, {[1})

by a@i) = (i) for 1<igk and &(k+1) = n,. Thus, C‘:J—» F — 0 is a resolution
of F' by elementary functors. Hence, by 1.1, the natural transformation t,: C ,,‘: -+ Cyu F
defined by t,1{ay = 1{l, ..., 1,a), which is compatible with the augmentations,
induces a homology isomorphism. Then, 7, induces a special isomorphism from the
inverse system (Hj, (X, %), <%, ¥y, Cov(X)) to H,(X). Here,

H/(X, %) = H(CKX, %)) and U, %) = H(1y): H)(X, %) - H)(X,7),
when =Y.
As in 5.3, for a topological pair (X, 4) with inclusion j: 4 — X, CI(X, A, %),
9 e Cov(X), is defined to be the cokernal of
Cu(): CA, ™ @)~ C{(X, %) Hi(X, 4,%) = H(C,(X, 4,%)).
Then, 7, induces a special isomorphism from the inverse system
(H (X, 4,%), 5%, ¥y, Cov(X))

and

and

to HX, A).
Unlike singular theory, Vietoris-Cech theory has no subdivision chain map.
Thus, although the sequence

e ¥ Hn(/Y) - H;I(X5 A) - n—l(A) >

is exact in Pro-2, applying the limit over covers of X does not necessarily produce
an exact sequence in U [E-S, X, 4).

As in 5.3, the hypotheses of 5.1 are not satisfied, but those of 5.2 are.
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