60

D. Wilczyński

- [5] A. Dold, Lectures on Algebraic Topology, New York 1972.
- [6] The fixed point transfer of fibre-preserving maps, Math. Z. 148 (1976), pp. 215-244.
- [7] S. Illman, Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann. 233 (1978), pp. 199-220.
- [8] J. W. Jaworowski, Extension of G-maps and Euclidean G-retracts, Math. Z. 146 (1976), pp. 143-148.
- [9] K. Komiya, A necessary and sufficient condition for the existence of non-singular G-vector fields on G-manifolds, Osaka J. Math. 13 (1976), pp. 537-546.
- [10] G-Manifolds and G-vector fields with isolated zeros, Proc. Japan. Acad. 54 (1978), pp. 124-127.
- [11] R. L. Rubinsztein, On the equivariant homotopy of spheres, Dissertationes Math. 134 (1976), pp. 1-53.
- [12] H. Hauschild, Zerspaltung äquivarianter Homotopiemengen, Math. Ann. 230 (1977), pp. 279-292.
- [13] Ein Hopfscher Satz über äquivariante Vektor-felder (unpublished),

INSTITUTE OF MATHEMATICS
ADAM MICKIEWICZ UNIVERSITY
Matejki 48/49, 60-769 Poznań
Current address:
DEPARTMENT OF MATHEMATICS
INDIANA UNIVERSITY
Bloomington, IN 47405, U.S.A.

Received 5 April 1982; in revised form 3 September 1982

Remarks on characterization of dimension of separable metrizable spaces *

ł

Nguyen To Nhu (Warszawa)

Abstract. We establish some characterizations of dimension of separable metrizable spaces. For instance, it is shown that a separable metrizable space X is of dimension $\le n$ if and only if X is homeomorphic to a subset S of the (2n+1)-dimensional cube I^{2n+1} such that

$$\lim_{\varepsilon \to 0} k(\varepsilon, ||\cdot||) \varepsilon^p = 0 \quad \text{for} \quad p > n$$

where

$$k(\varepsilon, ||\cdot||) = \inf\{n: \text{ there exists an } \varepsilon - \inf\{x_1, \dots, x_n\} \text{ for } S\}.$$

Dimension is a topological concept, but in many cases it can be characterized by metrics or pseudometrics, [8], [10], [5]. In [12] Szpilrajn established some connections between the concept of dimension and the classical concept of Hausdorff measure. Borsuk [3] has constructed, for each $n \in \mathbb{N}$, an n-dimensional pseudomeasure V_n^B of compacta lying in the Hilbert space l_2 . This concept is a topological invariant, i.e. if $V_n^B(X) > 0$ then $V_n^B(Y) > 0$ for every compactum Y homeomorphic to X, [4]. Several connections between dimension and Borsuk pseudomeasure are given in [3], [4]. Since the Borsuk pseudomeasure is defined only on compacta isometrically embedable into l_2 , we construct in § 1 of this note a pseudomeasure for the class of all compacta similar to the Borsuk pseudomeasure. This pseudomeasure is shown to have many of the properties possessed by the Borsuk pseudomeasure. In § 2 we establish certain characterizations of dimension of separable metrizable spaces which are related to old results of Szpilrajn [12] and Pontrjagin and Schinirelman [11].

I wish to express my deep gratitude to H. Toruńczyk for valuable discussions and suggestions during the preparation of this note.

§ 1. Pseudomeasure and dimension of separable metric spaces. Given a separable metrizable space X. Let $M_{1b}(X)$ (resp. $P_{1b}(X)$) denote the set of all totally

^{*} The results of this paper were presented at the International Conference on Topology in Prague, August 1981.

bounded compatible metrics (resp. totally bounded continuous pseudometrics) on X. For every $d, \varrho \in P_{th}(X)$ and $p \ge 0$, put

We call $V_p(X, d)$ the p-dimensional pseudomeasure of (X, d).

1-1. Remark. Obviously if (X, d) is a compact metric space then $m_p(X, d)$ is identical with the p-dimensional Hausdorff measure $m_p^H(X, d)$ of (X, d) as defined e.g. in [9]. In general we have

$$m_p(X, d) \geqslant m_p^H(X, d)$$
 for each separable metric space (X, d) .

Let l^{∞} denote the Banach space of all bounded sequences of real numbers equipped with the supremum norm. Let $\{a_i\}_{i\in N}$ be a dense sequence in X. For every $d\in P_{th}(X)$, put

(1)
$$T_d(x) = \{d(x, a_i)\}_{i \in \mathbb{N}} \quad \text{for every } x \in X.$$

Obviously T_d is an isometry of X into l^{∞} .

Now let X be a subset of l^{∞} and $\varepsilon > 0$. A map $f: X \to l^{\infty}$ is called an ε -push iff f is a uniformly continuous map satisfying the condition $||x-f(x)|| \le \varepsilon$ for each $x \in X$.

Let us prove the following

1-2. Proposition. For every $d \in P_{tb}(X)$ we have

(2)
$$V_p(X,d) = \liminf_{\varepsilon \to 0} \{ m_p(fT(X), ||\cdot||) : f \text{ is an } \varepsilon \text{-push} \}$$

where T is an arbitrary isometric embedding of (X, d) into l^{∞} and $||\cdot||$ is the norm of l^{∞} .

Proof. Given $d \in P_{tb}(X)$ and an isometry $T: (X, d) \to l^{\infty}$. Denote

$$V = \underset{t \to 0}{\text{Liminf}} \{ m_p(fT(X), ||\cdot||) : f \text{ is an } \varepsilon\text{-push} \}.$$

If $\alpha > V$ then for each $\varepsilon > 0$ there is an ε -push $f \colon T(X) \to l^\infty$ such that $m_p(fT(X), ||\cdot||) \leq \alpha$. Define a pseudometric ϱ on X by the formula

$$\varrho(x, y) = ||fT(x) - fT(y)||$$
 for $x, y \in X$.

It is easy to see that $||d-\varrho|| \le 2\varepsilon$ and $m_p(X,\varrho) = m_p(fT(X),||\cdot||)$. Thus $V_p(X,d) \le \alpha$ and hence we get

$$(3) V_p(X,d) \leqslant V.$$

Conversely let $\alpha > V_p(X, d)$. Then for each $\varepsilon > 0$ there exists $\varrho \in P_{th}(X)$ uniformly

continuous with respect to d such that

$$||d-\varrho|| \leq \varepsilon$$
 and $m_n(X, \varrho) \leq \alpha$.

Let $H: T(X) \to T_d(X)$ be an isometry defined by the formula

$$HT(x) = T_d(x)$$
 for each $x \in X$.

By [1], [2] there are 1-Lipschitz maps H', H'': $l^{\infty} \to l^{\infty}$ such that H'|T(X) = H and $H''|T_d(X) = H^{-1}$. We define f: $T(X) \to l^{\infty}$ by the formula

$$fT(x) = H''T_{\varrho}(x)$$
 for each $x \in X$.

Since H'' is a 1-Lipschitz map we have

$$m_p(fT(X), ||\cdot||) = m_p(H''T_{\varrho}(X), ||\cdot||) \leq m_p(X, \varrho) \leq \alpha.$$

On the other hand for each $x \in X$ we have

$$d(fT(x), T(x)) = d(H''T_{\varrho}(x), H''H'T(x)) \leqslant d(T_{\varrho}(x), H'T(x))$$

= $d(T_{\varrho}(x), HT(x)) = d(T_{\varrho}(x), T_{\varrho}(x)) \leqslant 2\varepsilon$.

Thus f is an 2ε -push. Thus we get

$$(4) V \leqslant V_n(X, d) .$$

From (3) and (4) we get the assertion.

Let $V_n^B(X)$ denote the *n*-dimensional Borsuk pseudomeasure of a compactum X lying in the Hilbert space l_2 defined by the formula (see [3])

$$V_n^B(X) = \liminf_{\epsilon \to 0} \{ m_n(Q, ||\cdot||) : f : X \to Q \text{ is an } \epsilon \text{-push of } X \text{ into} \}$$

a polyhedron $Q \subset l_2$.

From Proposition 1-2 we get

1-3. COROLLARY. For every compactum X lying in l2 we have

$$V_n(X, ||\cdot||) \leq V_n^B(X)$$
 for every $n = 1, 2, ...$

where $||\cdot||$ denotes the norm of l_2 .

1-4. Remark. The author does not know whether V_n and V_n^B actually coincide on compacta in l_2 . It can however be shown that they coincide on polyhedra in l_2 (where they coincide also with m_n (cf. [3])).

Let us note that $V_p(X, d)$ has many of the properties possessed by $V_n^B(X)$. For instance (compare [3]),

- (1-5) If dim X < p then $V_p(X, d) = 0$ and if dim X > p then $V_p(X, d) = \infty$ for every $d \in M_{tb}(X)$.
- (1-6) If X is a continuum and $d \in M_{tb}(X)$ then $V_1(X, d) \geqslant \operatorname{diam}(X, d)$.
- (1-7) If X is an arc and $d \in M_{tb}(X)$ then

$$\begin{split} V_1(X,\,d) &= \text{length}(X,\,d) = \inf \big\{ \sum_{i=1}^k d\big(s(t_i),\,s(t_{i+1})\big) \colon \\ 0 &= t_0 < t_1 < \ldots < t_{k+1} = 1 \big\} \end{split}$$

for any homeomorphism $s: [0, 1] \to X$.

From Proposition 1-2 we get

(1-8) If $X \subset l^{\infty}$ and $V_p(X, ||\cdot||) > 0$ then for every $\alpha < V_p(X, ||\cdot||)$ there is an $\varepsilon > 0$ such that $V_p(f(X), ||\cdot||) > \alpha$ for each ε -push $f: X \to l^{\infty}$.

(1-9) If $f: (X, d) \to (Y, \varrho)$ is a homeomorphism of X onto Y satisfying the condition $\varrho(f(x), f(y)) \leqslant Kd(x, y)$ for $x, y \in X$ then $V_p(Y, \varrho) \leqslant K^p V_p(X, d)$.

1-10. Remark. In (1-9) the assumption on f to be a homeomorphism rather than any surjective K-Lipschitz map, is essential (take Y = [0, 1] and X = the graph of a surjection of a Cantor set on [0, 1] and f = projection of X onto Y then $V_0(X) = 0$ and $V_0(Y) = \infty$).

1-11. Remark. In [4] it is shown that there exist compact X, Y lying in the interval [0, 1] such that

$$V_1^B(X \cup Y) > V_1^B(X) + V_1^B(Y)$$
.

This example also yields that

$$V_1(X \cup Y, |\cdot|) > V_1(X, |\cdot|) + V_1(Y, |\cdot|)$$
.

Thus V is not a measure.

Let us prove the following theorem analogue of the basic result of [4].

1-12. THEOREM. Let (X, d) be a compact metric space. Then $\dim X \leq n$ if and only if $V_n(X, d) = 0$ for p > n.

Proof. Identifying (X, d) with $T_d(X)$ we may assume that $X \subset L^{\infty}$. If $\dim X \leq n$ then for each $\varepsilon > 0$ there exists an ε -push $f \colon X \to l^{\infty}$ such that f(X) is contained in a polyhedron of dimension $\leq n$. Since m_p vanishes on such a polyhedron for p > n we infer that $V_p(X, d) = 0$ if $\dim X \leq n$ and p > n.

The proof of the converse involves the following fact proved in [4].

1-13. LEMMA. Given an m-dimensional Banach space E^m and $\varepsilon > 0$. Then there exists an $\delta = \delta(\varepsilon, m)$ such that for every compactum $Y \subset E^m$ with $m_{n+1}(X, ||\cdot||) < \delta$ there exists an ε -push $g \colon Y \to E^m$ such that $\dim g(Y) \leq n$.

Proof. Since E^m is isomorphic to R^m , it suffices to consider the case $E^m = R^m$, and this is done in [4].

Using Lemma 1-13 we are able to complete the proof of Theorem 1-12.

Assume that $V_{n+1}(X, d) = 0$. We have to show that dim $X \le n$.

For each $m \in N$, put

$$l_m^{\infty} = \{x = (x_i) \in l^{\infty} : x_i = 0 \text{ for } i > m\}$$

and let $P_m: l^{\infty} \to l_m^{\infty}$ denote the natural projection. Since $T_d(X)$ is a compact in l^{∞} ,

 $||x-P_m(x)|| \le \varepsilon$ for every $x \in T_d(X)$.

Take $\delta=\delta(\varepsilon,m)$ with $E^m=l_m^\infty$ from Lemma 1-13. Since $V_{n+1}(X,d)=0$ there exists ε -push $f\colon T_d(X)\to l^\infty$ such that $m_{n+1}(fT_d(X),||\cdot||)<\delta$. Whence P_mf is an 2ε -push. Since

$$m_{n+1}(P_m f T_d(X), ||\cdot||) \leq m_{n+1}(f T_d(X), ||\cdot||) < \delta$$

by Lemma 1-13 there exists an ε -push $g: P_m fT_d(X) \to l_m^\infty$ such that $\dim gP_m fT_d(X) \le n$. Since T_d is an isometry and $gP_m f$ is an 3ε -push it follows that $\dim X \le n$.

This completes the proof of Theorem 1-12.

1-14. COROLLARY. A separable metrizable space X is of dimension $\leq n$ if and only if for every $d \in M_{tb}(X)$ and p > n we have $V_p(X, d) = 0$.

Proof. Let $\dim X \leqslant n$ and $d \in M_{\mathrm{tb}}(X)$. We may consider (X,d) as a totally bounded subset of l^{∞} . Then for each e>0 there exists an e-push $f\colon X \to l^{\infty}$ such that f(X) is contained in a polyhedron of dimension $\leqslant n$. Thus $V_p(X,d)=0$ for p>n.

Conversely assume that $V_{n+1}(X,d)=0$ for every $d\in M_{\mathrm{tb}}(X)$. By [7] there exists a $\widetilde{d}\in M_{\mathrm{tb}}(X)$ such that $\dim\widetilde{X}=\dim X$, where \widetilde{X} denotes the completion of X with respect to the metric \widetilde{d} . Since $V_{n+1}(X,\widetilde{d})=0$ we infer that $V_{n+1}(\widetilde{X},\widetilde{d})=0$. Thus by Theorem 1-12 we have $\dim X=\dim\widetilde{X}\leqslant n$.

1-15. COROLLARY (cf. Szpilrajn [12]). If X is an n-dimensional separable metrizable space then for each $d \in M_{tb}(X)$ we have $m_n(X, d) > 0$.

Proof. Let (\tilde{X},d) denote the completion of X with respect to the metric d. Since

$$m_n(X, d) = m_n(\tilde{X}, d) \geqslant V_n(\tilde{X}, d)$$
 for every $d \in M_{tb}(X)$

the assertion follows from Theorem 1-12.

§ 2. A metric characterization of dimension of separable metrizable spaces. Let X be a separable metrizable space. For every $d \in M_{\mathrm{tb}}(X)$ and $\varepsilon > 0$, put

$$k(\varepsilon, d) = \inf\{n: \text{ there exists an } \varepsilon\text{-net }\{x_1, ..., x_n\} \text{ for } (X, d)\}.$$

In this section we prove the following

2-1. THEOREM. Let X be a separable metrizable space. Then

(i) If $\dim X \ge n$ then for every $d \in M_{tb}(X)$ we have

$$\liminf_{\varepsilon\to 0} k(\varepsilon,d)\varepsilon^n > 0.$$

(ii) If dim $X \le n$ then there exists a $d \in M_{tb}(X)$ such that

$$\lim_{\epsilon \to 0} k(\epsilon, d) \epsilon^p = 0 \quad \text{for} \quad p > n.$$

Proof. (i) Assume that $\dim X \ge n$. By Corollary 1-15 for every $d \in M_{tb}(X)$ we have $\gamma(d) = m_n(X,d) > 0$. Thus for each $\alpha \in (0,\gamma(d))$ there is an $\delta > 0$ such that for every $\epsilon \in (0,\delta)$ we have

$$\inf \left\{ \sum_{i=1}^m d(A_i)^n \colon X = \bigcup_{i=1}^m A_i, \, d(A_i) \leqslant \varepsilon \right\} > \alpha.$$

Hence

$$k(\varepsilon, d) \varepsilon^n \geqslant \alpha$$
 for every $\varepsilon \in (0, \frac{1}{2}\delta)$.

This proves (i)

(ii) Let $M_n^{2n+1} \subset I^{2n+1}$, where I = [0, 1], denote the *n*-dimensional Menger universal space constructed as follows (see Engelking [7], p. 121):

For every i=0,1,... divide the interval [0,1] into $3^{i(i+1)/2}$ equal intervals. One gets a subdivision of the cube I^{2n+1} into $3^{(2n+1)i(i+1)/2}$ small cubes with the length of the edges $3^{-i(i+1)/2}$.

Let \mathcal{X} , denote the family of all such cubes. For every family \mathcal{X} of cubes, put

$$|\mathcal{K}| = \bigcup \{Q \colon Q \in \mathcal{K}\}, \quad \mathcal{S}_n(\mathcal{K}) = \bigcup \{\mathcal{S}_n(Q) \colon Q \in \mathcal{K}\},$$

where $\mathscr{S}_n(Q)$ denotes the family of all faces of Q which have dimension $\leq n$. Moreover for each $\mathscr{K} \subset \mathscr{K}_i$, put

$$\mathscr{K}' = \{ Q \in \mathscr{K}_{i+1} \colon \ Q \subset |\mathscr{K}| \} .$$

Let

$$\mathscr{F}_0 = \{I^{2n+1}\}, \quad F_0 = |\mathscr{F}_0| = I^{2n+1}$$

and for every i = 1, 2, ... define \mathcal{F}_i and F_i by induction

$$\mathcal{F}_i = \left\{ Q \in \mathcal{F}'_{i-1} \colon \ Q \cap \mathcal{S}_{n}(\mathcal{F}_{i-1}) \neq \emptyset \right\}; \quad F_i = |\mathcal{F}_i| \ .$$

Then $\{\mathscr{F}_i,\ i=0,1,...\}$ is a sequence of finite collections of cubes, $\mathscr{F}_i\subset\mathscr{K}^i$ for every i=0,1,... and $F_0\supset F_1\supset...$ is a decreasing sequence of closed subsets of I^{2n+1} . We define M_n^{2n+1} by the formula

$$M_n^{2n+1} = \bigcap_{i=0}^{\infty} F_i \subset I^{2n+1}.$$

By the universal space theorem [7] there exists an embedding of X into M_n^{2n+1} . Thus it suffices to prove the theorem for $X = M_n^{2n+1}$ and d is the metric of M_n^{2n+1} induced by the norm of the (2n+1)-dimensional Euclidean space R^{2n+1} .

Let us note that each cube Q with the length of edges $3^{-i(i+1)/2}$ contains at most $A3^{n(i+1)}$ cubes with the length of edges $3^{-(i+1)(i+2)/2}$ which intersect the n-dimensional faces of Q, where A is the number of the n-dimensional faces of Q. There are at most

$$A^{i}3^{n+2n+\cdots+(i+1)n} = A^{i}3^{n(i+1)(i+2)/2}$$

cubes with the length of edges $3^{-(i+1)(i+2)/2}$ intersecting M_n^{2n+1} . Since these cubes

form a cover of M_n^{2n+1} , for every $\varepsilon > 0$, say

$$\varepsilon \in [(2n+1)^{1/2}3^{-(i+1)(i+2)/2}, (2n+1)^{1/2}3^{-i(i+1)/2}]$$

we have

$$k(\varepsilon, d)\varepsilon^{p} \leq A^{i}3^{n(i+1)(i+2)/2}(2n+1)^{p/2}3^{-i(i+1)p/2}$$

= $A^{i}(2n+1)^{p/2}3^{(i+1)(ni+2n-pi)/2}$.

Since p > n we infer that

$$\lim_{\varepsilon\to 0} k(\varepsilon,d) \varepsilon^p \leqslant \lim_{i\to\infty} (2n+1)^{p/2} A^i 3^{(i+1)(ni+2n-pi)/2} = 0.$$

This completes the proof of Theorem 2-1.

In [12] Szpilrajn has shown that a separable metrizable space X is of dimension $\leq n$ if and only if X is homeomorphic to a subset S of I^{2n+1} with $m_p(S) = 0$ for every p > n. Let us note that the proof of Theorem 2-1 gives the following

2-2. COROLLARY. A separable metrizable space X is of dimension $\leq n$ if and only if X is homeomorphic to a subset S of the cube I^{2n+1} such that

$$\lim_{\varepsilon \to 0} k(\varepsilon, ||\cdot||) \varepsilon_{\perp}^{p} = 0 \quad \text{for every } p > n$$

where $||\cdot||$ denotes the norm of the Euclidean space R^{2n+1} .

2-3. Remark. Obviously if
$$\lim_{\epsilon \to 0} k(\epsilon, d) \epsilon^p = 0$$
 then $m_p(X, d) = 0$.

The following example shows that the converse does not hold true even for compact metric spaces.

2-4. Example. For every integer $n \in N$ there exists a compact metric space (X, d) such that $m_p(X, d) = 0$ for every p > 0 and

$$\lim_{\varepsilon \to 0} k(\varepsilon, d) \varepsilon^p = \infty \quad \text{for} \quad p < n.$$

Proof. In the Euclidean space R^n consider the set $X = A^n$, where

$$A = \left\{0, \frac{1}{\ln 2}, \frac{1}{\ln 3}, ...\right\}.$$

Since X is a countable compact set we have $m_p(X, ||\cdot||) = 0$ for every p > 0. Now let p < n. For every $\varepsilon > 0$ take $k \in N$ such that

$$\frac{1}{\ln(k+1)} - \frac{1}{\ln(k+2)} \leqslant \varepsilon \leqslant \frac{1}{\ln k} - \frac{1}{\ln(k+1)}.$$

Then we have

$$k(\varepsilon, ||\cdot||)\varepsilon^{p} \geqslant k^{n} \left(\frac{\ln\left(1 + \frac{1}{k+1}\right)}{\ln(k+1)\ln(k+2)} \right)^{p} = \frac{k^{n}}{(k+1)^{p}} \left(\frac{\ln\left(1 + \frac{1}{k+1}\right)^{k+1}}{\ln(k+1)\ln(k+2)} \right)^{p}.$$

Since p < n we infer that

$$\lim_{\varepsilon \to 0} k(\varepsilon, ||\cdot||) \varepsilon^p = \infty$$

From Theorem 2-1 we get also

2-5. COROLLARY (Pontrjagin-Schinirelman [11], Bruijning [5]). For every separable metrizable space X we have

$$\dim X = \inf\{k(d) \colon d \in M_{tb}(X)\}\$$

where

$$k(d) = \liminf_{\varepsilon \to 0} \{ \log_2 k(\varepsilon, d) / \log_2(\varepsilon^{-1}) \}.$$

Proof. Assume that $p > \dim X$. By Theorem 2-1 there exists a metric $d \in M_{tb}(X)$ such that $\lim_{\epsilon \to 0} k(\epsilon, d) \epsilon^p = 0$. Thus there exists an $\delta > 0$ such that

$$k(\varepsilon, d)\varepsilon^{p} < 1$$
 for every $\varepsilon \in (0, \delta)$.

Hence

$$\log_2 k(\varepsilon, d) for every $\varepsilon \in (0, \delta)$.$$

Therefore $k(d) \leq p$. Thus $k(d) \leq \dim X$.

Conversely assume that p>k(d) for some metric $d\in M_{\mathrm{tb}}(X)$. Take an r such that p>r>k(d). Thus there exists a decreasing sequence of positive numbers $\{\varepsilon_n\}$ tending to zero such that

$$\log_2 k(\varepsilon_n, d)/\log_2(\varepsilon_n^{-1}) < r$$
 for every $n \in N$.

This implies that

$$k(\varepsilon_n, d) < \varepsilon_n^{-r}$$
 for every $n \in N$.

Since p > r we have

$$\lim_{n\to 0} k(\varepsilon_n, d) \varepsilon_n^p = 0.$$

Consequently by Theorem 2-1(i) we get $\dim X \leq p$. Thus

$$\dim X \leq k(d)$$
 for some metric $d \in M_{tb}(X)$.

This completes the proof of Corollary 2-5.

2-6. Remark. Corollary 2-5 has been established originally by Pontrjagin and Schinirelman [11] for compact metrizable spaces. Bruijning [5] extended this result for separable metrizable spaces. The proof of Bruijning [5] is based on the Pontrjagin-Schinirelman theorem.

2-7. Remark. Let us put

1200

$$K(d) = \limsup_{\varepsilon \to 0} \{ \log_2 k(\varepsilon, d) / \log_2(\varepsilon^{-1}) \}.$$

Bruijning [6] has provided an example of a metric space (X, d) for which k(d) = 0 whereas $K(d) = \infty$. He asked whether Corollary 2-5 still holds if k(d)

is replaced by K(d)? Is there a metric $d \in M_{tb}(X)$ for which $K(d) = \dim X$? (see [6], p. 45). The following corollary answers affirmatively his questions

2-8. COROLLARY. For any separable metrizable space X we have

$$\dim X = \inf\{K(d) \colon d \in M_{tb}(X)\}.$$

Moreover this infimum is attained.

Proof. Let d denote the metric obtained in Theorem 2-1(ii). Then we have

$$k(d) = K(d) = \lim_{\varepsilon \to 0} \log_2 k(\varepsilon, d) / \log_2(\varepsilon^{-1}) \leq \dim X.$$

Therefore the result follows from Corollary 2-5.

References

- N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), pp. 405-439.
- [2] S. Banach, Theory of Functions of Real Variables, Warszawa 1951.
- [3] K. Borsuk, An alternative concept of the n-dimensional measure, Ann. Polon. Math. 42 (1983), pp. 17-24.
- [4] S. Nowak and S. Spież, Remarks on the n-dimensional geometric-measure of compacta, Fund. Math. 121 (1984), pp. 59-71.
- [5] J. Bruijning, A characterization of dimension of topological spaces by totally bounded pseudometrics, Pacific J. Math. 84 (1979), pp. 283-289.
- [6] Some characterizations of topological dimension, Amsterdam 1980.
- [7] R. Engelking, Dimension Theory, Warszawa 1978.
- [8] J. Nagata, Note on dimension theory for metric spaces, Fund. Math. 45 (1958), pp. 143-181.
- [9] Modern Dimension Theory, Amsterdam-Groningen 1965.
- [10] P. A. Ostrand, A conjecture of J. Nagata on dimension and metrization, Bull. Amer. Math. Soc. 71 (1965), pp. 623-625.
- [11] L. Pontrjagin and L. Schinirelman, Sur une propriété métrique de la dimension, Ann. of Math. 33 (1932), pp. 156-162.
- [12] E. Szpilrajn (E. Marczewski), La dimension et la measure, Fund. Math. 28 (1937), pp. 81-89.

Received 26 May 1982; in revised form 6 November 1982