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Abstract. We give some applications of Morgan’s abstract Baire category theory to Cauchy’s
functional equation and to Hamel bases. Especially we can give a unified representation for all
results of Kuczma's report on topologically saturated non measurable sets in [7].

1. Introduction. In the real analysis and in the theory of functional equations
there are many results, which remain true, replacing measure theoretical conditions
by appropriate topological conditions, though the proofs are sometimes quite dif-
ferent (see [3] and [13]). The aim of this paper is to show, that Morgan’s theory
of &-families (cf. [9]-[11]) is an appropriate theory for a unified representation of
many well-known results, concerning measure and category especially in the theory
of real-valued additive functions and in the herewith closely related theory of Hamel
bases. We remark that all theorems are formulated in R, though they are sometimes
valid in R” or in more general spaces.

2. Preliminaries. We shall use the terminology of [9]-[11] and assume, that the
reader is familiar especially with the theory of - and S-families on R. If % is
a K-family on R, we say, that 4 is multiplication invariant respectively inversion
invariant, if for all x e R\{0} we have 4-x e % respectively —A e 4. Now if & is
multiplication invariant respectively inversion invariant, it is clear, that the families’
of ¢'-singular sets, €;-sets and sets with the Baire property are also multiplication
invariant respectively inversion invariant. Moreover a &*-family 4 on R is said to
be an inversion invariant G-family ¥ on R such that € contains

<lfn}: yeQ,neN}.
We define a class of sets, which will play a key role in our considerations: .

@y = {A=R: 3B<A: Be B(¥) 0 G}

{xeR: |x—y

The next theorem will be used rather often in this note ([16], Theorem 3.4 and [17],
Theorem 2): '

THEOREM 2.1. (1) If 4 is @ &-family on R and if A € By, then A— A contains
an interval.
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(2) If € and @ are nonequivalent B- and S-fomilies on R (simultancously),
then R is the disjoint union of a @yset and a Dy-set.
‘We here consider two examples. Let

= {{xeR: |x~yI<l/n}: reR,ne N}
and let

= {AcR: disclosed, 1(U n 4)>0for all ¥ € 4 and for all open sets U of R,
containing x}

(u denotes the Borel measure in R). Then 4 and 2 are nonequivalent, multiplication
invariant P- and S*-families on R (see [17]). Since the members of ¥ and & have
positive Borel measure, ¥ and Z also satisfy c.c.c., that is, each family of disjoint
sets of € or 2 is at most countable ([15], p. 123). Moreover %y consists of all first
category sets and 9, consists of all sets of Lebesgue measure zero. Thus %)y consists
of all subsets of R, containing a Baire set of second category and Py consists of all
subsets of positive inner L-measure (or equivalently: @y, consists of all subsets
of R, containing a L-measurable set of positive L-measure). Theorem 2.1, (1) is
an extension of two well-known results of Piccard [14] and Steinhaus [20]:

If AcR contains a Baire set of second category or if 4 is of positive inner
L-measure, then 4—4 contains an interval.

The second statement in Theorem 2.1 yields that R is the disjoint union of a set
of first category and a set of L-measure zero. We remark that by the above two
examples all theorems in § 3 have topological and measure theoretical versions. We
regard R as a vector space over Q and call each basis of R over @ a Hamel basis.
If T< R then E(T) is the linear subspace of R over @, spanned by T. The complement
of a set AcR will be denoted by c4.

A set AcR is called O-convex iff ax+(1~a) ye 4 for all x, ye A and for
all 2 [0, 1]; AR is J-convex iff 3x+%y € 4 for all x, y € A. By J(B) respectively
O(B) we denote the J-convex hull respectively the Q-convex hull of a set BcR
(i.e. the smallest J-convex respectively Q-convex set containing B). Thus

0 1 2
- 350

and Q(B) is the set of all a; x; +...+a,x,, where ¢;€ Q.0 [0, 1], o +... 40, = 1,
X150, %, €B and neN.

Finally we need the following definition, which occurs in the theory of additive,
real-valued functions (see [6], p. 385): If xq € A=R, then A is called Q-radial at
the point x, iff for every x e R there is a real ¢, >0 such that x,+o-xe 4 for all
ae Q, 0<a<e,.

3. Main results. The first results in this section were motivated by Kuczma's
report on topologically saturated non-measurable sets during the 17th intérnational
Symposium about functional equations in Oberwolfach 1979 [7].
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DEFINITION 3.1, Let 4 be a K-family on R. Then A< R is called non B(%)-satu-
rated iff A ¢ %y and cA ¢ Gy By (%) we denote all subsets of R, which are non
B(%)-saturated.

It 4 and @ are the topological respectively the measure theoretical example
of § 2, then &(%) and ©(2) are the sets of all topologically saturated non-measurable
sets respectively saturated non-measurable sets (cf. [7], [8], p. 422).

The following characterization of &(%)-sets comes immediately from Lemma. 3.2
in [16].

THEOREM 3.2, Let € be a K-fumily on R with ¢ <%y;.

AcG@)« (VBeb: Bncdeb)A(VNCe%: CnAety.

We give some examples for &(%)-sets.

TuroreM 3.3. (1) If € is o P-femily on R, then each Bernsicin set of R is non
B(F)-saturated.

(2) If € is a ©-family on R, then cach set of real numbers, whose representation
with respect to a Hamel basis H does not contain a fixed element of H, is non B(€)-satu-
rated.

(3) If € is a S-family on R, then each linear subspace of R over Q, which does
not have the Baire property, is non B(%)-saturated.

Proof. (1) Let 4 be a Bernstein set, that is, neither 4 nor c4 contaiis a perfect
set ([13], p. 23). Thus by Theorem 12 in [10] 4 € &(%).

(2) This follows from Theorem 8 in [9] and from Theorem 3.2.

(3) Let ¥ be a linear subspace of R over Q such that V¢ B(%). Assume that
Ve %y. By Theorem 2.1 V' = V—V contains an interval. So V¥ is an open and thus
closed subgroup of R. This yields ¥ = R. Since we always can assume that Re ¥
(cf. Lemma 3 in [10]), we get the contradiction Ve % <B(%) ([11], Theorem 4).
Since V ¢ B(%) we get V &€ @y. On the other hand we have V' = V+0-v. But Qv
is dense in R for v € ¥ and so Theorem 2 in [9] yields that A " Ve @ forall4e @,
that is ¢V ¢ @ny.

The measure theoretical version of Theorem. 3.3 (3) was proved by Kuczma and

- Smital ([8], p. 423).

The next result, whose measure theoretical version is due to Ostrowski [12]
and whose category version is due to Kuczma [7], shows that non B (%)-saturated
sets occur in the theory of additive functions.

THEOREM 3.4, Let € be a multiplication invariant G- and B-family on R. If
/% R = R is discontinuous and additive, then f ~*(U) is non B (%)-saturated, whenever
UcR is a closed interval.

Proof. Let U := [a, b], ¢, be R, a<b, and suppose that f~*(U) e %y. Then
Theorem 4.1 in [l6] implies the contradiction that f is continuous. Thus
FHU) ¢ Gy Now suppose that ¢f “(U) € @y. Then there exists a B(¥) N
N @yset A< R, such that f(x) ¢ [a, b] for all xe A. We first prove that without
loss of generality we can assume, that £ (1) = 0. If /(1) # 0, we consider the additive,
discontinuous function g: R — R, defined by g(x) = f (x)—f(1)x, which satisfies
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g(1) = 0. Since A e %y we infer from Theorem 2 in [11], that there is a ¥-sct C,
such that B n 4 & %y for all Be % with B=C. Now take an x € C n 4. From the
definition of a P-family we get a descending sequence (4,) of @-sets, such that
1 . b—a

2 1FOF
By our construction we have A’ := 4, N 4 €%y and it follows 4" e B(¥F) N G,
But now g(x) does not take on values of an interval of positive length for all x e 4":
indeed, if x € 4', then by our assumption f (x) does not take on values ox an interval
of length b—a and f(1)x takes on values of an interval of length at most -1-7»55.
Since f is Q-homogeneous, (1) = 0 implies f(r) = rf (1) =0 for all re@. It
follows that f(x) ¢ [a, b] for all xe M = A+ 0, where cM e %, (see the corollary
after Theorem 2 in [9]). So we have M, = {x e R: f(x) & [4, b]} =cM € %,. Without
loss of generality we may suppose that b = ra>a>0, where re O\{0} (Observe
that —f is also an additive function). Using that fis @-homogeneous we get for all
ne N, that £(x) € [r'a, " 1a] only if x is an element of the %;-set r"M,. Defining
B := | r"M, it follows Be %, f (B)=[a, o0) and cB & B(%) N %y. But fis bounded

neN
above on cB by a. Again Theorem 4.1 in [16] implies the continuity of f, which is
impossible. (We remark that in the proof ouly “rational multiplication invariance”
is needed.)

DErFINITION 3.5, [7]. Let A= R be an uncountable Borel set. A Hamel basis 1/
is called a Burstin basis relative to A iff H intersects each uncountable Bo:el subset
of A.

The existence of a Burstin basis relative to R was proved by Burstin [2] and by
Abian [1]. In a similar manner the following result can be proven.

THEOREM 3.6. [7] Every Borel set AR, containing a Hamel basis, contains
a Burstin basis relative to A.

1
xed,, 4,=C, and diam4,<1/n for alln e N. Choose m e N such that p <

Now we can prove immediately the following two results.

THEOREM 3.7. Let € be a PB- and S-fumily on R. If AcR is a €-residual Borel
set, then each Burstin basis relative to A is non B(€)-saturated.

Proof. (1) Let H be a Burstin basis relative to 4. If H € %y, then by Theorem 2.1
H—H contains an interval U. Now take any ae H. Then there is an r e O\{0}
such that ra € U. Thus there exist b, d € H satisfying ra = b—d, contradicting the
linear independence of a, b, d.

(2) If we assume that 4 N cHe %y, then by Theorem 12 in [10] 4 n cH
contains a non empty perfect set P; but P is an uncountable Borel subset of 4 such
that P n H = O, which is impossible. Since A4 is %-residual, that is ¢4 € ¥y, we
get cH ¢ G-

THEOREM 3.8. Let € and @ be nonequivalent B- and S-families on R, Then there
exist Hamel bases H and B such that H e S (D) N %y and BeS(€) n %y.
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Proof. By Theorem 2.1 R can be decomposed into a %-set C and a @y-set D.
Observing that ¢ and & consist of perfect sets, the prbof of Theorem 2.1 in [17]
yields that C and D are uncountable Borel sets (indeed, C and D are either F,- or
G;-sets). Moreover we have C=c¢DeB(2)n Py and D = cCeB(%) N Gy.
From Theorem 2.1 we infer again that E(C) = R and E(D) = R. But it is known,
that this is a necessary and sufficient condition for C and D to contain a Hamel basis
(cf. [3], p. 4.29). By Theorem 3.6 C contains a Burstin basis A relative to C and D
contains a Burstin basis B relative to D. Now Theorem 3.7 yields He &(2) n %
and BeS(%) n 9.

The next two results are extensions of theorems in [4]. We introduce some
notations. If H is any Hamel basis, then we denote by H* the set of all real numbers
of the form ¥ z;h; (finite sum) and by H* the set of all real numbers of the form
Za,-/z,; (finite sum); here h;e H, z;e Z and o;€ Q n [0, o). Moreover we define

" for any Q-family on R:

Q%) = {AR: |d|>xy, YCe @ |Cn A|<sy)}

If for example % is the topological example of § 2, then £(%) consists of all Lusin
sets (see [11], Definition 9).
THEOREM 3.9, If H is any Hamel basis and if € is a multiplication invariant & - family
on R, then H* & &(%). )
Proof. It is obvious, that for all x € R there is an z, € Z such that z,.x e H*.
Thus

R = UA{-’I:‘H*: zeZ\{O}}.

1
Since R ¢ %, we have —-H* € Gy for somz ne Z\{0} and thus H* & %y. Moreover
n :

it is known that #* is dense in R. Since H*+ H* = H* (H* is an additive group),
Theorem 2 in [9] yields that cH & @y,

Now suppose that H* € @y. By Theorem 2.1 the interior of H* is non empty.
Thus H* is open and also closed and we get H* = R, which is a contradiction.

TrroreM 3.10. Ler € and @ be nonequivalent, multiplication invariant B- and
S-~fumilies on R, such that |6|<c, |D|<c and such that € and G satisfy c.c.e. If
¢ = w,, then there exist Hamel bases H and B satisfying H te &(B)n Dy and
Bt e YD) n %,

Proof. (1) By € we denote the family of all sets, which are complements of
members of %. Because of [4]<c we have |Gy, N %y|<c. Now let €, %
= {F,: a<w,}. Likein [4] we can construct a Hamel basis & suchtbat |H™ N F| <Ny
for all x<ew, (In this step of the proof we need the multiplication invariance of ¥).
Now let 4 € %. By Theorem 3 in 11} 4 is contained in a certain set Fy, f<wy,
which proves that H* & £(%). Theorem 2.1 yields that A * is the disjoint union of

¢ — Fundamenta Mathematicae CXXII/1
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aset Ae%, and a set Be &, Since H™ € 2(%) we get |4|<w,. Thus 4 € & and
also H* e 9.

(2) The second statement can be proved in exactly the same manner.

We now prove a result, which can be compared with Theorem 5 in [9].

TuEOREM 3.11. Let € be a B-family on R such that |6|<c and % satisfies ¢.c.c.
If ¢ = wy, then each Gy-set can be decomposed into ¢ disjoint sets, none of which has
the Baire property.

Proof. Let A € %y. By Theorem 17 in [11] and by Theorem 6 in [10] 4 contains
aset L€ (%). If f1 RxR — L is a bijective function (Observe that ¢ = w, implics
|Rx R| = |L]), then

{f({x}xR): xe R}

are ¢ disjoint #-sets, contained in A. Now Theorem 19 in [10] yields, that A contains
¢ disjoint sets B,, a<w;, such that B, ¢ B(%) for all a<w;. Consider

=Adncl{B,: a<w}.

If D¢ ®B(%), then {B,: a<w,}u {D} is the desired decomposition of 4. If
DeB (%), then {B,u D}u {B,: O<a<ew,} is a decomposition of A with
Byu D¢ B(%). Indeed, if By u DeB(%), then (B, v D)n cD = ByeB(E),
which is impossible.

We close our considerations with two results concerning real-valued additive
functions. Smital ([18], [19]) could give necessary and sufficient conditions for sets
T'< R such that every additive function, bounded (respectively bounded above) on 7,
is continuous in R. We here replace these conditions by equivalent conditions
using S*-families on R.

TaeoREM 3.12. Let 4 be a ©*-family on R and let T<R. Then every additive
Jfunction f: R ~ R bounded on T is continuous in R iff Q(T—T)e @y.

Proof. (I) Let Q(T—T) € ¥y and let | f (x)| < M for all x € T and for some M eR.
Using that fis @-homogeneous we get that | f(x)|<2M for all xe Q(I'—T). Now
Theorem 4.1 in [16] implies that f is continuous in R.

(1) Assume that Q(T—T)¢ %y, If Q(T—T) would contain an interval, it
would also contain a member A4 of the family {{x e R: |x—y|<l/n}: ye @, ne N}.
Since each &-family satisfies € =%y, we get 4 € ¥ =B(%) n Gy, which is impossible.
Thus Q(T—T) contains no interval and by Theorem 4 in [18] there is a discon-
tinuous additive function bounded on T.

Using again Theorem 4.1 in [16] and the main result in [19], we can prove imme-
diately the following theorem.

THEOREM 3.13. Let € be a &*-fumily on R and let T<R. Then every additive
Sunction f: R — R bounded above on T is continuous in R iff Q(T'—A) e %y for all
subsets A of R, which are Q-radial at a point.

Let € be a ©-family on R with R e %. We here remark, that the condition “Every
additive function f: R — R upper-bounded on T=R is continuous in R” does not
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imply that J(T)—J(I') € €y Let H be a Hamel basis such that 1 € H and let T be
the set of all real numbers, which can be written in the form . oA, (finite sum),
where h; & H and o; are dyadic rational numbers (compare [19]). Now if f is any
additive function bounded above on T = T—T7, then f is bounded above on
Q(T) = ReB(%) n¥y. By Theorem 4.1 in [16] f is continuous in R. If
J(T)=J(T) = T—T = T would be a ¥y-set, then by Theorem 2.1 T would contain
an interval. So there exists a non dyadic number ¢ = @1 € T, which is a contradic-
tion. Thus J(I)—=J(T) ¢ @\y.

Contrary to the last statement the following positive result is true: Let % be
a translation and multiplication invariant & -family on R. Then the condition “Every
additive function f: R - R bounded on a set T<R is continuous” implies
J(T)—J(T) e ¥y The proof is analogous to the proof of Theorem 6 in [5], replacing
the measure theoretical notions by the corresponding notions of a &-family.
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Abstract. Let X be a metric continuum and let C(X) denote the hyperspace of subcontinua
of X. The following question is investigated: When does X have thie property that for each non-
empty closed subset 4 of X there exists a continuous function F: X —- C(X) such that x e F(x)
if and only if xeA?

1. Introduction. By a continuum we mean a nonempty compact connected metric
space. If X is a continuum, then ZX(C'(X )) denotes the hyperspace of closed subsets
(subcontinua) of X, cach with the Hausdorff metric.

A Peano contimmm is a locally connected continuum. By a mapping we mean
a continuous function. If X is a space and f* X — X is a mapping, then the fixed
point set of fis {x e X1 f(x) = x}. In [16] L. E. Ward, Jr. defines a space X to have
the complete invarianee property (CIP) provided that for each nonempty closed
subset 4 of X there exists a mapping f: X — X such that 4 is the fixed point set
of /. Some spaces known to have CIP are one-dimensional Peano continua [9],
convex subsets of Banach spaces [16], compact n-manifolds [14], locally compact
metrizable groups [8], and polyhedra [3]. In [16] Ward asked if every Peano conti-
nuum has CIP, This question was answered negatively in [7]. A rather complete
bibliography of the litcrature on fixed point sets and CIP may be found in the survey
article by M. Schirmer [14]. )

Part of the literature on the fixed point property has been concerned with multi-
valued (set-valued) mappings. However, the question of which sets can be fixed
point sets of multi-valued mappings has not been investigated before. If X is a con-
tinuum, #: X - 2% is 2 mapping, and x € X, then x is said to be a fixed point of F
provided x & F(x). The fixed point set of Fis {xe X: xe F(x)}. By a continuum-
valued mapping we mean a mapping F: X - C(X).

In this paper we introduce and study the following generalization of CIP to
the setting of multi-valued mappings. A continuum X is said to have the complete
mvariance property for continuum-valued mappings (MCIP) provided that for each
nonempty closed subset 4 of X there exists a mapping F: X — C(X) such that 4 is
the fixed point set of F.
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