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LEMMa 1. Let M and N be recursively saturated structures for ¢ countable language,
MeN. Then M< ., N iff HYPy< 0, B YPy;.

Proof. (<=) is clear. For (=), first suppose 9t and N are countable. Then for
all finite m from M, (M, m)=., O, m), so (M, n)y= (N, m); therefore
(HYPgy,, m) = (HYPg, m). Since every element of HYPy, is definable with par-
ameters in M, this shows HYPy< ., HYPy,. The countability assumption is elim-
inated by Lévy absoluteness: see for example Barwise [B, 119.2]. W

LemmA 2. Let (Thm. 2)' denote Theorem 2 with (v) deleted and (i) replaced by
(i) M<N. ‘
Then ZEC t (Theorem 2) > (Thm. 2)'.

Proof. (—) is clear. For («), first notice that (v} is superfluous, by Lemma 1.
Since recursively saturated models are homogeneous (Schlipf [Sch, IT1.8(i)]), it
suffices to show that 9 and N realize the same types. But this is well known; we
thank Jim Schmerl for pointing this out, as it simplifies the proof of Theorem 2.

To prove this, first choose m € M greater than all elements definable in 9. Then ’

given 71 from 9, we find @ in M such that & and 7 realize the same type. Just choose &
in N to realize the type {p(x) e o(): @ €L} U {x;<m: x; occurs in x}. W

Proof of Theorem 2. Actually, (Thm. 2)" is just the theorem of [Ka]. Now >,
is assumed for that result, but Shelah [She] has shown how to eliminate this added
hypothesis. So by Lemma 2, we are done.
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Smooth dendroids without ordinary points
by

J. J. Charatonik (Wroclaw)

Abstract. Smooth dendroids are constructed which are composed of end points and of rami-
fication points. only.

Let X be a metric continuum. If for every two points a¢and b of X there exists
in X an arc (i.e. a continuous and one-to-one image of the closed unit interval
[0, 17 of reals) with end points « and b, then X is said to be arcwise connected. For
an arcwise connected continuum X we accept the following three definitions. A point p
of X is called an end point of X if p is an end point of every arc containing p and
contained in X. A point p of X is called an ordinary point of X if there are in X
exactly two. arcs with p as the common end point and which are disjoint out of p.
A point p of X is called a ramification point of X if there are in X three (or more)
arcs with p as the common end point and which are disjoint out of p. In other words
end points, ordinary points and ramification points of X are exactly points of or-
der 1, 2 and n»3 in the classical sense respectively (see [17], pp. 219-221; [9],
Chapter IV, T, pp. 63-64; compare [12], pp. 301302 and [3], pp. 229-230). Thus,
given an arcwise connected continuum X, we can distinguish three disjoint sets of
its points: the set E(X) of end points of X, the set O(X) of ordinary points of X,
and the set R(X) of ramification points of X, and we have

X = E(X)v 0X)u R(X).

It is easy to construct some particular examples of arcwise connected con~
tinua X with the property that some of these sets are empty. ‘

A continuum is called hereditarily unicoherent if the intersection of any two its
subcontinua is connected. A. dendroid means an arcwise connected and hered'itarily
unicoherent metric continuum. A dendrite means a locally connected metric cont'muym
that contains no simple closed cutve, The concept of a dendroid is a generalization
of one of a dendrite: every dendrite is a dendroid, and every locally connected den-
droid is a dendrite (see [14], X, 2, Theorems 1 and 2, p. 306).

It is easy to observe, using the Menger n-spoke theorem ([14], VI, 1, pp. 213-214;
[2], Theorem 13.20, p. 478; cf. [11], § 51, I, p. 277) that for locally connected con-
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tinua the concept of a finite order of a point in the sense of ord introduced by Menger
131, § 2, p. 279; cf. [14], IIL, 1, p. 97) or by Urysohn ([15], p. 481; cf. [16]) (com-
pare [11], § 51, I, p. 274) coincides with the concept of a finite order of a point in
the classical sense. In particular, for locally connected continua, points of order two
coincide with ordinary points in the sense defined above. Thus, for every dendrite X,
the set O(X) of all ordinary points of X is dense in X (see [14], X, 3, The first theorem,
p. 309; cf. [11], § 51, VI, Theorem 8, p. 302). It is easy to show that for locally con-
nected continua which do contain a simple closed curve it is not true. Moreover,
there are locally connected continua, even one-dimensional, with a finite number of
ordinary points (e.g. the triangular Sierpinski curve, see [11], § 51, I, 6, p. 276)
or even containing no ordinary point (see e.g. [2], p. 476-478).

A problem has been asked in [4] as to whether the local connectedness is also
an essential assumption is this statement: does there exist a dendroid X for which
the set O(X) is not dense in X? We give here an affirmative answer to this question

constructing an example of a dendroid X for which O(X) is empty. Moreover, .

the dendroid X has some additional properties, e.g. it is smooth. The construction
is rather geometrical: it resembles one of brush continua ([3], p. 234; see also [7],
§ 9, p. 318) together with its application to obtain a dendroid A such that R(A)
is homeomorphic to 4 and that all points of A are of order at most 4 in the classical
sense (see [3], pp. 245-251). However, some inverse limit techniques are used in the
proof of properties of the present example. These techniques are similar to ones used
by Anderson and Choquet in [1] and exploited by many authors in various con-
structions, in particular by the author in [5].

A dendroid X is said to be smooth if there exists a point p € X (called an initial
point of X) such that for every convergent sequence of points a, of X the condition
lim @, = « implies that the sequence of arcs pa, is convergent to the arc pa. The

n—o

set of all points p which can be taken as initial points of a smooth dendroid X is
called the initial set of X and is denoted by I(X). A more detailed information on
smooth dendroids is contained in [7].

Now we are able to formulate and prove the main result of the paper.
‘THEOREM 1. There exists a dendroid X such that

(1) X has no ordinary point, i.e., O(X) = @;

(2)  each ramification point of X is of order continum;

(3)  the set E(X) of end points of X is an uncountable dense set;

(4)  the set R(X) of ramification points of X is an uncountable dense set;

(5)  Xisa subset of the Hilbert cube; each arc A < X is the union of at most countably
many straight line segments, and lengths J(A) of cres A (with respect to the
induced metricy ure finite and bounded in common;

(6) X is smooth;
(7)  the set I(X) of initial points of X is a straight line segment;
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(8) the set I(X) is exactly the set of points at which X is locally connected.

Proof. We begin with an auxiliary construction. Let % denote the Cantor
ternary set of numbers, i.e.,

o0
©) % ={xe0,1]: x = 2¢,/3% where c, e {0, 1},
K=0

and let ¢: @ — [0, 1] be the well known step-function of % onto [0, 1], i.e., the
function defined by

L]

(10) plx) =3 f2*
k=0

for all x having the form mentioned in (9) (see [10], § 16, II, p. 150, footnote (1))-

The aim of the auxiliary construction is to define an operation I' which, per-
formed on a closed straight line segment S, gives as a result a dendroid I'(S) con-
taining S. It will be done in two steps.

Step 1. Let a straight line segment S with end points @ and b be given, and
let P be a plane containing S. To make the construction easier, let us choose in P
a cartesian rectangular coordinate system (%1, X,) in such a manner that the two end
points of S have coordinates (0, 0) for a and (1, 0) for b. Consider a rectangle R
with vertices (0, 0), (1, 0), (1, %), (0, 4) for which S serves as a side. Note that 1: } is
the ratio of lengths of the sides of R. We will call S the base of R.

Denote by C the Cantor ternary set of points lying in the side of R which is
opposite to S:

C={(x1, 1) x €%},

and let f: C = S = {(x;,0): 0<x;<1} be a mapping defined 13y
(11 S (G, D) = (p(x1), 0)  for

x, €%,

“where ¢ is given by (10). Thus f is continuous and onto. Now join each pointpe C

with its image f(p) € S by a straight line segment 4, (lying in R and having pe C
and f(p) e S as its end points), and observe that the union M of all these segments:

M=\){4,: peC}
is a dendroid such that

EM)=C and R(M)= S\{a,b}

(cf. [3], Example E4, p. 240).

Let TR be the set of all interior and all boundary points of the triangle with
vertices ¢ = (0,0), b = (1,0)and (},%),andput D = M N T. Thus D is a dendroid
composed of straight line segments G, = A, T (called generators of D), where
peC, the end points /() of which form the segment S. We will call S the base of
the dendroid -D. Note that E(D) is homeomorphic to C, in particular ¢ and b are
end points of D, and that R(D) = S\{a, b}. Observe further that for every genera-
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tor G, of D its length is less than half of length of the base S of D:

{12) AG)<EA(S).
The above construction leads to the formula
(13) D=y {G,: peC}.

It is evident directly from the construction of D and from the definition of
_ smoothness that

{14 D is a smooth dendroid, and I(D) = S .
{see the figure).

Step 2. Now take a straight line perpendicular to the plane P at the point
2 = (0, 0) as the third axis, and let the unit 3-dimensional cube 7° be given in the
Buclidean 3-space equipped with the coordinate system (X, X5, X3) just defined:

P = {(x;, %, %5): 0<x;<1 fori=1,2,3}.

Consider the “Cantor book™ of rectangles lying in I°, with sides of length 1
and 1, and having the segment § = {(x;,0,0): 0<x;<1} as the common side.
More precisely, for each real number g% we take the plane P, defined by the
equation X3 = ¢x, and, in the common part P, n I* we distinguish a rectangle R,
with the unit segment S of the x,-axis as its base and with the two other sides (of
length 1) lying in the faces x, = 0 and x, = 1 of I® respectively. Thus the plane P,
in which the rectangle R, lies and the plane x3 = 0 in which the base of I is located
form an angle of measure ¢g. The union

(15) B=U{R;: g%}
is just the “Cantor book”.

In each rectangle R, we put an isometric copy D, of the dendroid D in such
a way that S is the common base for all D,’s, and define

(16) ) =U{D,: qe%}.
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For a fixed point ¢ € %' let G, , (where p € C) denote a generator of D,. Thus
by (13) we have s

(17} D,={{G,,peC} forallge?,
whence it follows from (16) that
(18) r'(s) = U{G,q (p,0)eCx%}.

The following properties of I'(S) are immediate consequences of the above
construction.

(19) I'(S) is a dendroid,
(200 The set E(F(S)) of end points of I'(S) is composed of end points & and b

of S and of all end points of the generators G, , which are not in S. Thus
E(I'(S)) is homeomorphic to the Cantor set.

(21) The set R(I'(S)) of ramification points of I'(S) is equal to S\{a, b}.
(22)  Each ramification point r of I'(S) is of order continuum. Namely there exists
a Cantor fan U {G,, ,: g€ %}, (where pef~'(r} and f: C — S is defined
by (11)) having the point r as its top.
1t follows from (12) that

(23) MG, )<¥A(S) for each (p, ) e Cx¥.

Further, as a consequence of (14), since the segment S is common for all den-
droids D,, we conclude by (16) that

(24) the dendroid I'(S) is smooth, and I(r(s)) = &,
and that
(25) I'(S) is locally connected exactly at points of S.

The auxiliary construction is finished.

Now we apply it to define an inductive procedure which will lead to the re-
quired dendroid. To do this, we need a new concept. An arc 4 contained in a den-
droid X will be called free if (i) all its points except the end points are of order 2 in X,
and (ii) it is a maximal one in the sense that it is not a proper subset of another arc
satisfying (i).

Let a dendroid Y be given whichlies in a k-dimensional cube [ * and which is
reprosented as the union of some family of straight line segments. On each free straight
line segment S in ¥ we perform the operation I' in such a way that the generators
G,,, of I'(S) (sec formula (18)) are located in the cube I*** for which the cube I*
sorves as its k-dimensional face. Thus each generator G, , has exactly one of its
end points in common with Y, and since any two distinct generators either are
disjoint or have ‘a point in common only, the resulting space, which is denoted
by 4(Y), is a dendroid. By definition we have

(26) A(Y) = YU {I(S): S is a free straight line segment in Y}.

5 - Fundamenta Mathematicae CXXIT/
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Let S be a fixed straight line segment of length 1. Put X = S, X;; = 4(X)
for i=1,2,.. and define

27 Y=U0x.
In details, we have .
X, =S, U{G,. s (p,9)e CxF}.

Since Cx % is homeomorphic to %, we can replace the double indexes by single
ones; putting G} for G,,, We can write

= {GL: ae®}

and by construction (see {22)) we have

X, =T(S) =

AMGH<y for each ae ¥ .

Further we put
=U{IG): ae%} = U{U{G: (o (r.5)eCxC}: aeb}.

Replacing the triple indexes o, (r, 5) again by smgIe ones and denoting G2
by G,, for some fe¥ we can write

= {G:: ac¥)

and by construction we have 1(G?)<(%)? for each x ¢ @.
In general we have

o, ()

(28) Xivr = U {Gh: ae ¥}
and :
(29) MGH<@

where i = 1,2, ... The construction is made in such a way that

XjeX,cX;e..cXc
20+
o X eI, L

and X,cl, X,=I?, X,cI®, and finally

-]
X =y X;cI%,
=1
The following properties of X; are evident consequences of the construction
above and of properties (19)-(25) of I'(S).
(30) X;.y is a dendroid for each i = 1,’2,

Since end points of X; remain end points of

‘ X; 4, after performing the opera-
tion I' on each generator of X;, we see that :

(31)  the set E(X;y,) of end points of X;,, is composed of all end points of X;
and of all end points of the generators G% (see (28)) which are not in X,.
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The inclusion X, X;, implies that each ramification point of X; is a ramifi-
cation point of X;,,; observealsothateachordinary point of X, i.e., a point which
lies in a generator Gi~* without the two end points of G, becomes the top of
a Cantor fan of generators Gf, in the next step of the construction. Thus

(32) the set R(X;,,) of ramification points of X;;; is equal to XNE(X)),
and
(33) each ramification point of X, is of order continuum.

Since X;., is created from X; performing the operation 4 on it, i.e., perfor-
ming I on each free straight line segment of X;, one can easily verify by (24) and (25)
using an inductive procedure that

(34) X;, is smooth for each i =1,2,..., and I{X;;,) = S,

and

(35) if X, is not locally connected at a point, then X;,, also is not locally con-
nected at this point.

To see that the limit space X defined by (27) is a smooth dendroid we need
another description of X, namely as the inverse limit of an inverse sequence
{X,,f;}{%; of smooth dendroids X; with monotone bonding mappings fi

To this end we define fi: X;,; — X; as monotone retraction which shrinks -
each generator G of X, , (see (28)) to its end point in X;. In other words, for each
point x € X;,; we take a generator G of X, to which x belongs and we define
fi(x) as the only point of the intersection G. n X;. Thus for every pomt yeX,;the
inverse image f; (y) is just the Cantor fan composed of generators G: having the
point y in common, i.e., such that y is the top of this Cantor fan. So f; is continuous
and monotone retraction of X;,, onto X;. It is evident from the definitions that
{X,,f}, is an inverse sequence. Observe that condition (29) implies

diam £ (y) <2-®)’

for each point y € X;, where i = 1,2, ... Hence Theorem 1 of [1], p. 348 can be

applied, and thereby

llm{Xi3fi}i‘;1 =i!1Xi 3
whence
(36) X = lim {X;, /i}iZ1

by (27). Since the inverse limit of an inverse sequence of smooth dendroids with
monotone bonding mappings is a smooth dendroid provided there exists a thread
composed. of initial points (see [6], Corollary 2), and since the mentioned condition.
is satisfied by (34), we conclude that X is a smooth dendroid. The equality

37 I(X) =

5*
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is evident from the construction. Since the limit space is a dendroid, it can also be

oW
easily seen from (27) that each point of the remainder X\ | X; is an end point of X"
i=1
Thus the set of end points is composed of all points of the remainder and of end
points of all Xy’s for i =1,2,.., ie.,

(38) E(X) = 'QE(X,) U (X\'QXQ .

The other points of X are points of X;\NE(X;) for some i = 1, 2, ... which are rami-
fication points of X;., by (32), whence we conclude that

(39 R(X) =i91R(Xi+1) =191[X1\E(X1)] )

and that no point of X is an ordinary point. Thus (1) is true. (2) is a consequence
of (39) and (33). Conditions (3) and (4) are readily seen from the construction. To
verify (5) it is enough to note that for every arc 4 < X its length A(4) does not exceed

o o
thé sum A(S)+ ZA(GZ,)<1+ Z(%)i = 2 (see (29)). Conditions (6) and (7) have
{=1 i=1
been already proved (see (37)). And finally (8) is an immediate consequence of the
inductive procedure, see (35). Thus the proof of the theorem is complete.
1t is known that there exists a universal smooth dendroid, i.e., 2 smooth den-

droid U such that every smooth dendroid can be homeomorphically embedded
into U (see [8]). We have the following

ProBLEM. 1. Is the dendroid X conmstructed in the theorem a universal one?

ProBLEM 2. Is it true that if the dendroid X is composed of end points and of
ramification points only, and if each ramification point of X is of order continuum,
then X is universal?

If we replace — in the construction of X described in the proof of Theorem 1 —
the “Cantor book” (see (15)) by a book composed of n = 1,2, ..., &, sheets, we get
a dendroid X (instead of X) having all properties (1)~(8) of Theorem 1 except
property (2) which is changed into

(40)  each ramification point of X™ is of order a) either n+2 or 2n+2 if n is
finite; b) 8o if n = M.

Really, let % be a closed subset of % of cardinality n. Taking
BY = U {R, g™}
instead of (15) and defining (see (16))
sy = {D,: ge%™}
we get a'dendroid (see (19)) I'™)(S) which can also be written in the form (see (18))
oSy = U{G, . (p,9)e Cx%™},
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and which has properties (20), (21), (23), (24), (25) with I'™ and ¥ in place of I’
and % respectively, and for which the following holds instead of (22):

(41)  Each ramification point of I' (S is of order a) either n-+2 or 2n+2if n is
finite; b) 8, if 1 = N

In fact, if re R(I'™(S)) = S\{a, b}, then f7'(r) is either a singleton or a two-
point set, so  is the common end point of either one or two generators G, , for
a fixed ¢ e %™ (i.e. generators of D,, see the figure). Since I'™(8) is composed
of n copies of D, having the segment S is common, we have either n or 2z genera-
tors G,, , ending at r. Taking into account the two subsegments of S which have »
as their common end point one can see that r is of order n+2 or 2n+2 indeed.
For n = §, one can find a countable fan in I',(S) with r as its top. So (41) is shown.

The further part of the construction runs without essential changes. In parti-
cular, putting X = S and defining X{; as the dendroid obtained from X{™ by
performing the operation I'™ on each free segment of X, " we get an increasing
sequence of dendroids. The resulting space X ® is defined by

X = (U XM i=1,2,..1)

where cl denotes the closure. The inverse limit procedure shows as previously
that X™ is a smooth dendroid with required properties. Therefore we have the fol-
lowing

THEOREM 2. For every number n = 1,2, ..., %, there exisis a dendroid X ™ vith
properties (1), (3)~(8) of Theorem 1 and with property (40).

Added in proof. Recently J. Nikiel answered Problems 1 and 2 in the negative.
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A note on Robinson’s non-negativity criterion
by

D. W. Dubois (Albuquerque, NM) and T. Recio (Santander)

Abstract. Let ¥ be a real algebraic variety in R" and {f1 20, ..., fr=0} a system of polynomial
inequalities over ¥, such that its solution set is Zariski dense on V. Then we prove that Robinson’s
criterion gives necessary and sufficient conditions for /=0 to be a consequence of the given system
if and only if {f1=0,...,£=0} is locally slack on V in the sense of Stengle {S]. As a corollary we
quickly obtain several recent results on positive function over the set Ve of central points of ¥,
the image of V. for finite birational morphisms and Efroymson’s [E3] characterization of central
points,

1. Introduction. Robinson’s non-negativity criterion states that if a polynomial
inequality f>0 is a consequence of a finite system of polynomial inequalities
f120, ., £,20, then f =3 03h,, where the g, are rational functions and the /,
are products of some f; (cf. [Ro]). Stengle [S] extended the result by showing that
on a real variety ¥, if f>0 is a consequence of,f1>0, w.s fo20 then a?f = ZgiIzA
(mod #(V)), where g, and h, are as above and ¢ is outside (V). Motzkin [M]
suggested that Robinson’s criterion could be interpreted as the counter part for
inequalities of the Hilbert Nullstellensatz; but as Stengle remarked, this comparison
is inappropriate in that there exists in some cases a polynomial f which is expressible
in the form Y g3, but which is not positive definite over the closed semi-algebraic
set 1320, ..., /.0, The need for a study of this situation is noted in several recent
papers, e.g. Stengle (loc. cit.), Gondard [G], Lorenz [L], where some counter-
examples are also given to the sufficiency of the criterion. It is the purpose of this
note to clarify the problem and then to apply our results to very recent theorems of
Schwartz [Sch], Bochnak~Efroymson [B~E] and Adkins [A]. Our treatment is related
to work of Dubois [D] and Brumfiel [B].

2. Locally slack systems on a semi-algebraic set. Locally slack systems of
inequalities {f; >0, ..., f,>0} were first introduced by Stengle [loc. cit.] as a type of
system of use in obtaining sufficiency for Robinson’s criterion. However he was
not able (see p. 96 [S]) to give a direct description of these systems in terms of the
Sis e fs (see 2.3 below). We are going to generalize his definition.
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