'Combinatorics on c-algebras and a problem of Banach
by

Andrzej Pele (Warszawa)

Abstract. A o-algebra S on the reals is called measurable if there exists a probability measure
on § vanishing on atoms of S. Banach [0] asked if the union of two countably generated measurable
o-algebras can generate a non-measurable o-algebra. This problem was. solved positively by
Grzegorek [4]. Under the assumption of Martin’s axiom we show a large family of o-~algebras with
the property that all its small subfamilies generate measurable o-algebras and all large subfamilies —
non measurable ¢-algebras. We also consider a group-invariant version of Banach’s problem and
various questions concerning the structure of ¢-algebras and their measurability (*).

0. The key-notion of this paper is a o-algebra of subsets of a set X. We also
often use the abbreviation “c-algebra on X meaning a family of subsets of X
containing X as an element and closed under complements and countable unions.
A non-void set « is called an atom of the o-algebra S if a € S and for every bea
if be S then b = & or b = a. We say that a o-algebra S is x-generated if there
exists a family T< S, |T| = » such that § is the smallest o-algebra containing 7.
The family T is then called a generating family and the o-algebra generated by T is
denoted o(T).

By a measure on a o-algebra Son X we mean a functxon m: S — [0, 1] with
the foliowing properties:

1° m(a) = 0 if a is an atom of S,

2° m(X) = 1, ‘ '

3° m(U 4,) = 3, m(4,) if A, are pairwise disjoint elements of S.

nsw neo
A, measure m on S is uomp]ete if subsets of measure zero sets are elements

of S and is uniform if sets of cardinality <|X]| are subsets of measure zero sets.
A o- alngllL S on X is called measurable if there exists a measure on S and
uniformly measurable if there cxists a uniform measure on S.
A family I of subsets of X is called a o-ideal on X if I contains singletotis,
X ¢TI and I is closed under countable unjons and under the operation of taking
subsets. A a-ideal 7 on X is.called ¢-saturated if every pairwise disjoint family
of subsets of X outside of Iis countable.

(*) The results contained in this paper formed a part of the authors Ph D thesis.
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If of = {d,: new}is a countable family of subsets of X then A fvde‘noteé the
set () A5, where 4% = 4, A' = X\d, fe 2°. Every 4 ; is clearly an atom of

new
o(&f). The function f is called the index of this atom, The sets 4, are independent
if every fe2” is the index of an atom of o({4,: ne w}).

A sequence {f,: x<x}cw® is called a x-scale if for all a<f<x, Jo< fp and
for every g e @® there exists < sich that g=<f, (f<g means f(n)<g(n) for all
but finitely many n).

The last group of notions concerns the properties of invariance. Let G be
a group of bijections of a set X. We say that a o-algebra S on X is G-invariant
if for every 4 € S, fe G the image f* (4) is an element of S. A measure m on a G-in-
variant o-algebra is G-invariant if for every 4 e S, fe G we have m(f* (4) = m(A).
A set AcX'is G-almost invariant if for every fe G |f* (A)AA]<|X].

1. The results in the present section were inspired by the following problem
of Banach:

Do there exist two countably generated measurable o-algebras with the union
generating a non-measurable o-algebra?

This question was positively answered by Grzegorek [4]. In connection with
it F. Galvin asked (personal communication) for which cardinal parameters the
following sentence is true: o

There exist % A-generated o-algebras on a cardinal « such that the union of
any B of them generates a measurable o-algebra but the union of any y of them
generates a non-measurable ¢-algebra.

_ Our first theorem solves this problem for small values of cardinal parameters
involved, under the assumption e.g. of Martin’s axiom. )

THEOREM 1.1. Assume that a 2°-scale exists and that Lebesgue measure is
uniform. Let 0<x< . Then there exists a countable Jamily of sets of reals .and its
subfamilies Ag: £ <2° such that the o-algebras Sg = a(4y) have the following property:
any union of < of them generates.a uniformly measurable a-algebra but any union
of 2 of them generates a o-algebra non-measurable uniformly.

We split the proof into several lemmas.

LEMMA 1.2. Assume that a 2°-scale exists. There exists a set Tco®, |T| =2°
with the following properties:

1° For any sequence {W,: ne o} of infinite sets of natural numbers, any sequence
{a,: ne w} of natural numbers such that a, ¢ W, and any function h e 2° not eventually
equal 1, there exists an fe T such that f(n) € b'™, where b =W,, bt = {a,}.

. 2° For any function fe o® :

[{geT: ¥ne o gm<fm}<2e.

Proof. Let {r,: x<2} be a one-to-one enumeration of sequences {G,: n € w}
such that. G, is an infinite. or one-element set of natural numbers and moreover
it is infinite for infinitely many ». For a<2% 7,4n) denotes the nth element of the
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‘sequence T, and k, — the infinite sequence of those n for which z,(n) is, infinite.

Let {f,: ®<2“} be a 2°-scale and g,, for x <2, be such a function from w® that:

1. g (n) e t,(n) for all ne o, :

2. gom)>f,(n) for neRg(k,),

3. g. # gy for B<u . ‘

The set T = {g,: <2} is as required. e

LemMa 1.3, Assume that a sei T from Lemma 1.2 exists and that Lebgsgue meastfre
is uniform. There exists a matrix {By.: n, k € o} of sets of reals which the Sollowing
roperty: . ) .
? Pa({B,,k: (n,kyeZ}) is a uniformly measurable a-a(geb(a zﬁ‘ the set {new:
{kew: {n, k> ¢Z} is an infinite proper subset of o} is F’nﬁnite. . ‘

Proof. It suffices to construct an appropriate matrix on ‘the set T frox.n th:e
previous lemma. Let By = {feT: fn) = k}. For the proof of left—to-r;fglznt impli-
cation assume that a set Zcwxw does not satisfy the abovg condmoq. Let
for n>n, one of the following possibilities hold: either V{cgm {n, k) ¢‘Z or
Ak Vk>k,{n,kyeZ. . o

Cénsir:ier ,only these numbers n>n, for which the first possibility holds. If
there are finitely many of them, the o-algebra in question has only countably many
atoms hénce it is non-measurable. If not (call the set of those numbers C) we can

ly a generalization of the reasoning from [1]. »
PP };ssuine that o ({B: <n, k) €Z}) is a uniformly measurable o-algebra. Then

=n+l
for n e C there exists [, >k, such that the set kk<)l B,,?‘ has measure at least 1—-2 .
Hence the set B= () U By has measure at least 1/2.

neC k<ln . .
Consider these functions from the set B which for n ¢ C have value 0.

By the previous lemma there are only <2% of them. ‘On.the othe}- hand, .by
the definition of the set C, belonging to a given atom of the a—alg(?bra in question
does not depend on the values of the function for arguments outs.1dta of C. Hence
the set B is a union of <2® atoms and as an element of the matrix it should have
measure 0, contradiction. ’ . - .

For the proof of right-to-left implication a-sume that a set Z satisfies the con:
dition in the lemma. Let {m,: n € o} be the increasing sequence of natural numbers
for which the set Z, = {k € w: {m,, k) € Z} is non-void. By-a, we denote the least
element of Z, and put Z, = co.\Z,,, ch

Q= ﬂ (Bm,.an 4 U’Bm,‘k) !
new keZn . R
and. S ‘ B o
" X, =Bu,nQ, Y,=(UB, )N
s " keZh

Cleaily X, = Q\7Y,. i ’
1;] th; space (2 the sets X, are almost independent (in t!'{e sense }g?t ong f]t;:
countably ‘many functions'f € 2%, eventuaily equal to 1, ‘the'scts 0 X7 m(lg e

new
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empt}{}. Since the Lebesgue méasure on Borel sibsets of the Cantor set s uniform;
we can define a uniform measure m on o ({X,: n € w}) in the space Q. Next, putting
My (Bpg) = 0 for ke Z,\{a,} we can extend m to a uniform measure m, on the
o-algebra o({B,: <{n, kY e Z}) which finishes the proof of -the lemma.

The next lemma is due to F. Galvin (personal comnn’mication)

LemMa 1.4. Let me w. There exist 22 sets of natural numbers, such that the
mtersectzon of every m- elemenz famzly is’ infinite ana’ not ‘equal to o but the mtet-
section of every (m-+1)-element family is finite.

Proof. We construct this family .on the set of m-element sets of finite O-1
sequences rather than on ‘w. For any functlon fe 2% we defing the set' X s as the
famlly of all sets of the form {f}k, ¢}, ..., 25-,}, where k is a natural numbér
and f¥is'a 0-1 sequence of length k. It is easy to check that the famlly {X 1 fe2%)
satisfies’ the required conditions.

In the next Iemma K will denote the famlly of all subsets A of oxw for which
{new: {kew: (n,k)e4} is infinite} is finite.

Lemma 1.5. There, exist 2° subsets .of o x w such that the mters‘ectzon af every ‘

ﬁmte subfamily. is not an element of K but the intersection of every infinite subfamily
is an element of K

Proof. Let {{X i a<2‘°} new)bea sequence of families of sets constructed
in the prevmus lemma, for every natural n. We define the fa,mlly {X,: ac<2’°} as
follows: -

X, =U {n}xX,, a<2°,
new
By the properties of X7 and the definition of K we get that these sets are as required.
Now we are already able to finish the proof of Theorem. 1.1. We consider
two cases,
Case 1! x is- a positive' natural number. Let {X,: oc<2“’} be the famlly of sub-
sets of o from Lemma 1.4 constructed for m = x. We put Y, = o\X,. Let

{By: n,k € w} be the matrix from Lemma 2.3. The e
quired family A,: ©
its ‘subsets is ‘defined by the formula ‘ ¥y <2 of

. Ay = {B,: new,ke'Y,} Afor  @<2%,

It follows from Lemmas 1.3 and 1.4 that this family h
oo from y has all properties requued

Case 2. ¥ = . Let {X,: oc<2‘°} be the family of subsets of w x w construc-
ted in Lemma 1.5. Put ¥, = oxw\X,. For the matrix {Bu: n,kew} from
Lemma 2.3 we define its subscts A, 6<2® as follows:’

Ay = {By: {n, k) e ¥, } for oc<2“‘ )

The ro ertles fqllow fi
The 11)1 p rom Lemmas 1.3 and 1.5. “This ﬁmshes the proof of Theo-
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. In Pelc, Prikry [10] it was proved that if the continuum hypothesis is assumed,
there exist oy countably generated o-algebras with countable unions generatmg
measurable c-algebras and uncountable unions generating non-measurable o-al-
gebras. Together with Theorem 1.1 this gives the followmg

COROLLARY 1.6. Assume the continuum hypothesis. Let x>0, be a cardinal
<w1 ' There exist cauntably genemted o-ulgebras S,: a<aq, on zhe‘reals with the
Following property:

the union of every subfamily of cardznahty <x generates a measuroble ot algebra
but the union of every subfamzly of cardinality x generates a non-measurable o-al-
gebra.

. Remark 17 J. Clchon [2] has recently: strengthened Corollary 1. 6 provmg
it in ZFC.

Remark 1.8. Tt is well known that the assumptions of Theorcm 1 1 are strlctly
weaker than Martin’s Axiom. We do not know however- if all extra assumptions
could be removed. C !

.2. In this section we consider a refinement .of the problem of Banach for two
o~ algebras The examples of c-algebras given in section 1 as well- as’ those- from
Grzegorek [4] do not have any “good”. properties enjoyed e.g. by Borel or Lebesgue
measurable sets, in partmular they are not translation invariant.

The following theorem, proved in Pele, Prikry [10] prov:des a solution to the
translation-invariant version of Banach’s problem..

THEOREM 2.1. Assume the continuum hypothesis. There exist countably generated
o-algebras Sy, S, on the interval [0, 1] and measures m;, my on Sy, S, respectively
with the following properties:

1° both c-algebras S, and S, contain all Borel sets and are translatzon in-
variant,

2° both measures my and my are extensions of the Lebesgue measure on Borel
sets and are translation invariant, o

3° the g-algebra a(Sy U S;) is nan—measumble

We consider a more general sitwation namely the case of G- mvanant o-al-
gebras on the reals, where G is an arbitrary group of bijections of the reals.

THEOREM 2.2. dssume that the Lebesgue measure A is uniform. Let G be any
group of bijections of the reals, |G| <2°. There exist countably generated o-algebras
Sy, Sy on the reals anduniform measures my, my on Sy, S, respectively with the Sollow-
ing propemes

1° the o-algebras of sets measurable wrth respect to measure completlons of
m (z =1,2) are G-invariant and the -measure completions are .G -invariant,

2° the - algebm o(Sy U Sy) is non-measurable. . .

Proof. Let G = {T,: a<2®}. Let-x,: £<2® be a one-to- onc enumeratxon of
the reals. We define by induction elements-y,: a<2® and sets V- 0<2® such that

Wiglel 0. Suppose that yp: f<ajand Vj: f<a are already defined., Let_y, be

'
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the first (in the xg-enumeration) element outside of . J Vs. We denote T'** = T
I - B<a

and put
" okt ‘
Ve={T3l oo TEX¥p): B, Brs o, Bo<t, m e o};
next we defiie pairwise disjoint séts W,: a<2° by the formula W, = V,\U ¥,
a™ Vg B
B<u

Any union of these sets is G-almost 1 ion invari
- translation invariant. To show it, t
=U W, for 4<2° and an arbitrary T, e G. e W

aed )
¢ idet x € W, then _x € Wy for some £e A" If a<( it is clear that T (x)ye W,
{;(x then the family of all such possible elements has cardinality <2 Hen(fé
we ‘have proved that |WAT, * (W)|<2°. Similarly taki ~1 ins .
ot (W)AWRZZ . tly taking T, ' instead of T, we
- Let now X and. ¥ be a disjoint partition of 2 into sets of cardinality 2®
- We define d =" W,, B= |) W,.Letmoreover F,:2°1>Ls y f .go 1ot y

. | eex asY onte
By t&e urflforn}lty f)f Lclabesgue measure there exists a non-measurable o-algebra 9N
on 2% which' contains singletons (cf. [3]). Let M denote the Bore

We define four o-algebras:’ { o-algebra 69 2

Wy ={ U W, MeM}, ond
. * «cF1% (M) ’

M={ U W:MeMm}, onB,
aeFz % (M) ’

Ny ={ U W:Ne®}, ond,
aeFix(N)

N={ U W.Ne®R, onB.
acF2 % (N} .

Now we define as in [3]:

Sy ={PuQ:PeM, QeN,},
S, ={PUQ:PeR, QeM,}

and pﬁt ‘
mP U O)=2UM), where P= | W,
o i aeFy» (M) ®
my(PU Q) = A(M), where Q= { W,.
: * aeFz* (M) *

bC:early n;i (zmd‘m.2 are' uniform measures on S, S, respectively. Property 2° can

jod é)'ro‘!f; ex;stiy as in [3]. In order to show property 1° notice that sets of
iality <2 (as subsets of unions of <2° atoms) 773 }

cards are m;-measurable (i =

1_f_‘ m, denotle; the measure completion of m,. Let S, de;wte"the T al(;ebr:’ig

m; -measurable sets and consider an arbitrar i ;

& ts y set EeS;. It is

= E;AE,, where E;e M, and E,cE"e S, my(E) = ' e an o

: . 0. i i
element - of the group G. Since |T, * (E;)A E,| <2° Let T, be an arbitrary

and |T, * (E)AE’|<2° (both

P
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gets are unions of atoms), we get:
T (BT, *(E") T« (E)eS,

Since

where and (T, * (E)) = 0.

Tyx(E) = T, % (By) AT, % (Ey) = E ACAT,*(Ey),

‘where |C|<2%, we get:

T,x(E)eS, and (T, *(E)) = MyE).

A similar reasoning applies to the o-algebra S, which proves the property 1° and
also the whole theorem. : :

The following corollary of the above proof sheds some light on the existence
of translation invariant measures on groups.

COROLLARY 2.3. Assume that the Lebesgue measure is uniform. On every group G
of cardinality 2° there exists a countably generated c-algebra S and a measure m
on. S such that the measure completion S of the o-algebra S und the measure com-
pletion T of the measure m are G-invariant.

3, The results of this section shmg/ what impact have the atoms of a g-algebra
on its measurability. It might seem e.g. that measurability is a property of small
o-algebras at least in the sense that a subalgebra of a measurable o-algebra is
measurable. This is certainly true if they have the same atoms. In general however
it turns out to be false.

PROPOSITION 3.1. There exists a countably generated measurable o-algebra
S on the reals which contains a countably generated non-measurable o-algebra.

Proof. Let C be a universally null subset of the reals and # the o-algebra
of Borel subsets of the reals. Then the o-algebra S = o(# v {C?}) is measurable
but it contains a countably generated mon-measurable o-algebra

8 ={CnB: BeB}u {(CnB) U (R\C): Be %} .

Reversing Banach’s problem one can ask whether a measurable o-algebra
can split into non-measurable parts, i.e. if there exist countably generated non-
measurable o-algebras with a measurable union. Here the answer turns out to
be negative. '

" PROPOSITION 3.2. For any non-measurable countably generated o-algebras
Sy, S on X, the o-algebra o(S; L S,) is also non-measurable.

Proof. Let §; = o({4, nea}), S, =o({B: ne o)) be non-measurable
o-algebras. Assume to the contrary that § = ¢(Sy U S) is measurable and let m be
a measure on S. Since S, is non-measurable, one of its atoms A, must have positive
measure m. Let B = {Xe&§: XcA,}. If Xe 4 then X= A; 0 Y for some YeS,.
For Ye S, define
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For any atom @ of S, the set a n 4, is an atom of .$, hence m(a) = 0. It-follows
that m is a measure on S,, contradiction. ]

Proposition 3.1 shows that large atoms fnay cause pathological situations from
the point of view of measurability. Hence the interesting case is when ¢-algebras in
question contain all singletons (which are then their atoms). The next proposition
shows that every countably generated measurable o-algebra can be extended to
such a o-algebra without loosing measurability.

PROPOSITION 3.3. Let S be'a countably generated o-algebra on the reals carry-
ing &' measure p. There exists a countably generated o-algebra Sy =S containing
singletons and carrying @ measure u, which extends U D

Proof. We may assume that S is a o-algebra on a set X <2% x 2 such that:

1. <x, x> € X for all x e pr (X). s o

2. The sets 4, = {{x,y>: x() = 1} 1 X are generators of S.

Let S; be the o-algebra of Borel subsets of X (in the subspace topology).
Clearly §;>5, S, is countably generated and contains singletons. For Ye S, let
= {{x, 9> (x,xDe Y} n X It is easy to see that ¥*e § whenever YelsSg.
The measure f; on S, defined by the foimula p(¥) = u(¥*% extends the
measure p. ‘ S
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