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Remarks on characterization of dimension
of separable metrizable spaces *

by

Nguyen To Nhu (Warszawa)

Abstract. We establish some characterizations of dimension of seﬁarable metrizable spaces.
For instance, it is shown that a separable metrizable space X is of dimension <n if and only if X is
homeomorphic to a subset .S of the (274 1)-dimensional cube I?"*1 such that

limk(e, |[-])e? = 0 for p>n
=0
where

k(e, |I'1) =inf{n: there exists an s-m\at{xl, .oy Xn} for S}.

Dimension is a topological concept, but in many cases it can be characterized
by metrics or pseudometrics, [8], [10], [5]. In [12] Szpilrajn established some con-
nections between the concept of dimension and the classical concept of Hausdorff
measure. Borsuk [3] has constructed, for each ne N, an n-dimensional pseudo-
measure V. of compacta lying in the Hilbert space [,. This concept is a topological
invariant, i.e. if ¥2(X)>0 then V¥ Y¥)>0 for every compactum ¥ homeomorphic
to X, [4]. Several connections between dimension and Borsuk pseudomeasure
are given in [3], [4]. Since the Borsuk pseudomeasure is defined only on compacta
isometrically embedable into /,, we construct in § 1 of this note a pseudomeasure
for the class of all compacta similar to the Borsuk pseudomeasure. This pseudo-
measure is shown to have many of the properties possessed by the Borsuk pseudo-
measure. In § 2 we establish certain characterizations of dimension of separable
metrizable spaces which are related to old results of Szpilrajn [12] and Pontrjagin
and Schinirelman [11].

I wish to express my deep gratitude to H. Torunczyk for valuable discussions.
and suggestions during the preparation of this note.

§ 1. Pseudomeasure and dimension of separable metric spaces. Given a separ-
able metrizable space X. Let My(X) (resp. Pp(X)) denote the set of all totally

* The results of this paper were presented at the International Conference on Topology in.
Pragiie, August 1981. )


GUEST


62 Nguyen To Nhu

bounded compatible metrics (resp.. totally bounded continuous pseudometrics)
on X. For every d, 9 € P(X) and p=0, put

lld—ail = sup{ld(x, »)—e(x, M|: x,y€ X},
my(X,d) = liminf{Zd(Ai)”: X =\ Ay d(4)<e for i = 1,..,n},
VX, d) = hmmf{mp(X 0): |ld— g[|<£ and g is uniformly
continuous with respect to 4} .

We call V,(X, d) the p-dimensional pseudomeasure of (X, d).

1-1. Remark. Obviously if (X, d) is a compact metric space then m,(X, d)
is identical with the p-dimensional Hausdorff measure mf(X, d) of (X,d) as
defined e.g. in [9]. In general we have

my(X, d)me(X ,d) for each separable metric space (X, d).

Let [® denote the Banach space of all bounded sequences of real numbers
equipped with the supremum norm. Let {a;},ey be a dense sequence in X. For every
dEPtb(X)’ put
6] Ty(x) = {d(x, ad}ien

Obviously 7, is an isometry of X into I*.

Now let X be a subset of /® and &>0. A map f: X — [® is called an g-push
iff f is a uniformly continuous map satisfying the condition ||x—f(x)|| <& for each

x e X.
Let us prove the following

1-2. PROPOSITION. For every d e Py(X) we have

for every xe X .

) VX, d) = Iiminf{m,(fT(X), |I-]]): f is an &-push}
e=+0
where T is an arbztrary isometric -embedding of (X, d) into 1° and ||-|| is the norm

of 1®.
) Proof. Given dePﬂ,(X) and an 1somctry T: (X, d) - I°. Denote

V= lemf{m (T, 11-1): fxs an e-push}.
If «>V then for each e>0 there is an g-push f: T'(X) —I® such that
mp(fT(X), j|‘I)<o. Define a pseudometric ¢ on X by the formula
e(x,y) = lfTx)~fT)Il  for

It.is easy to see that ||d—o|/<2e and my(X, @) = m(fI(X), |I-|). Thus
V(X,d)<« and hence we get

€) : VX, d)<V.

x,yeX.

Conversely let a>V,(X,d). Then for each e>0 there exists ¢ € Py(X) uniformly
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continuous with respect to d such that
ld—oll<e and my (X, ¢)<a.

Let H: T(X) - T,(X) be an isometry defined by the formula
HT(x) = Tyx) for each xeX.

By [1], [2] there are 1 Lipschitz maps H', H'": 1® - I® such that H'|T(X)
= H and H"|TyX) = . We define f: T(X) — I* by the formula
fT(%) = H'T )

Since H' is a l-Lipschitz map we have

for each xe X'.

m(FTCO, 1) = my(H T, (| <my(X, @) <a .

On the other hand for each x € X we have

A7), T(x)) = AT (x), H"H'T(x)<d(To(x), HT(x)
= d(T(x), HT(x)) = d(T(x), Ta(x)) <% .

Thus f is an 2g-push. Thus we get
“ V<V, (X, d).

From (3) and (4) we get the assertion.
Let ¥P(X) denote the n-dimensional Borsuk pseudomeasure of a compactum
X lying in the Hilbert space I, defined by the formula (see [3])

VEX) = liminf{m,(Q, ||-|): f: X— Q is an ¢-push of X into
e=+0
~a polyhedron Qcl,}.
‘From Proposition 1-2 we get
1-3. COROLLARY. For every compactum X lying in I, we have

VX, 1D VXY for every n=1,2,...

where |||| denotes the norm of 1.

1-4, Remark. The author does not know whether ¥, and V7 actually coincide
on compacta in /,. It can however be shown that they coincide on polyhedra in I,
(where they coincide also with m, (cf. [3]).

Let us note that ¥,(X, d) has many of the properties possessed by VEX). For
instance (compare [3]), ‘ o

(1-5) If dimX<p then V,(X,d) = 0 and if dim X>p then V,(X,d) = oo for

every de My(X).
(1-6) If X is a continuum and d € M,(X) then- Vy(X, d)>diam(X, d).
(1-7) If X is an arc and de My(X) then
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Vi(X, d) = length(X, d) = mf{ Z d(s(t), s(tien)):

0 = t4<ty < oo <hpy; =1}

for any homeomorphism s: [0, 1] = X.
From Proposition 1-2 we. get
(1-8) If X<I® and V,(X,||-])>0 then for every oc<V(X |[-]}) there is an
e>0 such that ¥,(f(X), ||-|[)>a for each e-push f: X — I%.
(1-9) If f: (X,d) - (Y, @) is a homeomorphism of X onto ¥ satisfying the
condition g(f(x), f(3)) < Kd(x, y) for x, y € X then V,(¥, Q) KK V(X d).
1-10. Remark. In (1-9) the assumption on f to be a homeomorphism. rather
than any surjective K-Lipschitz map, is essential (take Y = [0, 1] and X = the
graph of a surjection of a Cantor set on [0, 1] and f = projection of X onto ¥
then Vyo(X) = 0 and V(YY) =
1-11. Remark. In [4] it is shown that there exist compacta X, ¥ lying in the
interval [0, 1] such that

Vi U V)>ViIX)+ Vi)
This example also yields that
ViX o Y- D>V, [ D+Vi(X 1D

Thus ¥V is not a measure.

Let us prove the following theorem analogue of the basic result of [4].

1-12. TueoreM. Let (X, d) be a compact metric space. Then dim X<n if and
only if V,(X,d) =0 for p>n.

Proof. Identifying (X, d) with T;(X) we may assume that X<L®. If dimX'<n
then for each £>0 there exists an e-push f: X — [® such that f(X) is contained
in a polyhedron of dimension <n. Since m, vanishes on such a polyhedron for
p>n we infer that V,(X,d) = 0 if dimX<»n and p>n.

The proof of the converse involves the following fact proved in [4].

1-13. LEMMA. Given an m-dimensionul Banach space E™ and e¢>0. Then there
exists an 8 = 8(e, m) such that for every compactum Y <E™ with m,. (X, ||-|)<é
there exists an e-push g: ¥ — E™ such that dimg(Y)<n.

Proof. Since E™ is isomorphic to R™, it suffices to consider the case E™= R™,
and this is done in [4].

Using Lemma 1-13 we are able to complete the proof of Theorem 1-12.

Assume that V,.(X, d) = 0. We have to show that dimX<n.

For each-m e N, put '

Ip={x=(x)el®: x; =0 for i>m}

and let P,: I° — Iy denote the natural projection. Since Ty(X) is a compact in %,
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for every &>0 there exists an me N such that

lx—P,(x)|<e for every xeTyX).

Take & = 8(e, m) with E™ = [? from Lemma 1-13. Since V. (X, d) = 0
there exists e-push f: Ty(X) — 1% such that m,,,(fT4X), ||- |)<$. Whence P,
an 2e-push. Since

a3 (Ponf T X, 11 1) Sy 4 (FTUX), 1] 11) <5

by Lemma 1-13 there exists an e-push g: P, fT,(X) - I® such that dimgP, fT,(X)
<n. Since Ty is an isometry and gP,f is an 3e-push it follows that dim X'<n.

This completes the proof of Theorem 1-12.

1-14. COROLLARY. A separable metrizable space X is of dimension <n if and
only if for every de My(X) and p>n we have ViX,d)=0.

Proof. Let dim X'<n and de M(X). We may consider (X, d) as a totally
bounded subset of /. Then for each &>0 there exists an g-push f: X — I® such
that f(X) is contained in a polyhedron of dimension <. Thus Vé(X ,d) =0
for p>n.

Conversely assume that ¥, ,(X,d) =0 for every de My(X). By [7] there
exists a d e M(X) such that dim¥ = dim ¥, where X denotes the completion
of X with respect to the metric d. Since ¥,,,(X, d) = 0 we infer that ¥V, ,(¥,d)
= (, Thus by Theorem 1-12 we have dimX = dim¥X <n.

1-15. CoroLLARY (cf. Szpilrajn [12]). If X is an n-dimensional separable metriz-
able space then for each de My(X) we have m(X, d)>0.

Proof. Let (X, d) denote the completion of X with respect to the metric d.
Since

m(X,d) = m(&, )2V X, d)

the assertion follows from Theorem 1-12.

for every de My(X)

§ 2. A metric characterization of dimension of separable metrizable spaces. Let

X be a separable metrizable space. For every de M/ X) and >0, put
k(e,d) = inf{n: there exists an s-net {x;,..., X,} for (X, d)}.

In this section we prove the following
2-1, THEOREM, Let X be a separable metrizable space. Then

(i) Iff dimX=n then for every de My(X) we have
liminfk (e, d)&">0.
20

(i) If dim X<n then there exists a de My(X) such thut

limk(e,d)e? =0 for p>n.
=0
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Proof. (i) Assume that dimX>n. By Corollary 1-15 for every de My(X)
we have y(d) = m(X,d)>0. Thus for each we(0,7(d) there is an §>0 such
that for every ¢ € (0, &) we have

inf{Y dd)" X = U 4;,d4)<e}>a.
i=1 i=1

Hence

ke, dye"=a  for every e€(0,%9).

This proves (i).

(i) Let M2"+1 1> where I = [0, 1], denote the n-dimensional Menger
universal space constructed as follows (see Engelking [7], p. 121):

For every i = 0, 1, ... divide the interval [0, 1] into 3'“*"/? equal intervals,
One gets a subdivision of the cube I2"** into 3@" D172 small cubes with the
length of the edges 370+,

Let o, denote the family of all such cubes. For every family o of cubes, put

] =U{0: QeH}, S =U{Z(QD): Qe A},

where &,(Q) denotes the family of all faces of Q which have dimension <n. More-
over for each o <y, put

A= {QeA 41 Qc|A}-
Let

g,—o — {12n+1}’ FO — ly()! = 1'2n+1

and for every i = 1,2, ... define &; and F; by induction

‘Fi={0eFi-p Qﬂg’n(%—o#ﬁ}; Fy=|Fy. ‘

Then {#,, i=0,1,..} is a sequence of finite collections of cubes, F ;=X
for every i = 0,1, ... and FyoF,;> ... is a decreasing sequence of closed subsets
of I?"*1 We define M2"*! by the formula

M’%n-’-l — a FIC12n+1-
i=0

By the universal space theorem [7] there exists an embedding of X into M2"**,
Thus it suffices to prove the theorem for X = M2"*! and d is the metric of MZ"*!
induced by the norm of the (2n+1)-dimensional Euclidean space R+,

Let us note that each cube Q with the length of edges 3™ '¢*%/2 contains at
most A3"**Y cubes with the length of edges 3~ ¢+10T2/2 which intersect the
n-dimensional faces of Q, where A4 is the number of the n-dimensional faces of Q.
There are at most

AFguanbesk (R gign(ir 1)+ 2)/2

cubes with the length of edges 3~ V22 jntersecting M2"*?, Since these cubes
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form a cover of M"*', for every £>0, say
g€ [(2n+1)23-DEDIZ o 4 1725104 1)2)
we have

ke, dys” < A'3MHDEDI2 0, | 1ypl23 =i+ Dpf2
= i(2n+1)p123(i+1)(ni+2n—pi)/z

Since p>n we infer that

limk(e, d)e’< lim (2n+41)P/2 430+ Di+2n=pbj2 _ g
1=+ 00

=0
This completes the proof of Theorem 2-1.

In [12] Szpilrajn has shown that a separable metrizable space X is of dimension
<n if and only if X is homeomorphic to a subset S of I*"** with m,(S) = 0 for
every p>n. Let us note that the proof of Theorem 2-1 gives the following

2-2. COROLLARY. A separable metrizable space X is of dimension <n if and
only if X is homeomorphic to a subset S of the cube I*"** such that

limk(e, ||-|)e5 = 0  for every p>n
a0

where ||*|| denotes the norm of the Euclidean space R*'*1,
2-3. Remark. Obviously if limk(e, d)e” = 0 then m,(X, d) = 0.
50

The following example shows that the converse does not hold true even for
compact metric spaces.

2-4. EXAMPLE. For every integer ne N there exists a compact metric space
(X, d) such that my(X,d) = 0 for every p>0 and

limk(e, d)e? == 0 for p<n.
80

Proof. In the Buclidean space R" consider the set X = 4", where

a=fo, L,
T2 w3’y

Since X is a countable compact set we have my(X, ||-||) = 0 for every p>0.
Now let p<n. For every ¢>0 take ke N such that
1 1 cis R ‘
Ink  In(k+1)

Ink+1)  In(k+2)
Then we have
. 1 \F+1\ P
(m (1 + '121_1) .

1 P
In (1 + m) &

G+ D)Ink+2)/ G+ \in(k+DInlk+2)

ke, |- |De"=k"
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Since p<n we infer that

limk(e, ||-})e” = oo
8=+0

From Theorem 2-1 we get also
2.5, COROLLARY (Pontrjagin-Schinirelman [11], Bruijning [5)). For every
separable metrizable space X we have

dimX = inf{k(d): de Myp(X)}
where
k(d) = liminf{log, k (¢, d)/logs(e™ )} .
z—+0

Proof. Assume that p>dim X. By Theorem 2-1 there exists a metric d € M,fX)
such that limk(e, d)e® = 0. Thus there exists an §>0 such that

&0
ke, d)e?<1 for every e€(0,0).
Hence
log, k(e, d)<plogy(e™*)  for every e€(0,d).

Therefore k(d)<p. Thus k(d)<dim X.

Conversely assume that p>k(d) for some metric d € M,,(X). Take an r such
that p>r>k(d). Thus there exists a decreasing sequence of positive numbers {e,}
tending to zero such that

log, k(e,, d)log, (&5 ) <r
This implies that

for every ne N .

k(e,, d)<e,” for every neN.

Since p>r we have
lim k(e,, d)eb = 0.
&0

Consequently by Theorem 2-1(i) we get dimX<p. Thus

dim X<k(d) for some metric de My(X) .

This completes the proof of Corollary 2-5.

2-6. Remark. Corollary 2-5 has been established originally by Pontrjagin
and Schinirelman [11] for compact metrizable spaces. Bruijning [5] extended this
result for separable metrizable spaces, The proof of Bruijning [5] is based on the
Pontrjagin—Schinirelman theorem.

2-7. Remark. Let us put

K(d) = limsup{log,k (e, d)/log,(e™ ")} .
=0

Bruijning [6] has provided an example of a metric space (X, d) for which
k(d) = 0 whereas K(d) = co. He asked whether Corollary 2-5 still holds if k(d)
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is replaced by K(d)? Is there a metric d e M (X) for which K(d) = dimX? (see
[6], p. 45). The following corollary answers affirmatively his questions

2-8. COROLLARY. For any separable metrizable spaée X we have

dimX = inf{K(d): de Mg(X)}.

Moreover this infimum is attained.

{11

[2]
(3]

[4]

[5

—

[6]
I7]
i8]
9]
[10]

[11]

[12]

Proof. Let d denote the metric obtained in Theorem 2-1(ii). Then we have

k(d) = K(d) = limlog, k(e, d)/log,(¢" 1) <dim X .
-0

Therefore the result follows from Corollary 2-5.
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