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Free products of n-groups
by

Jacek Michalski (Wroctaw)

Abstract. We give two constructions of free products of n-groups and also a construction of
free n-groups. We also prove a theorem on the form of free products of covering (k+1)-groups
of (n+1)-groups (where n =.s°k).

1. Introduction. In [10] we described various classes of morphisms in the
category of n-groups Gr, and also two functors: the forgetful functor ¥,: Gryyy
— Gr,.y and its left adjoint &;: Gr,.; — Gry4q (Where n = sk). We were interested
mainly in the connections of these functors with projective and inductive. limits.
The preservation properties of @, proved in [10] are used here to obtain a description
of free products of n-groups and free n-groups.

In the definition of &, (cf. {10]) it is essential that QDS(G) is a free covering
(k+1)-group of an (n+41)-group G, but it is unimportant in which way that free
covering (k+1)-group has been constructed, since distinct constructions yield
naturally equivalent functors. In [10] we exploited the construction of a free covering
(k+1)-group described in [9] and the definition of @, based on that construction.
In the present paper, whenever we need, we exploit two constructions of the free
covering group: the construction of Post (cf. [12]) and that of [9]. We use Post’s
construction in Theorem 1, in which by @,(G) we understand the free covering
group as described in [12]. Otherwise, we adopt the definition of &, as given in [10]:

As is easy to 'check, the following theorem is true in any category with free
products:

Let a family of objects {G,},r Of a category A" be glven If a subfamily {G}«s
of the family {G,},r consists of noninitial objects in o, then the free product

I_'[G,, {ot,: G,—+L’[G,},,,T] is’ isomorphic to “the free product []_[ Gy; {Bs: Gy

—+ I_I Gilesl, lie., there exists a unique isomorphism #:[] G, — I_[ G, such that
teT tes

= B, for reS.

ThlS says that, as long as we are 1nterested in free products, we may exclude
initial objects from the category under consideration. Therefore we assume that
all n-groups considered in the present paper are nonempty.. .
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The terminology of this paper is the same as in [9] and [10], where we also
discussed relevant motions. Recall only that ¢ always denotes the. (k+1)-group
operation on the cydlic (k+1)-group € .y. In particular, if k=1, then ¢ de-
notes the group operation on the cyclic group €, , of order 7. The letters fand ¢
will always denote, respectively, (n+1)-group and (k+1)-group operations in the
(n+1)-groups and (k+1)-groups under consideration.

In [10] the symbol fi5, was defined for s>1. Now it seems useful to extend that
definition to the case of s = 0 by assuming that f{g, is always the unary operation
given by fioy(x) = x.

Throughout the paper we assume n>1.
Some of the results presented here were announced in [8].

2. Two constructions of free products of n-groups. The functor & preserves
and reflects inductive limits (cf. [10]). This property enables us to extract a con-
struction of free products of. n-groups from the well-known construction of free
products of groups. By a free product of groups we always mean a group constructed
following [6], i.e., the set of reduced words together with an appnopnatc group
operation: The empty word is denoted by @. .

As free covering groups play a central role in this construction, -it depends
on which construction of the free covering: group we have in hand (cf. e.g. [12], [2],
51, [71, [9D. ‘

LevMa 1. Let [L'; {7,
of free covering groups {{@,(G), s, {D}er of (n+1)-groups {G}ir. Then the
morphism {: L' €, given by (a5 -.@) = po-fLal@), - L(@) (where
ay...a,# @B, a;e€®(G,) for i=1,..,r) and {(P) =n—1isan epimmorphism
and the pair (L', T, where T is the inclusion of {*(0) into L', is the free covering
g'rou'p of the (n-+1)-group L = {7*(0). Moreover, [L: {oty: G, — L}or), where

= Y.(y)t,, is the free product of {G}ier- ) :

Proof. For the family {Ct @,(G) - €, )}, there exists a unique morphlsm
(L' - G, , with {y, = {, for each te T, which implies that { is an cpxmorphlsm
A ttlplc L, T, £, where t is the inclusion.of {~*(0) into L', is the. free covermg
group of the (n+1)-group L = {~(0) (cf. [9], Theorem 2, Deﬁmuon 3 and Corol-
lary 2). Furthermore, there exists an isomorphism n: L' — &,(L) such that #7 = 1,
and {n = {, where {B,(L), tz, {1y is also a free covering group of L. From the
definition of a free product of groups (cf. [6]).it follows that the epimorphism Lis
given by {(a; ... @) = Q- 1y({i(ay)s s {1 (@)), where a; € 8,(G,), for a; ...a, # O
and {(@) = n—1. In view of Theorem 4 of [9] there exist morphisms ¢,: G, —+L
with ‘10, = ¥,(y)t,. Furthermore, @,(e;;) = 1y, for teT. Since

[8.(L); {m:: @G — dj(L)}teT]

is the: free product of {®,(G)}ier, by Proposition 5 of [10] it follows that
[L; {¢;: Gy~ L}er].is the free product of {G,},r; which was to be proved.

@,(G,) = L'}er] be the free product of a nonempty famiij/ i
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. Now- we give two constructions of free products of n-groups. The first. will
be: founded on the construction of a free covering group due to Post (cf. [12]).
Let a nonempty family {G}er of a pairwise disjoint (n+1)- -groups be given.
Denote. by B the set of all sequences <ay;...,a,>, where a;€ Gy, . such that
= 1(modn). Define a relation § on B in the following way: :

LAy, s @ 0ag, Sy ag by, e Ditjbuns Qijigs s Gy (Where u = 0,1,2 .)
if and only if there exists teT such that ¢4, ..., am, Digtsons bisjim€ Gyand
there.exist elements ¢y, ..., ¢, dy, ..., d, & G, (where I+j+m = 1{modn)) such that
'f()(clﬂ o Oy Qg ooy aHj! div vy m) =f()(61: - bl’ bl+1) o bi+j+un: dl, ety m)

Define on B an (n-1)-ary operation f by forming a scquencc from given n+1
sequences by juxtaposing them. .

THEOREM 1. The relation 0 is a congmenoe relation on the (n+1)-groupoid
(B, f). The quotient (n+1)-groupoid B0 together with the family {o,;: G, — B[6}er,
givén by a(a) = <(n>> (where <<a>> denotes-the equivalence class represented by
Kad), is the /ree product of (n-+1)-groups {G}ier.

Proof. We use the same notation as in Lemma 1. Recall that Post (cf, [12])
has constructed the free covering group @,(G) of an (n+1)-group G from equiv-
alence classes of polyads. An equivalence class represented by a polyad {ay, ..., a,)
where 4,e G for i=1,...,r, r<n, will be denoted by <(a1, ,>> Thus nonempty
elements of the freec product L' = ]_I $,(G,), i.e., reduced words, are of the form of

sequences <{dyy, ., Ay {21, ,az“z)> .{Layy, 5 @, where two adjacent
polyads do not belong to the same group &,(G,) and the neutral elements do not
occur in this sequence.

As we know from [9], Theorem 2, the free covering group {$,.(G), 1¢> of an
(n+1)-group G determines a unique epimorphism {: $,(G) —» €, , such that {~1(0)
= 76(G). This epimorphism is given by { <(a1, s ,>>) = r—1(modn). Hence,
by Lemma 1, the morphism {: L' - G, , givén by '

{(<<a11= wiey atm>> <<ar1’ vy ru,->>) ) )

= Q(rwl)(t <<(l“, - la1u1>> C(<<ar12 ey aﬂlr>>))

= (u =D+ .+~ 1)+(r——].)(modn) h
and {(@) = n—1 is an epimorphism. Let L = {”*(0) and let = be the inclusion
of L into L'. Then <<“1.‘i’ ey ”1m>> <(a,1, s a,,,._>> eL if and only if
#y+ ...+, = 1(modn). The (n+1)-group operation on L is simply the long product
(cf. [3], [9]) formed from the binary group operation on L. It is done by juxtaposing
n+1 sequences .of equivalence classes of polyads and performing all possible
(n-+1)-group operations. Elements of L will simply be written

Lay, sy iG> or briefly {Cay, Ly 3D

where r = 1(modn). It may, happen that adjacent elements g, a;y, belong to the
same (n-+1)-group.G,. However, there is no ‘géquence of length greater than n -of

s Aiugs 215 0ees Aoy y oo
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such elements. The (n+1)-group operation.on L is therefore given by juxtaposition
of n+1 sequences and performing an appropriate (n+1)-group operation if a long
enough sequence of elements of the same (n+1)-group appeared in the resulting
long sequence. The embeddings o, G, L are given by toa) = W,(y)7,a)
= 1({{a)D), ie., aa) = {{a)). This completes the proof of Theorem 1.

An alternative construction of a free product of n-groups can be extracted
from the construction of a free covering group given in [9].

Let a nonempty family of pairwise disjoint nonempty (n-+1)-groups {G }ier be
given. Fix an element ¢, in each (n+1)-group G,. By a word we now mean any

1 1
sequence of the form aycy, ... g,c,,, where for each i =1, ...,r we have a,& G,
t# tey, 1 =0,1,..,n—1 and @,y ..., ) = 0, in which expressions of the
n—1

form ¢, ¢, do not occur. In the set L of words define an (n+1)-ary operation f
which is accomplished by forming the word obtained from n+1 words by juxtapos-
ing them and performing the necessary operations, i.e., if in the just-formed “long

y iy
woid” there appear neighbouring expressions a;c, and g;c,; of the same (n+1)-

noy
group G, (thus #; = #; = ), then ajc,a,c,, should be replaced by
ol 1)’

f(~)(“n Cpsvnes Cps @iy Cy ovy Cpy Ty Gy wens € €y
h i n—1i-o, Iy

where

f(~)(aia Cys 5oy Cpy iy Cy vy Cpy Cpy Cyy vy ¢y
I 127

n=1-=o(s, 1))

is already the element of G, obtained by performing the (n+1)-group operation f
n—1

in G,. If after proceeding in this way we obtain expressions of the form ¢, ¢, , we

just cancel them. We iterate the procedure until the reduced “long word” becomes

a word.

. THEOREM 2. The (n+1)-groupoid (L, f) is.an (n+1)-group. The (n+1)-group L
together with the family {«,: G, — L}z given by aa) = ac, is the free product of
(n+ 1)—gr0ups {G.}rer-

Proof. We use the same notation as.in Lemma 1. Recall that the free covering
group &,(G,) of an (n+1)-group G, can be treated (cf. [9]; Theorem 1) as the set
G, x Z, together with a group operation f* defined by the formula

f*((an 1),.(a2, lz)) = (f(-)(an Cpyeovs Cpy Ay Cpy iaiy Cpy Bpy Cpyveny C), (U, Ié))i

e et ;
L la n—1-¢(, 12) : .

icm
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where ¢, is an arbitrary but fixed element of G,. By Theorem 2 of [9], the morphism

{i: 8,(Gy) — G, , given by {,(a, I) = 1 is an. epimorphism, Furthermore, {~1(0) is

a sub-(n+1)-group of the (n+1)-group ¥,8,(G,) and it is isomorphic to G,.

Elements of the free product L' = I; @,(G,) are of the form w = (e, 1) .. (@, 1)
1€

where ¢, € G, t; % t,,,, L,eZ, for i = 1,..,r and elements (¢,,n—1) (e, the

. neutral elements of the groups 9,(G,)) do not occur in this sequence.
According to Lemma 1, the morphism {: L' — €,,» given by

{00 = 0e-0y(lu@n 1), s L@, 1)) = Iy ... +1+7—1(mo0dn)

for w % @ and {(@) = n—1 is an epimorphism. Let I, = {7Y(0) and t be the in-
clusion of L into L’. Then welL. if and only if Ij4... +L+r = 1(modn), ie.,
ey -y &) = 0. The (n+1)-group operation f on L is simply the long product
formed from the group operation f* on L’. To simplify words of the form (a,0)
in the (n+1)-group L we write briefly a. Then t(a) = (a,0)eL. Let
w=(ay, 1) ... (a,,1) e L. Thus . '

w =f(?)((a1: 0, (Cu) 0), ..., (€5 0), ..., (a,, 0), (¢, 0,00, (P 0))
. DR A — T

I

I
f(’f)(’f(al)’ T(Cz,); ey T(Cn)a s tlay), T(Cr.‘): ey T(cr.‘))

Iy In
Iy I

t(as¢, ... ape,).

Hence it seems convenient to define elements of the (n+1)-group L as expressions
Iy Ir

of the form ayc,, ... ,c,, where a; & Gus & # tieg, @p1y(ys ..., 1) = 0. The (n+1)-

ary operation f is then accomplished by forming the word obtained from rn-+1

words by juxtaposing them and performing the necessary operations, If in the

. . L . LTS

Jjust-formed “long word” there appear neighbouring expressions ajc, and a

it+1 C"“‘
where t; = t;,, = t, then )

1 Ly
(o @10,814 1 ¢4 00)
= S 1@, 1€, s 7)), T(@ian), T s oy Te), 02
‘ 4 liss

=f(’.")(..., (f(a,, Cis vves oy Big1s Coy wuns Cpy Oty Cpy ey €05 @ (1, li+1)): )

It livy

n=1=(, li+1)

I

f(’_!‘,(..._, T(f(@i, Cos vevs Cpy Qi 15 Crywens Cpy Bps Cap onns e))sted, i, 7)), )
1 LEYY

n=1=o(liv1) @, livs)

© ol levr)
T('--f(aia Cts ore3.Cry Biggy Cpy ey Cpy Cpy Cpy nny G Gy

h [ ne1=Uyli+1)
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. In 4 similar. way one can show that- R

: L on—1 . 4 R TR ¢
T(... aic,,E, ¢; ajey o) = (0 a;6,a5C; ).

: o . o
Accordmg to Lemma 1, w,(a) = ¥,(y)(a,0) = ;(act). This completcs the
proof of Theorem 2. ) ‘

Henceforth by the free product of n- groups we always understand the n- group
constructed as in Theorem 2.

The above construction allows us to prove the primitiveness of the free product
of n-groups. Recall that the n-group is said to be primitive if 1t is not derived from
an [-group for any I<n (cf." [3]). :

THEOREM 3. The free product of at leust two nonempty (n+1)- gmups is a primi-
tive (n+1)-group.

Proof. We use the same notation as in Theorem:2.

Suppose that the (z+1)-group ]_[ G, is denved from a (k+1) group Let

Ii Ir 0
W = a; ¢y, ... a,¢,. be the skew element to:c, ¢y, (Where t, € T is arbitrary but fixed)
‘in the creating"(k+ 1)-group (cf. [9]). In view of Corollary 2 of [11] w is the s-skew
1] . . 0
element to ¢, c,, (cf. [11], Déﬁuition). Take an arbitrary element of the form ¢,c,
where t # t,. From the definition of an s-skew element it follows that

0 0 0 ) [ 0.0 0

) CroCro +or CtgCtgWECCy v €1Cp == WC(Cyg o cmc,nc,ct €y

e e’ [
=1 Pkt 1 k=1 n—k+1

Suppose k = 1. Then the reduced word on the le'ft srde in (l) would begin with

a, c,1 ‘and that on the right side of (1) would bcgm w1tbé c c,, which is impossible
in.view of the assumption ¢ # ;. Hence k> 1. Consider two cases: r>1 and r = 1.

... First; let r>1. Then the reduced word on 'the right of’ ("I) has to begin from

u I :
ay ¢, (since t % t;). Hence the reduced word on the left begms from ayc,, as well.
But in this case to =1t; and @u_40,...,0,5) =1, ie., 0+.. +0+l, +k—1
= I, (modn), whence k = 1, which is 1mp0551b1e

A : o

Now, let r = 1. Then w = a, ¢,.. Moreover w = g, ¢,, . Hencc equality (1) may

be given in the form -

0 o .0 o o . o o o o0 0

Cr0Cro oo CrgCrg@1 CryCrCponn CCp = @4 Cpy CrgCry vuv CigCroCeCyvn CoCy .
[ e " [E— L Sk, it (R
k-1 . n—k+1 , k=1 n—k+1

After some necessary cancellations it beccmes
k=2 0 -m~k +- -0 ..k=2. n—k
Cpo Crgl1Cri € C¢ = 4 Cy Cpp CpoCp €y

icm
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Hence 7, = t;."On the other hand, from the definition of an s-skew element

0 1] Q0 0 0 o ) 0 -0
@) €1 CroCry vee CagCrgCeCyver €oCp == C,Cyp ... CyCyllyCy, C
S0t o0 Cto t 1Ce 1Cey "ﬁf’j’ e CroCrp e
k—1 Nkt 1 nk+1 k=1

After performing all cancellations (exploiting the equality ¢, = 2,) we get

k-1 n-k n—k k-1
Gy €4 Cy €= Cp Cy QY Cyy -

By the uniqueness of the form of a reduced word we have ¢, = ¢, This contradicts
our assumption that #; # ¢, which completes the proof of Theorem 3.

Theorem 2 of [10] presented a description of inductive limits of covering
(k+1)-groups. That theorem can be strengthened in the case of the free product
of covering (k+1)-groups.

TueoreM 4. Let {G;, Ay, {Dher be a nonempty family of covering (k+1)-

groups of indices g, of (n+1)-groups {G}.er. Then the free product || G'\is a cover-
teT

ing (k+1)-group of index q = gc.d.{g}er of the (n+1)-group ({1 G)/6, where
: ieT
0 is the congruence relation defined as follows: )
Iy I my me
Let a = ay¢,, ...a,¢,, b =byc, ...b.c, where a;,b;e G,. Then a8b if and
only if I, = my(modk) and for each i =1,..,r

g(-)(ﬂ'n(aiL /ln(cz,)a ey }'l((ctg)) = g(-)()“n(bi): ﬂr,(cr.): ey

a1k . nk

/1,‘(0"))

where 0<l;—g;k<k and O0<m;—p;k<k.

Proqf. Let [G; {a,: Gy — Glier] and [L'; {of: Gy — L'};er] be the free products
of (n+1)-groups {G.}rer and (k+1)-groups {Gi}or respectively, where the el-
ement c¢; in G} are chosen in such a way that ¢; = A/(c,). The functor & preserves
inductive limits (cf. [10]), and so [B(G); {Py(e): DGy = PG }rer] is (up to an
isomorphism) the free product of the family {<B(G,),7,p}wr of free covering
(k+1)-groups of (n+1)-groups. The pair {P(GF), >, where t: G — P, H(G) is
the morphism induced by {¥,®(2,)T}er, is the free covering (k+1)-group of G.
Then there exists a unique morphism §: G — L' such that de, = (e A, for te T.
Furthermore, there exists a family {A}: &(G,) — Gi}er such that ¥ (i), = A,
for teT and there exists a morphism &*: &(G) — L’ with P (6*)t = J. Since
P (6*D(0)) 1, = P A¥)7,, we have *& () = of A¥ for teT.

It 1

Take two elements a, b e G which satisfy 6(a) = 6(b). Let @ = ayc¢y, ... g,y ,

mip
b=b, c,,l .b,c,, (where a;e@G,, b;e G)P,Q\-i— e+l +r = 1(modn), my+ ... +

2 — Fundamenta Mathematicae CXXIII, 1
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+m,+p = 1(modn)) be words in the free product G (cf. Theorem 2). Then -,

8(a) = &(F)otey (@), ArylCer)s vers U (Cr)s oov, @ (@), @y (g, oo, Ay {es)))
’ h [
. L—ek . ek
= g(-)()m(‘h): Aey(Ce)s e )-n(cn )'lr,(cn g(')('ltr(ar) 2 A6, (Ct)s oees /tr,(cr,))lt,("r,),
o1k ; o ek :
where 0</;—¢;k<k, is a word. in L'. Similarly,
my—pik .
6(b) = g(-)(j'u;(b].): ]'u‘(clu)a sy }‘lq(clu)) }'ux(clu) .. .
. ik !
; . —upk
. g(-)(/lu,,(bp)’ ’Iup(cup) ’ /-l'u,,(cu,,)) }‘Hp(c"p
——
1ok

where 0<m;—p;k<k, is a word in L'. By assumption 8(a) = 6(b). Since each
element of a free product can be expressed in a unique way as a word, we have
r=pand t; = u;, I, = m;(modk),

Gy, Aer)s o3 Mfen)) = Gey(AefBi), Aules), o, Ay(er))  for i=1,..,r
- —
eik ik
Iy Ir my my

Conversely, consider ‘words a = g,¢,, ...a, ¢, and b = b, c,l
a;,b; e G, 0<];—¢ k<k O<m—pk<k, I; = my(modk),

9oy(Aula), l,,(c,l), s )u,'(c,,)) = gy (B}, Aeer)s ooy Anfey))  for

ik : ik

s« b, e, Where
i=1,..,r.

One can verify that §(a) = 6(b). The homomorphism J: G — ¥(L') determines
a congruence relation § on G such that G/6 is 1somorphic to §(G). In view of The-
orem 2 of [10], L’ is a covering (k+1)-group of index ¢ = g.c.d.{g,}r of the (n+1)-
group 6(G).

Finally, one can show that

g(')(}’ti(ai)’ Il!l(c‘l)’ ey A'n(ctx)) = '1:;(“1': 8;‘)‘

and
g(')(lt;(bi) s lrl(ct,)’ ey

pik

Aler)) = by, 1) .
Hence a8b if and only if /; = m,(modk) and i¥ t(a;, &) = AX(b,;, 1y for each
i= 1

3. Free n-groups. Free n-groups gcnerated by one element are exactly infinite
cyclicn-groups; thus every free n-group is a free product of infinite cyclic n-groups:

icm
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Hence Theorems 1 and 2 enable us to give a construction of free n-groups. The
construction we shall present here will be founded on the description of the free
product given in Theorem 2.
Let a nonempty set X be given. Call a word each expressmn of the form
I Ir
W= Xy ... X, where x;€ X, x; % X;4q, [; # 0 for each i=1,...,r and L, +...+1,
= 1(modn). In the set G of words define an (n4-1)-ary operation f which is ac-
complished by forming the word obtained from n+1 words by juxtaposing them
and performing the necessary operations, i.e., if in the just formed “long word”
I Iy Ly
there appear neighbouring expressions x and x, then xx should be replaced by
L+l 0
x . If after proceeding in this way we obtain x, we just cancel it. We iterate this
procedure until the reduced “long word” becomes a word.

THEOREM 5. The (n+1)-groupoid (G,f) is an (n+1)-group. Moreover, it is
a free (n+1)-group freely generated by X.

Proof. The set 4 = nZ+1 with addition forms an (n—|~1) group. It is an in-
finite cyclic (n+1)-group generated by 1. The free covering group of this (n+1)-
group is an additive group of integers (cf. [1], [12]).

Take any nonempty set X. Let G, = {x: uenZ+1} for xe X. In G, define
Untt upt ot tings

g,
an (n+1)-ary operation f by f(x,..., x)= x

1
The (n+1)-groupoid (G, ) is an infinite cyclic (n+1)-group generated by x.

1

Thus (up to an isomorphism) &,(G,) = {x: /e Z}, the group operation f* is defined
L oL Ltk 0 )

by the formula f*(x,x) = x and x is the neutral element. The epimorphism

1
(st 9,(G,) = G, , is then defined by {(x) = I—1(modn). Let G =[] G,. Then

xeX

G is the free (n+1)-group freely generated by X. Nonempty elements of the set

Ir

h
11 2.G,) are of the form x; ...x, where x; # x;,, and [;# 0 for i=1,..,r

xeX

The epimorphism {: &,(G) = G, , is defined by

I

[ 4 I
Ly e %) = Gpefla0)s s L) = =D+ oo + (=1 +(r— 1) (modr)

It 1%
and {(@) = n—1. Thus, by Lemma 1, an element x, ... x, belongs to G if and only
if @p-yi~1,..,L—1) =0, ie, I;+...+1 = 1(modn). This completes the proof
of Theorem 5. )
Sub-n-groups of free n-groups were investigated by Artamonov in [1]. The
construction of free abelian n-groups is due to Sioson (cf. [14]).
2%
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On metrizability of continnous images of compact ordered spaces
by

Witold Bula (Katowice)

Abstract. We prove here the following generalization of Treybig’s Product Theorem: if a Haus-
dorff space X is a continuous image of a compact ordered space, then for every open map from X
into a Hausdorff space Y the set of all points of ¥ having infinite preimages is metrizable.

1. Introduction. It is shown in [1] that if a Hausdorff space X is.a continuous
image of a compact ordered space then each Hausdorff space which can be obtained
as an open infinite-to-one continuous image of X is metrizable. This result gener-
alizes the Theorem of Treybig [6]. _

If an open continuous map from X onto a Hausdorff space Y has at least one
finite fibre, then the space Y need not be metrizable. However, as shown in Sec-
tion 3, the set of all points of ¥ having infinite preimages is metrizable. To prove
this, we will need some technical lemmas, given in Section 2, and concerning the
behaviour of long decreasing sequences of closed subsets of continuous images
of compact ordered spaces.

By a (compact) ordered space we mean a linearly ordered set which i isa (com-
pact) space when equipped with the usual open-interval topology. If some convex
sets are added to the topology of an ordered space, the resultmg space is called
a GO-space.

Let K be an ordered space and let 4 be a subset of K. A set C<4 is called
a convex component of A if it is the maximal subset of 4 with rcspect to the property
of being convex. A sequence {4,: n=1,2,..} of subsets of "X is said to be in-
creasing (decreasing) if any element of A, is less (greater) than any element of 4,
for n<m.

All ordinals below are regarded as oidered spaces. A subset of a regular un-
countable .cardinal » is called stationary if it meets 2ll closed unbounded sub-
sets of x.

Let S be a subset of a cardinal %. A map f; S — 3 will be called regressive if
Sl <o for ae S—{0}. The following theorem will be used below.

PrESSING DowN Lemma (G. Fodor, see [5], Theorem 8, p. 347). Let S be
a stationary subset of a regular uncountable cardinal x. If f: § — x is regressive,
then there exists an ordinal a<y such that f~*({u}) is stationary.
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