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On metrizability of continnous images of compact ordered spaces
by

Witold Bula (Katowice)

Abstract. We prove here the following generalization of Treybig’s Product Theorem: if a Haus-
dorff space X is a continuous image of a compact ordered space, then for every open map from X
into a Hausdorff space Y the set of all points of ¥ having infinite preimages is metrizable.

1. Introduction. It is shown in [1] that if a Hausdorff space X is.a continuous
image of a compact ordered space then each Hausdorff space which can be obtained
as an open infinite-to-one continuous image of X is metrizable. This result gener-
alizes the Theorem of Treybig [6]. _

If an open continuous map from X onto a Hausdorff space Y has at least one
finite fibre, then the space Y need not be metrizable. However, as shown in Sec-
tion 3, the set of all points of ¥ having infinite preimages is metrizable. To prove
this, we will need some technical lemmas, given in Section 2, and concerning the
behaviour of long decreasing sequences of closed subsets of continuous images
of compact ordered spaces.

By a (compact) ordered space we mean a linearly ordered set which i isa (com-
pact) space when equipped with the usual open-interval topology. If some convex
sets are added to the topology of an ordered space, the resultmg space is called
a GO-space.

Let K be an ordered space and let 4 be a subset of K. A set C<4 is called
a convex component of A if it is the maximal subset of 4 with rcspect to the property
of being convex. A sequence {4,: n=1,2,..} of subsets of "X is said to be in-
creasing (decreasing) if any element of A, is less (greater) than any element of 4,
for n<m.

All ordinals below are regarded as oidered spaces. A subset of a regular un-
countable .cardinal » is called stationary if it meets 2ll closed unbounded sub-
sets of x.

Let S be a subset of a cardinal %. A map f; S — 3 will be called regressive if
Sl <o for ae S—{0}. The following theorem will be used below.

PrESSING DowN Lemma (G. Fodor, see [5], Theorem 8, p. 347). Let S be
a stationary subset of a regular uncountable cardinal x. If f: § — x is regressive,
then there exists an ordinal a<y such that f~*({u}) is stationary.
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The following theorem, which is an extension of the well-known result due
to R. Engelking and D. Lutzer [4], is proved in [2].

THEOREM 1. Let a space X be an image of « GO-space under a closed continu-
ous map. Then X is not paracompact if and only if it contains a closed subset which
is homeomorphic to a stationary subset of a regular uncountable cardinal.

We will use the above theorem only in the case when X is an image of a GO-
space under a perfect map. In this case the theorem has the easy proot; let us give
here a sketch of it.

Proof. Let f be a perfect map from a GO-space G onto a space X. Assume
that X is not paracompact. Then G is not paracompact, either. Thus, by R. Engelking
and D. Lutzer Theorem [4], there exists a closed set S=G which is homeomorphic
to a s}:ationary subset of a regular uncountable cardinal . Denote

R ={fT)n S: xef(S)}.

Observe that the elements of % are compact, and so they are nonstationary sub-
sets of ». Thus, by Pressing Down Lemma, the set {min, R: Re %} contains an
unbounded subset F which is closed relatively to S. Observe that Fis a closed sub-
set of G homéomorphic to a stationary subset of x and f|F is a homeomorphism.

2. Long sequences of subsets of compact ordered spaces. The easy proof of

the following lemma is omitted.
: Lemma 1. Let K be a compact ordered space, y a limit ordinal and n a positive
integer. Let {F,: a.<y} be a sequence of closed subsets of K such that FycF, for
a<B<y. If each F, is the union of at most n intervals for o<y, then so is the set F
= {F,;: a<y}.

- LemMA 2. Let K be a compact ordered space and % a regular uricountable cardinal.
If {F,: a<x} is a sequence of closed subsets of K such that

(1) F,. cintF, for a<x, and
2 F,=N{F: oe<&} Jor every Iimit y,y<ux,

then there exists a positive integer n and a closed unbounded subset C.of % such that
F, has- at most n convex components for each o C.

Proof. Put %, = {B: B is a convex component of intF, which meets PO
Let f(«) be the number of elements of #,. Since F,. is compact, f (o) is finite for
eaf:h a<x. Hence, fl(w, %) 15 regressive, and so, by Pressing Down Lemma, there
exists a positive integer n such that the set S = f~1(n) is stationary. Observe that
“Fy = ﬂ {1 U 4,: a<y} for every limit y, y<s. Thus, by Lemma 1, the set F, is
the union of at most n intervals for every y € S%, where S is the set of all cluster
points of S.
THEOREM 2. Let X be a continuous image of a compact ordered space and % a re-

gular uncountable cardinal: If {F,: a<x} is a sequence of closed subsets of X-such that

v
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(1)  FypqcintF, for a<ux, and
@ F, =\ {F,: a<y} for every'limit 'y, y<x,

_then. there exists a positive integer n and a closed ynbounded subset C of x such that

the set BAF, has at most n points, for every aeC. .

Proof. Let f be a continuous map from a compact ordered space K onto X.
We may assume that f is irreducible. Denote H, =:f “I(F,). Observe that the
sequence {H,: a<x} satisfies the assumptions of Lemma 2, and so there exists
a positive integer m and a closed unbounded subset C of x such that the set H,
has at most m convex components fc1 o € C. Thus, BA.H, has at most 2m points
for w e C. Since the map f is irreducible, BdF, = f(BdH,), and so BdF, has at
most 2m points as well. R ‘ o

LeEMMA 3. Let f be an open continuous map from a Hausdorff space X onto

a space Y. For every positive integer n the set F, = {ye Y: F~Y(y) has at most
n points} is closed. . . o

~ Proof. Let y-be a point of Y—F,. Choose distimet points py, ..., Pye1 €F ()

and their open. disjoint neighbourhoods Uy, ...,U,+q- The set W = fU) A

v 1 f(U,4+) is an open neighbourhood of y such that f “Yz) n U, # O for each
zeWand k=1,..,n+l,and so ye W Y—F,. Hence the set F, is closed.

LemMA 4. Let u Housdov)f space X be a continuous image of a compact ordered
space. For every open continuous map f from X into a Hausdotff space Y, the union
of all infinite fibres of f is paracompact. o

Proof. Suppose that the union of all infinite fibres of f is mot paracompact:
Then the set Z = {y e Y: f~*(y) is infinite} is not paracompact, either. Observe
that Z is an image of a GO-space under a perfect map. Thus, by Theorem 1, Z con-
tains a closed subset S homeomorphic to a stationary subset of a regular uncount-
able cardinal x. We will use the same notation for S=Z an(}’the copy of §in x.
Without loss of generality we may assume that S i$ embedded into  as a dense
subset.

Denote X’ = f~1(cl,S). Observe that f|X": X'—222clyS is an’open continu-
ous map and S is the set of all points of cly.S having infinite preimages. Thus, by
Lemma 3, S is a Gs-subset of ¢l,S. Hence, it 's a Gj-subset of the compact set
ol 418 = %+1 as well. But cfx>w, and so there exists an ordinal y<x such that
[y, ¥)=S. Hence Z contains a closed copy of the cardinal » and by the. pseudo-
compactness of x, clyZ contains a copy of %+1 embedded in such a way that
(+1) A Z = % Put X' = f~1(x+1) and g = f|X": X2 +1. Observe that
the sequence {F,: a<}, where F, = g~ '([«, %]) for a<x, satisfies the assumptions
of Theorem 2, and so there exists a closed unbounded subset - C-of % such that
Bdy. F, is finite for every o & C. But the map g is open, and so, for every limit «
where o €%, Bdy.F, = g~'() and, since a €Z, the set Bdy.F, is infinite. This'
leads to a contradiction. ) : : .
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3. Open maps and metrizability.

" LemMa 5. Let g be a continuous map from a compuct ordered space K onto
@ Housdorff space X, f an open continuous map from X onto a space ¥ and P a point
of Y. Let {{¥,, U,>:n=1,2,..} be u sequence of pairs of open subsets of X such
that clV,cU,, the set f~'(p) N V,, is nonempty and the sets U, U,, ... are disjoint.
If €(n) is the family of all convex comporents of g~(U,) which meet the set
g™ NCV, A f~()), then the family B(p) = {fvan intg(Uem)): n=1,2, "
is .a neighbourhood base at the point p.

Proof. First we prove that the elements of #(p) are neighbourhoods of p,

Fix a positive integer n and choose a point xe ¥, A f “1(p). Observe that
97 g™ (Vo 0 fTUR)=U% (), and so xeintg(U%(). Thus, the set ¥
= ¥, nintg(U% () is an open neighbourhood of x, and so f(¥) is an open
neighbourhood of f(x) = p since the map f is open.

To prove that % (p) is a base at p, fix an open neighbourhood W of p and de-
note H = Y—W. Suppose that g~/ ~"*(H) n U¥ @) # O for each n. Choose
C,e%(n) so that g~/ Y(H)n C, # @. The sets C;,C,,... are convex and
disjoint, and so there exists an infinite sequence {D,:n=1,2,..}c{C,: 7= 1,2,..}
which is either ‘increasing or decreasing. Say it is increasing. Choose points #,
€D, A g Y~ YH) and p,e D, n g~ ~1(p), for n=1,2,... Let % be the least
upper bound of the sequence {/,: n = 1,2, ...}. Observe that x is the least upper
bound of the sequence {p,: n = [,2,...} as well. But f(g(h)) e Hforn = 1,2, ...,
and 5o f(g(x)) e H and f(g(p,)) = p for n=1,2, ..., whence (g (x)) = p. This
contradicts the assumption p ¢ H. .

Hence there is a positive integer # such that g~ f ~1(H) U%(n) = &. Thus,
S (V,, nintg (U %(n))) is an element of % (p) which is contained in W, and so 2 (p)
is a base at p. ) :

Let % be a famﬂy of open subsets of a space X and let H be a subset of X.
The family % is called a strictly irreducible open cover of H if HeJ% and
H—dU@~{U}) # & for each Ue%. By %|H we denote a family {Un H:
Ue%}. ’ ’

. Let p be a point of a space X. A family % of subsets of X is said to be locally .
finite at.p if there is an open neighbourhood W of p such that the -family
{Ue: WA U=# @} is finite. If % is locally finite at each p € X, then it is called
locally finite. )

Let % and ¥ be families of open subsets of X, The family ¥ will be called
a (star) [strict] refinement of % if for each Ve ¥ there exists a Ue % such that

: VeU(UWey: Faw#BcU)[dV o U{Wev: VoW g} U]

LEMMA 6. Let f be an open continuous map from a compact Hausdorff space X
onto a Hausdorff space Y. If the set Z of all points of .Y huving infinite preimages
Is paracompact, then there exist sequences {{U,,W,>: n=1,2, o} and {p,:
n=1,2,.} such that

(1) %, is a family of open subsets of Y such that Z<— Vu,,

N
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@) U|Z is locally finite (in Z), and {Ue ¥,: ze U} is finite for each z € Z,

@) W,={#,U): Uea} is a family such thut
i (@) #U) is a finite family of open subsets of X such thut Uw0) =Y U,
and for each y e U the family # (U) is a strictly irreducible open cover
of f~Hy), where Ue %, ’
(b) W(U) contains at least n disjoint elements, for every Ue¥,, and

@) @y Upyy > U, is a function such that W w+1(V) is a strict refinement of
W@ (V) for each Veu,,; consequently, clV =g, (V).

Proof. Put % = {Y}, #'((¥) = {X} and #, = {#4(1)}. Fix a positive
integer #. Suppose that we have already deﬁneq sequences {<%;, #>:j=1,..,n}
and {p;: j = 1,..,n—1} satisfying conditions (1)-(4). -

Fix a point z€'Z and an element U(z) e %, such that ze U(z). The family
W U(2)) is a finite open cover of f~(z), and so we can find a strictly irreducible
finite open cover /4 (z) of £~(») which is a strict refinement of ¥ W{(U(z)). The
set £ ~!(2) is infinite, and so ‘we may assume that 4" (2) contains at least n+1 disjoint
elements. Denote

M@ = N {AV-d U @-{7)): Vet @}—f(X-Ul ().

Observe that M(z) is an open neighbourhood of z such that clM (2)cU(2),
S M) = UN (2), and A'(2) is a strictly irreducible open cover of each set
F7Y(y), where ye M(z).

The family # = {M(z): zeZ} is an open cover of Z, and so there exists
a family .#’ of open subsets of Z which is a locally finite refinement of |2 since
Z is paracompact. For each ¥ e 4’ choose a point y (V) € Z such that V<M ().
Let 7 be an open subset of ¥ such that ¥~ Z = Vand Ve M(y(V)). Let us define

Uiy = {V: Ve '}, :

Wos(V) = #(yW)If1(V) for each Ve 4,
Woer = {WaralV): Ver,. ) and

0.(V) = U(y(¥)) for each Ve, ,.

Notice that the sequences {{%;, #>: j=1,..,n+1} and {g;: j=1,..,n}
satisfy the inductive assumptions (1)~(4).

The following lemma is proved in [1]. ]

Lemma 7. Let X be a compact Hausdorff space and H a closed infinite subset
of X. For every sequence {U,: n=1,2,..} such that U, is u strictly irreducible
finite open cover of H which contains at least n disjoint elements and U, ., is a strict
refinement of U, the fumily \J {#«,: n = 1,2, ...} contains an infinite subfamily con-
sisting .of disjoint elements. .

THEOREM 3. Let a Hausdorff space X be a continuous ifmage of a compact ordered
space. If a Hausdorff space Y is an image of X under an open continuous map, then
the set of all points of Y having infinite preimages is completely metrizable. -
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Proof. Let K be a compact ordered space; g a continuous map from X onto
X and f an open continuous map from X onto Y.

Denote Z = {ye Y: f~*(p) is mﬁmte} In view of Lemma 4, .the set Z is para-
compact. By Lemma 6, there exist sequences {{%,, Wy in= 1 2 .} and {o,:
n=1,2,..} satisfying conditions (1)-(4).

Fix a positive integer n and an element V" of %, . In view of condition (4),
the family ¥ ,,H(V) is a smct reﬁnement of ¥, ((p,,(V)) Denote

g(V) = {KP, O): PE"//’,.H(V) Qe Wy(ouV)s dPCQ}

By (3a), the family ¢(V) is finite. Let &(P, Q) be a family of all convax components
of g~*(Q) which meet g~*(clP) for <P, Q) € #(V). Observe that the family
&(P, Q) is finite. Put A (P, Q)= {P nintg(U%): R=E(P, O)} for (P, Q> e 4 (V).
Observe that (P, Q) is a finite family of open sets and (J# (P, Q) =

Put B, = {f(U): Ue M (P, Q),<P, Q> ¥(V) and V& U, }. Observe that
the family 4,|Z is locally finite since %, 4|Z is locally. finite and 4, is obtained
from %, ., by replacing each element Ve %,,, by a finite family Z(V)= {f(U):
Ue#(P, Q), (P, 0> € 4(V)} such that UZ(V) =

Put # = U{#,: n=1,2,..}. We will show that the family #|Z is a base
for Z. ' ‘ :

Fix a point ze Z. By conditions (1) and (2), the family {Ue%,: ze U} is
nonempty and finite for each », and so, in view of (4), there exists a sequence
{U: n=1,2,..% such that zeU,e%, and ¢,(U,.,)=U, for n=1,2, ..
In view of (3a), each family #7,(U,) is a strictly irreducible 6pen cover of f~(z).
Hence, by (3) and (4), the set f~*(z) ‘and the sequence {#(U,): n =1,2,..}
satisfy the assumptions of Lemma 7; so there exists an infinite sequence {W,q,:
k=1,2,..} consisting of disjoint elements and such that W,u) € # Uy
fork =1,2,.. Moreover, there exists a sequence {W,:k =1,2,...} such that
W€ Wigyr1(Ungyws) and clW,c W, for k =1,2,.

Let € (k) be the family of all convex components of ™YW, which meet

(clm A f7Y(2)). Observe that ¥(k)=&(W;, W,q,) The sequences

{W, Wogp: k=1,2,..} and {(ﬁ(k): k=1,2,.}

satisfy the assumptions of Lemma 5, and so the family
B(2) = {f(W nintg(UEW)): k=1,2,..},

which is contained in 4, is a base at the point z.
Hence, the family #|Z is a o-locally finite base for Z, and so Z is metrizable
in view of the Nagata-Smirnov Metrization Theorem (see [3], Theorem 4.4.7).

Moreover, by Lemma 3, the set Z is a G,-subset of ¥, and so Z 1s completely
metrizable. '

s
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COROLLARY 1 ([1]). Let a Hausdorff space X be a continuous image of a compact
ordered space. If a Hausdorff space Y is an image of X under an open infinite-to-one
continuous map, then Y is metrizable.

CoRrROLLARY 2 (L. B. Treybig [6]). If a product XxY of two infinite Hausdorff
spaces is a continuous image of a compact ordered space, then both X and Y are
metrizable.
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