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Minimal complementation and maximal conjugation for
partitions, with an application to Blackwell sets

by

R. M. Shortt (Houghton, Mich.)

Abstract. Let (X, ) be a measurable space and let ¢ and 9 be sub-o-algebras of ; 9 is
a conjugate for @ if gnP=1{9, X}; Fisa complement for @ if also o(@ » 9)=2. Wegivea charac-
terisation of minimal complements for structures generated by a finite partition (which fails for count~
able partitions). An application involves the combinatorial structure of Blackwell sets. Partial results
are also obtained for maximal conjugates using 0-1 transition kernels and measurable selectors.

§ 0. Preface. The complementation problem for lattices of ¢-algebras over
a fixed set seems to have originated in the statistical work of D. Basu {1] and has
been $tudied in papers of B. V. Rao [6], H. Sarbadhikari, K. P. S. Bhaskara Rao,
and E. Grzegorek [7], and most recently in the monograph of Bhaskara  Rao and
Rao [4]. In their approach to the question, the latter two authors provide necessary
and sufficient conditions for a complement to be minimal (their Proposition 53)
as well as restrictions on a separable space (X, %) which guarantee the existence of
complements for all countably generated substructures of & (their. Proposition 52).
As formulated, Proposition 53 assumes that:

1. the o-algebras in question are countably generated, and

2. the parent space (X, %) is strongly Blackwell.

We ask and partly answer to what extent these hypotheses are needed: with
minor reservations, the first may be weakened and the second localized to the indi-
vidual atoms of the structure in question. This is the substance of our Theorem 1.
Examples are also - given to show that the assumptions of Theorem 1 cannot be
eliminated. )

Theorem 2 gives a necessary and sufficient combinatorial criterion for a o-algebra
to be a minimal complement of a structure generated by a finite partition, 'with hardly
any other hypothesis on the space. Surprisingly enough, the situation changes ra-
dically when one passes to o-algebra generated by countably infinite partitions;
an instance of this behaviour is recorded as Example 3. '

Theorem 2 has an interesting reformulation when the partition bas but two
members, viz. Theorem 3: if (X, %) is a separable space, then the o-algebra generated
by a two-fold measurable partition X = C; v C, has a minimal complement if
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and only if one of the spaces (Cy, #(Cy)), (Cy, #B(C,)) embeds inside the other.
Earlier work on Borel-density and the Blackwell property in [9] and [10] enables
us to produce a partition (Example 4) where no such embeddings exist, and therefore
also an example of a countably generated substructure with many complements,
but no minimal complement (compare problem P14 in [4]).

Another interesting by-product of Theorem 2 is a sufficient condition for the
union of a finite number of Blackwell sets to be Blackwell (Theorem 4 infia). As
was shown in § 11 of [4], the combinatorial behaviour of these sets is singular and
remains somewhat of a mystery.

Section 3 explores the problem of maximal conjugation and in Theorem 5
uses 0-1 transition kernels and the notion of a measurable selector to characterize
one type of maxgimal conjugate. Examples 5 and 6 present some of difficulties in-
volved in generalizing these results.

§ 1. Preliminaries. After a few remarks concerning style, this section summarizes
some technical details needed in the development of our findings: the notions of
Borel-density, the Blackwell property, separation of sets and finally complementatxon
1tse1f are recallsd and reviewed. As mentioned above, Theorem ‘1 improves certain
results found in [4], and with this the section concludes.

By and large, our terminology and notational practice conform to what is found
in [4], with several exceptions:

-1. In our treatment of measurable (i.e. Borel) spaces (X, ) the notation of
a o-algebra is occasionally suppressed: The space is denoted X, and when heeded,
its measurable structure is indicated by # = 2 (X). For example, if Q(X ) is a separ-
able structure, we say that X is a separable space.

2. If ¥ is -a sub-c-algebra of %, and AcX, then we use the notation
G(4) = {CnAd: Ce?).

3. Our definitions for Blackwell properties do not insist on separation of points:

Say a measurable space (X, %) is Blackwell as long as:

(A) the structure # is countably generated (c.g.), and

(B) whenever %= is a c.g. structure with the same atoms as &, then 4 = 4.

Say (X, @) is strongly Blackwell if (B) may be replaced with

(B9 wheqevel @< is c.g. and BeF is a union of ¥-atoms, then Be 7.

4. If (X, #) and (Y, of) are measurable spaces with X and ¥ disjoint scts, then
the direct sum of these spaces is a measurable space over the set X U Ywith o-algebra
given by | [BUA: Be®(X), Aeo(Y)}. We use the notation B(X)vs(Y) to
denote the direct sum, structure.

5. If 2 is a Borel structure on a set X, then & separates points x and y in X if
there is some B in & such that x € B and ye B°. Points x and y belong to the same

% -atom if they are not separated by 4. The #-atoms partition X but we do not
insist that - atoms belong to 4. \
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- Lemma 1. 4 c.g. space (X, &) is strongly Blackwell if and only if whenever € =9
are substructures of B with the same dtoms, € c.g., then € = D.

Proof. This is essentially Proposmon 8 of [4], noting as superfluous the assump-
tion that & be c.g.

Let X be a subset of an uncountable standard space S. Say that X is Borel-
dense in S if S\X contains no uncountable members of #(S). X is Borel-dense of
order 2 in S if whenever B e Z(S xS) is a subset of (§x S)N\(Xx X), then B is con-
tained in a countable union of sets of the form {s} x S and S x {s}, where s & S\X.
Tt is not hard to see that Borel-density of order 2 implies that of order 1. Compare [9].

LEMMA 2. Let X be a subset of an uncountable standard space S; then the followmg
are equivalent:

1, X is Borel-dense of order 2 in S; .

2. X is a Blackwell space and is Borel-dense in S;

3. X is strongly Blackwell and Borel-depse in S.

Proof. This is. the principal result of [10].

. For example, it can be proved that if S is uncountable and standard, then the
complement of any universally null subset of S is Borel-dense of order 2 in S; each
such set thus forms-a strongly Blackwell space.-

LemMA 3. Let S be an uncountable standard space; then there is a subset Xof S
such that both X and S\X are Borel-dense of order 2 in S.

Proof. Without foss of generality, S may be taken to be the unit interval [0, 1]
under its usual Borel structure. Propositions 9 and 10 of [4] ensure the existence of
an X<S§ with both X and S\X Borel-dense in S and strongly Blackwell. Lemma 2
completes the argument.

Example 4 will demonstrate that the simplest c. g. o-algebras may bear no mini-
mal complement; the construction relies on Borel-density and Lemma 3.

Let & be any collection of non-empty subsets of a given set X; a subset F of X
is a partial selector for & if F intersects each member of &# in at most one point;
Fis a full selector for & if F meets each member of & in precisely one point. Suppose
that & is a o-algebra of subsets of X; then subsets D; and D of X are B -separable
if there is some B in & with D, cB and D,=B® = X\B. In this case we say that B
(and %) separate D, and D,. '

Let (X, %) be a separable space and suppose that € and 9 are sub-o-algebras
of 4. C01151der the following conditions:

O Each @-atom is a partial seluctor for the atoms of €.

1. The union of any two Z-atoms is not a p'lrtlal selector for the atoms of ¥.
2. No two @-atoms are ¥-separable. .

3. @ A @ is the trivial ¢-algebra {@, X} on X.

OB

LeMMA 4. The o-algebra o (%, D) separates points of X if and only if condition O
obtains. ‘
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Proof. Itis not hard to see that the atoms of ¢(%, @) are the non-empty inter-

sections of #-atoms with &-atoms; (%, 9) separates points if and only if its
atoms are all singleton sets. M .
Lemma 5. Assume that o(%, D) separates points of X; then the implications
1'= 2 =3 hold for the conditions (%) supra. )
Proof. 1 —» 2. Let D, and D, be atoms of 9; since o(%, 9) is separating,
Dy and D, are (from Lemma 4) partial selectors for the atoms of &. If D, and D,
are separated by some Cin %, then D, U D, is still a partial selector: each %-atom
lies entirely within one of C or X\C.
2 3. If C is a non-trivial member of ¥~ 9P then P-atoms D, =C and
D, cX\C are separated by . B .
The implications in Lemma 5 are generally non-reversible, as evinced by the
following: ‘
ExameLe 1. Let Dy and D, be subsets of the real line that are not Borel-
separable. (It is well-known that D; and D, can be chosen co-analytic. See, for
example, [8]) Put X = D; U D,, @ =0(D,,D,), and. € = %(D; U D,), the
relative linear Borel structure. Then o(%, @) is separable, and 4 does not separate
the P-atoms D; and D,, but their union is a (full) selector for the (singleton)
atoms of %. :
ExampLE 2. Let X be the planar set {(x,)): x< y<x+1} under the usual
Borel structure Z(X); let % and.2 be the sub-o-algebras of #(X) gensrated by

projection onto the x- and y-axes, respectively. Then the @-atoms
{x,0: =1<x<0} ‘and  {(x,1): O<x<1}

are separated by {(x,y)e X: x<0} in %, but ¥ " @ is trivial.

If' (X, %) is measurable space, then sub-c-algebras % and @ of & are com-

plements in % if 4 n 9 is the trival o-algebra {0,X} and o(%,2) = #. 9 is
a minimal complement of € (in %) if:

1. € and @ are complements in &, and

2. Whenever 2’9 is also a complement of €, then @' = 9.

LEMMA 6. Suppose B(X) is c.g.; if € has a complement @ in B(X), then ¥ has'
a c.g. complement @' =9. Thus, if @ is a minimal complement of %, then D is c.g.

Proof. See Proposition 42 of [4], page 47. ‘

This fact will find frequent application in what follows and in the proof of

TueoreM 1. Let X be a set, B = B(X) a o-algebra separating points of X,
and € and 9 sub-o-algebras of B. Taking note of the conditions in (x), we have:

0) If o(%, D) is c.g. and (X, B) is a Blackwell space, then conditions 0 and 3
together imply that € and @ are complements in o (¥, D).

ii) If (X, @) is separable and non-Blackwell so that there is a separable weakening

By of B, then any two complements in B, satisfy conditions 0 and 3, but are not com-
plements in A. :
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iiiy If € and 9 are complements in B, then conditions 0 and 3 obtain.

iv) Let 9'<9D both be complements for € in #(X); then condition 1 implies
that @' and @ have the same atoms.

v) Let @ be a complement of € in B(X) with either (X, #) strongly Blackwell
or (X, D) Blackwell; then condition 1 implies that @ is a minimal complement for &
in B(X).

vi) Let & be a minimal .complement for € in B(X); suppose that € is c.g. and
that the union of any two @-atoms is Blackwell in the relative %-structure; then
condition 1 follows.

vii) The conclusion of vi does not necessarily hold for € not c.g. or if it is assumed
only that each 9-atom is Blackwell.

Proof. i) Lemma 4 and condition 0 together imply that ¢(%, 9) is a separable
structure; the Blackwell property ensures that ¢(%, 9) = #(X).

ii) Immediate.

iii) Again, Lemma 4 applies.

iv) Let D' be an atom of 9’ that is not an atom of & ; then there are two distinct
atoms D, and D, of & contained in D', Since 4 and 2" are complements, iii implies
that D’ is a partial selector for the atoms of %; the same must be true for
D, v D,= D', contradicting condition 1.

v) Suppose first that (X, #) is strongly Blackwell. If 2'c@ is another com-
plement of % in 4, then by Lemma 6, there is a c.g. complement 9 of ¢ with
2" =@'=9. Part iv now implies that &'’ and 2 have the same atoms: Lemma 1
and the strong Blackwell property yield 2 = 9.

The same reasoning applies in the case where (X, 9) is assumed to be a Blackwell
space.

vi) Under these assumptions, suppose that the union of two Z-atoms D,
and D, is a partial selector for the atoms of %. Notice that from Lemma 6, 9 is c.g.
and so D,, D, are elements of &. Define &' to be the sub-¢-algebra of & obtained
by “clubbing” .D, and D, together: (X, 9’} is the direct sum of the Borel spaces
(Z\Dy\D,, Z(X\D\D,)) and (D; U D,, {@, D, U D;}); see pp. 7-8 of [4] for
an explication of direct sums. We claim that 2’ is a complement for &: since & is
a complement of %, and since 9'(XN\D\D,) = Z2(X\D\Dy,), it remains to check
only that (D, U D,) = #(D, u D,). Now ¥ is c.g., and since D, U D, functions
as a partial selector for #-atoms, ¢ separates points of D, U D,; the Blackwell
property for #(D, v D,) then applies. Thus & cannot be a minimal complement
of %.

vii) Let X be the real numbers under the usual Borel structure &; let 4 be the
sub-g-algebra of # generated by all singleton subsets of X and all symmetric linear
Borel sets, i.e., those invariant under the map x - —x. Then 2 = ¢((—, o))
is a minimal complement of % in #(X), and the union of the two Z-atoms (—o0, 0]
and (0, +co) is Blackwell under the 4-structure, but this union X is also a (full)
selector for the (singleton) atoms of . The problem is that % is not c¢.g. Compare:
the example in [4] bottom of p. 15.

5 — Fundamenta Mathematicae CXXIII, 3
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Now let X be the real line once more, and let D be a subset of X such that both D
and D° = S~ X are Borel-dense of order 2 in X (see Lemma. 3). Let % be the usual
Borel structure on X, put @ = ¢ (D) and define # = o (%, D). Then 2 is a minimal
complement for % in Z(X), € is c.g., and (Lemma 2) each .of the @-atoms D,
D° is Blackwell, but their union X is a (full) selector for the (singleton) atoms
of %. The problem here is that #(D u D°) = #(X) is not Blackwell. &

§ 2. Countable partitions, the union of Blackwell sets, and the nonexistence
of minimal complements. Let % and & be substructures of a separable ¢-algebra
# = B (X). As mentioned in the preface, in the case where % is generated by a finite
partition, there is a simple combinatorial criterion (Theorem 2) whereby to judge. 2
to be a minimal complement of #; no other hypothesis on (X, %) is required. If
the partition is allowed to become infinite, only part of the result is retamed

THEOREM 2. Let (X, &) be a separable space and suppose that Cy , ... C,, isa parn-
tion of X into n (non-empty) members of B = B(X); put € = c'(Cl, . ,,),v'then
a sub-c-algebra D of & is a minimal complement of € in # if and only if:

1. 9(C)=B(C) for i=1,..,n, and

2. the union of no two @-atoms is a partial selector for the partition C, ,,. én

If the partition Cy, C,, ... is countably infinite, then the ‘only zf ? drrectlon of
the analogous statement is true.

Proof. If @ is any complement of ‘5 in #(X), then B(C) = o(¥, D)
(C) = 6(%(C), 2(C)) = D(C)) for each i. In this case, the atoms of & contain
no more than 7 elements (or if Cy, C,, ... is infinite, they are countable), and so the
union of any two of these atoms is Blackwell in the relative (discrete) 48 -structure.
Now Theorem 1, part vi, implies that if 2 is minimal, then 2 above will obtain,

Conversely, suppose that 1 and 2 hold for a certain 4. Then given B in #(X),
write

B = U Bn(C;= U D;n C;
i=1
for some D; in & via 1 above; thus ¢(%, 9)
a complement of %.

Suppose that 9’ =P were also a complement for ¢; Theorem 1, part iv, implies

that 2 and 9’ have the same atoms. If 4 is an atom of @, define

S(4) = {i: 1gign and AN C, # @} .
Let & be the (finite) coliection of such S(4) as 4 ranges over all &-atoms. Notice
that for any two Z-atoms 4 and A4’ the sets S(4) and S(4') have non-empty
intersection: this restates 2.

Given D in 2, we must show D e 2’ to establish minimality. Since 9@’ is also
a complement of ¥, it follows from the first part of the proof that 2'(C)) = #(C)
=9(C) for i = 1,...,n So write

= B(X ). Lemma 5 implies that & is

n - n
D= UDnC;= | DjnC,
i=1 =1

S
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for certain Dj in 2'. We now claim:

D= U (D,
Se¥ ieS
which equation implies that D e @’ as desired.

To establish the claim, note that if x € D and A4 is the atom of & (or 9') con-
taining x, then 4 meets the sets C; for ie S(4). Thus, 4 meets and is therefore
contained in the sets D] for i € S(4); we have proved set inclusion in one direction.

Now suppose that for some atom 4 of 2, x is a member of N {Dj: ie S(4)};
let A" be the & -atom containing x. Choose some j from the intersection S'(4) N S(A").
Now A’ meets and is therefore contained in D}, whilst 4’ n C;=Djn C;= D n C),
so that 4" meets and is therefore contained in D. Thus xe D. M

COROLLARY. Let (X, %) be a separable space and suppose that Cy, C,, ... is
a countable partition of X into sets in B(X); a sub-c-algebra @ of B is a minimal
complement of € = o(Cy, Cy,...) if

1. 9(C) = B(Cy) for i=1,2,..., and

2. there is some n such that the union of no two 9 -atoms is a partial selector for
{C1, Cs, ..., G}, i.e., the union of any two D-atoms meets one of the sets Cy, ..., C,
twice.

Proof. Essentially the same as above; note that in this case, each Z-atom
meets one of the sets Cy, ..., C,.

ExaMPLE 3. Consider the Cantor space in its representation as a denumerable
product § = {0,1}x{0, 1} ... and under its standard product Borel structure
o = A(S). Let U be a free ultrafilter over the positive integers NN, regarded as
a subset of S in the usual way; then put % = #(S) = a(qt U). For ie N, define
subsets S; of S by

S;={xeS: x(@)=1and xeU}u{xeS: x({) =0 and x¢ U},

where x(i) denotes the ith co-ordinate of x; also define C; = §;x{i} as a subset
of SxN. ‘

Let X be the union X = Cy U C, U ... and let f: X — S be projection onto the
first co-ordinate; f is surjective. Define the ¢-algebras
=@, 2X)=f"

€(X) = 6(Cy, Cas.), D(X) Yet), BX)=0(%,2).

Then we claim that

1. 2'(C) = 2(C) = B(C) for i=1,2,..., and :

2. the union of no two @-atoms remains a partial selector for the partition
C,,Cy, ..., but

3. @' is properly a sub-structure of 2, and

4. both @' and @ are complements of € in #(X), so that & is not a minimal
complement of 4.

To prove 1, note that the sets in 2'(C;) are of the form (4 n Sy) x {i} for 4 € o,

5%
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whilst those in #(C;) are of the form (B n Sy) X {i} for Be 4. So we need to show
only that U S; is a member of &/(S;): this is immediate from the equality
UnS;={xeS; x@) =1}

To prove 2, note that the P-atoms are the sets of the form

_ e x@ =1} ifxeU,
7 = {{(x, 0 x()=0} ifx¢U,

as x ranges over S. To show that /~'(x) U f ~1(») meets some C; twice (x # ),
there are three cases to consider, according as zero, one, or both of x, y are in U;
in each case, the result follows from the closure of U under intersections and the
maximality of U as a filter.

With regard to 3, we claim that f~U) = (UxN) n X is a member of & but
not of @': if f~Y(U)eP’, then U = ff~Y(U) e . This last is an impossibility;
in fact,

a. U is not in the P-completion of .7, where P is the usuyal Cantor measure
on S (the product of “fair coin-toss” Bernoulli measures), and

b. U does not have the Baire property in S (considered as a compact metric

space).
To see this, let g: S — S be defined by
L1 ifx() =0,
9@ = {o it x()=1.

Then g preserves the P-measure and Baire category of subsets of S (g is a homeo-
morphism of S onto itself); noting that U is a “tail event” and that g(U) = S\U,
statement a follows from the usual Kolmogoroff 0-1 law (Theorem 21.3 of [5]),
whereas b follows from its topological analogon (Theorem 21.4 of [5]).

Part 4 then proceeds from 1, 2, and Lemma 5. M

The case of two-fold partitions allows a new perspective on Theorem 2, one that
will enable us to give relatively easy examples of how minimal complements may
fail to exist. If (X, B(Xy)) and (X, B(X,)) are separable spaces, say that Xy is
embedded in X, if there is a measurable isomorphism ¢ of X; into X,.

TeeOREM 3. Let X be a separable space and suppose that X = C; v C, is a parti-
tion of X into sets Cy, Cy in B(X). Then the o-algebra € = ¢(Cy, C,) has a minimal
complement in B = B(X) if and only if either

1. C, is embedded in C,, or

2. C, is embedded in C,.

Proof. Suppose that ¢: C; - C, is an embedding of C; into C,. Then define
f: X > C, by the rule

_ = if xeC,,
S @) = {go(x) if xeC,.

(Compare the second part. of the proof of Proposition 52 in [4].) Then
2 = f~Y#(C,)) is 2 minimal complement of € in #(X): both conditions 1 and 2

e
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of Theorem 2 obtain (since Z-atoms are of the form ¢~*(x) U {x} as x ranges
over C,, the union of any two such atoms meets C, in two points).

Now suppose that & is a minimal complement (countably generated, from
Lemma 6) for € in #(X) and that f: X — T is a (Marczewski) function into an un-
countable standard space T that generates the c-algebra &. The atoms of 2 are
precisely the non-empty sets of the form £ ~*(¢) as ¢ ranges over T Since & is a com-
plement of %, these atoms are (Theorem 1, Part III) partial selectors for the partition
Cy, Cs, i.e., the cardinalities of f~1(t) n Cy, and f~*(t) n C,, are 0 or 1. Since P
is assumed minimal, Theorem 2 condition 2 implies that for distinct atoms f~(z;)
and f7(t,), at least one of (f7*t) Uf X)) N Cy and (F7 ) U HE)) N C,
has two elements.

From this we see that for one of the sets C; or C, (say C,),f ~*(2) n C, is a single-
ton set for each atom f~*(¢) of 2. From Theorem 2, 2(C,) = #(C,), which implies
that f,, the restriction of f to C,, is an isomorphism of C, onto f(C,); from the
previous sentence, f(C,) = f(X)> f(Cy). Define p: C; — Cq by @(x) = f5 1(f(x);
@ is an embedding of C; into C,, W

ExampLE 4. There is a separable space (X,#) and a two-fold partition of X
into sets C; and C, in #(X) such that o-algebra ¢ = ¢(Cy, C,) has no minimal
complement in Z(X).

Let (X, o) be an uncountable standard space and let Cy be a subset of X such
that both C; and C, = X\C; are Borel-dense of order 2 in X. Lemma 3 guarantees

- the existence of such sets. Define # = #(X) = o(&, Cy).

From Theorem 3, our claim will be established once we prove that there is no
embedding  of C, into C, or of C, into C;. Suppose that ¢: C, - C, were an
embedding of C; into C, (the other case is treated symmetrically). Then ¢ extends
to an isomorphism @: B; — B,, where C;=B;, C,=B,, and By, B, are members
of o (X). If G is the graph of @, then G is 2 member of & (X'x X) not contained in
a countable union of sets of the form {x} x X and X x {x}. But G (X x X)\(C1 x Cy),
contradicting the second-order Borel-density of C; in X. M

We conclude this section with an application of Theorem 2 to the problem of
determining whether the union of Blackwell sets is again Blackwell. Compare [4],
p. 28, Section 5°.

THEOREM 4. Let (Y, o) be a separable space and let Hy, H,, ..., H, be subsets
of Y with (H,, o (H))) a Blackwell space for i = 1, ..., n. Then the following is a suf-
Sicient condition for the union H = Hy U ...u H, to be itself a Blackwell space:

(A) For any two points x and y in H, there is some index j with x and y both
in Hj.

Proof. Suppose that condition (A) obtains and that «/,(H) is a proposed se-
parable weakening of the structure o (H). Define subsets C; = H;x{i} of the
product Hx{l,..,n} and put X= Cyu..v G,. Define f: X — H to be
projection on the first co-ordinate and set @(X) =f }(of (H)) and Do(X)
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= (ot (H)). Then we claim that Po(X) =D (X) are both minimal complements
for ¢ = 6(Cy, ..., C,) in B(X) = ¢(¥, D) and so are equal. '

To prove this, apply Theorem 2 and note that f'is an isomorphism of (Cy, #(C,))
onto (H;, o (H})), so that 9(C;) = #(C)) is-a Blackwell structure for i = 1, ...,
Because 2, separates points of each C;, therefore also 9,(C;) = 2(C)) = B(C).
Condition 2 in Theorem 2 follows from (A) above, and the claim is proved.

So given 4 in & (H),f~*(4) isin D(X) = Dy(X), and f~1(4) = 4 is a member
of &o(H). Thus &/,(H) = &/(H). &

§ 3. Maximal conjugation. Let 4 and @ be sub-structures of a o-algebra
# = R(X). ¢ and P are conjugate if ¥ 0 P = {@, X}. A conjugate (resp. comple-
ment) & of % is a maximal conjugate (resp. maximal complement) for € if no sub-
o-algebra of 4 properly containing 9 is a conjugate (resp. complement) of 4. We
begin our investigation of such structures with a characterization of a particular,
strong form of maximal conjugation.

THEOREM 5. Let % and 9 be sub-structures of a measurable space (X, %) and
suppose that each %-atom is a member of . Then the following are equivalent:
0) 2 is a maximal conjugate for € that separates no two %-atoms.

) There is a mapping C — v¢ associating to each €-atom C a 0-1 measure v¢
on & such, that

i) v(C) = 1 for each €-atom C,

ii) for each B in 98, the union of those €-atoms C such that va(B) =1 is a member
of @,
i) @ = {Be®: v(B) = ve(B) for any two @-atoms C, c.

WT) 2 is a maximal complement for € and does not separate any two €-atoms.

Proof. II implies I: Clearly, any & having the form advertised is a conjugate
of ¥. To prove maximality, suppose that Be #\; then there are %-atoms [oh
and C, with v¢,(B) =1 and ve,(B) = 0. Let Cy be the union of all #-atoms C
with vo(B) = 1; by hypothesis, C, is a (non-trivial) member of %. Then

& = (Bn Cp) U (B°n CE)
is a member of 2, and (BN ) u (B°n &°) = Cy is in ¢(9, B).

Timplies II: We claim that for each %@-atom C, the structure @ is an anti-atom
in (2, C). If not, then there are P-sets D, and D, with (Dy n C) U (D, N C9
a non-trivial €-set other than C or its complement. Thus there are %-atoms C,
and C, with C, Cy, C, distinct such that (D, ~ C) U (D; N C%) separates C; and Cy;
but then D, separates C; and C,, a contradiction.

Thus, from Proposition 35 of Rao and Rao [4], there are corresponding to each
€-atom C certain 0-1 measures ve and ¥ on ¢(2, C) such that:

D) v(C) = $c(CY =1 and

i) 2 ={Beo(@,C): v(B) = $e(B)}.
Consider the o~ideal of & defined by:

-F ={DeP: BcD and Be® imply Be g} .

e
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Cramv 1, The o-ideal £ is maximal in 2. Suppose that for some D in 2,
neither D fior D° is a member of #: then P(D) and @ (D°) are proper sub-structures
of % (D) and % (D°), respectively. By maximality, there are non-trivial @-=sets Cand C’
with Ce (D) v 2(D%) and €' in 2(D)v B(D).So C= By U D, and C'= D, U B,
for (ﬁnique) sets By e (D), D, e D(D), D,e%B(D), B, € #(D°). Replacing one
of these sets C, C’ with its complement (if needed), we find ¢-atoms C, =(C\C")
and C,c(C\C). But then (C\C’) = (B,\D,) U (D;\By)c(D\D;) U D, and
(C'\C) = (D;\By) U (By\D{)=D, U (D\Dy) = [(D\D,) v D,J%, so that & se-
parates C; and C,, a contradiction. The claim is established. ‘

Cram 2. If De #, then for each @-atom C one has v(D) = ¥,(D) = 0 and
if" D e D\ F, then vo(D) = V(D) = 1, so that the common restriction to & of the
measures V¢, Vg is the 0-1 measure corresponding to ,#. To see this, note that if D € ¢,
then D n.C and D n C® are in @ for each #-atom C, whernice v¢(D) = vo(D n C)
= $c(D n C) = 0, whilst ¥(D) = Fe(D N C°) = v¢(D N C°) = 0, as claimed.

Cram 3. For each %-atom C, one has Z(C) = 2(C). Suppose that for some
Bed, the set BN C is not in Z(C). Then for some choice of Dy, D, in 9,

[DyanBnC]ulD,n(BNCY]=C,

is a non-trivial ¢-set. Taking a complement if necessary, we may insist that Cy
not contain C; then Cy = D, n{B n C)°. If C' is a '#-atoni contained in C, then
C"cD, and from Claims 1 and 2, ve(D,) = 1. Now B°~ C=Dj3; since Bn C is
not in F(C), certainly B n'C is'not in 2, so that from Claims 1 and 2, ve(D3) ='1,
a contradiction. The claim is proved. Lo ' i

"Note. We have in fact shown that for each B in # and each %-atom C, one of
the sets B C, B°n C is a member 6f 9. : L

From Claim 3 and vé;(C) =1, we see that the measures v have unique exten-
sions to 0-1 measures on 4; the notation v is preserved for the extension.

Note. For each pair of %-atoms C and C’, the measure ve,, when restricted
to o(@,C), equals ¥g: for D, and D, in @, ve{(D; A C) U Dy C)
= 96(Dy A C°) = ve(Dy) while 5((D; A C) U (D3 A C) = (Dy A C%) = Fe( D),
and as noted in Claim 2, v¢ and ¥ coincide on 2.

.CLAIM 4. For each B in &, the union of those %-atoms C each that v(B) = 1
is a member of . If B e #, then from Claim 2, v¢(B) = 0 for all C so that the union
in question is null; similarly, if Be 2\#, then v(B) = 1 for all C and the union
is X, Now suppose that B e #\2; then for some P-sets Dy and D,, (D; n B)L
U (D N BY) = C, is a non-trivial ¥-set. We prove that whenever Cy and C, are
@-atoms with C,=C, and C,=C§, then vg,(B) # v, (B). This will imply that
vo(B) is constant as C ranges over all ¥-atoms CcC, or C=Cy; then the union
of #-atoms in question will equal either C,, or Cg, establishing the claim. So suppose
for the sake of contradiction that v¢,(B) = v¢,(B). Then v¢,(Dy N B) = v, (D 0 B),
Ve (BY) = ve,(BY), and v, (Dy N B = vg,(Dy 1 BY); but then ve,(Co) = v¢,(Co)s
which is absurd.
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To conclude this part of the proof, note that by Claim 2, & is contained in
the o-algebra Dy = {B: vc(B) = v¢(B) all ¥-atoms C, C'}. Observe, however,
that 9, is a conjugate of %, so that by maximality, 2 = 2.

III - I: Immediate.

II — III: We have proved already that a £ having this form is a maximal con-
jugate for €; it remains only to prove that # = ¢(%, 2). Given B in %, let C, be
the union of all #-atoms C with v¢(B) = 1. Then v¢(B\C,) = 0 for each #-atom C,
s0 that B\Cye 9. Also, v((Bn Cp)u C§) =1 for all #-atoms C, so that
(B Cp)u C§is aset in 2. Now B may be written as [C, n [(Bn Cp) u CET] v
U (B\C,) and so is a member of (%, Z) as desired. M

COROLLARY. Let (X, #) be a separable space and let € be a countably generated
sub-g-algebra of #B. A substructure 9 of # is a maximal conjugate for € separating
no two €-atoms if and only if @ = {BeB: S<B or ScB*} for some set S such that

i) Se4, ‘

i) S is a full selector for the atoms of €, and

iif) #(S) = %(S).

Therefore, € has such a maximal conjugate (necessarily a c.g. complement)
precisely when such a full selector exists.

Proof. Suppose that & is such a maximal conjugate for % and apply Theorem 5.
For each #-atom C, the 0-1 meaSure v is a unit mass at some point p(C) in C
Define f: X — X by the rule f(x) = p(C) when x e C. Given any B in &, f~*(B)
is the union of all %-atoms C such that p(C) € B, i.e., such that ve(B) = 1.
Since all such unions are in %, f is a Marczewski function for #%. Then
:S' = {x: f(x) = x} is the desired full seclector. For any B in &, f~*(B n S)
is a %-set with f~'(BnS)nS=Bn S, proving that A(S)= ¥(S).
Again using Theorem 5, & = {B: vo(B) = v(B) all ¢-atoms C, C'}= {B:
S < BorSc B

Given @ with this form, define the 0-1 measure v; to be the point
mass at S n C, for each %-atom C; clearly, vo(C) = 1. Now given B in 4,
choose Cp in € with Bn § = Cyn §; then for each #-atom C; ve(B) = ve(Bn S)
= v(Cyp 0 S) = vo(Cy), so that C, is the union of all #%-atoms C with
ve(B) = 1. Finally, @ = {B: v¢(B) = v;(B) all @¥-atoms C, C'} so that by
Theorem 5, & is a maximal conjugate for % of the type desired. M

The following examples will give some idea of the complications involved in
an analysis of more general types of maximal conjugate.

ExAmpLE 5. Let f:.J — I be a function from the unit interval to itself that is
not Borel measurable and let G be the graph of f. Let & denote the standard product
stru.cture on IxI and ¥ the substructure generated by projection on the first co-
ordinate. Set 9 = {Be#: G=B or G=B%}. Then & does not separate any two
%-atoms and is maximal with respect to this property. However, & is a non-maximal
conjugate for ¢, as is shown by the corollary to Theorem 5.
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ExaMmpLE 6. Let f be a one-one correspondence of the interval I, = [0, 1] onto
itself that is not Borel measurable, Put X = IxI, (I = [0,1]) and # denote the
standard Borel structure on X. Let % be the substructure of & generated by pro-
jection onto I and define @ as {Be#: (0,y) e B if and only if (f7*(2), )€ B}.
Then & is a complement and a maximal conjugate for €, but 2 is not c.g.:
# = (%, D) because each #-set of the form Ix B is in 9. @ is a conjugate for the
reason that if B is non-null in € ~ @ and contains a %-atom {x}xIo, then
(0,/())e B and so B contains the @-atoms {0} x I,: this constrains B to meet
every @-atom, so that B = X. To prove maximality, suppose that Be % contains
(7(5), ») ‘but not (0,y). Then B {(f7'(2),2), 0, )} = {(f74(»),»)} and
since (F 1) x NS 71D, p)} is in 2, the ¥-atom f ) x], is in o(Z, B).

Finally, assume that 9 is countably generated and apply Theorem 1 from
TIL 39. VII of [3] to a Marczewski function for 2 to conclude that the union of all
non-singleton & -atoms, namely the union of {0} x I, with the graph of. 'f, is an analytic
set. Thus the graph of f is analytic and by a well-known result e, g. II1. 4. 1 of [2] it
follows that f is a measurable function, a contradiction. So & is not c.g.
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