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Cantor sets in Prohorov spaces
by

George Koumoullis (Athens)

Abstract. Let X be a Suslin set in a Prohorov (e.g. complete) metric space and £ a partition:
of X to Fy-sets. It is proved that either & is o-discretely decomposable, or X contains a compact
set homeomorphic to the Cantor set which meets uncountably many members of £.

Introduction. A. classical theorem of Suslin states that every analytic subset
of a Polish (separable complete metric) space is either countable, or contains a copy
of the Cantor set. A generalization to the non-separable case has been obtained
by Elkin [1]: every absolutely analytic space (i.e. homeomorphic to a Suslin subset
of some complete metric space) is either ¢-discrete, or contains a copy of the Cantor
set. This theorem had previously been proved by Stone [14] for absolutely Borel
spaces. .

In this paper we show that completeness can be replaced by the Prohorov
property, a measure-theoretic property enjoyed by complete metric spaces. Moreover,
a stronger form is obtained, which involves a partition of the space to F,-sets (see
the abstract). This result is proved in Theorem 2 for a class of spaces which includes
Suslin subsets of Prohorov metric spaces (Proposition 4). It is also proved that
F,-sets cannot be replaced by Gy-sets.

Preliminaries. All topological spaces considered in this paper are assumed to:
be at least Hausdorff. A non-negative finite Borel measure p on a space X is called
tight if u(B) = sup{u(K): K= B, K is compact} for all Borel sets B in X. We de-
note by M (X) the space of non-negative tight measures on X, endowed with the
weak topology. That is, for a net {u,} in M*(X), p; — p if and only if | fdu, — § fdu
for all bounded continuous real-valued functions f on X, We say that X is a Pro-
horov space if every compact set M in M*(X) is uniformly tight, that is, for every
£>0 there oxists a compact set K in X such that u(X\K)<e for all pe H.

Tt is well-known that complete metric spaces are Prohorov, the first result
being that Polish spaces are Prohorov [11]. Here all Prohorov spaces will be as-
sumed to be metrizable. One of our main tools will be the deep, result of Preiss
[10, Theorem 5] that every Prohorov metric space is a Baire space. We shall also-
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use the fact that the Prohorov property is preserved by countable products and
Gj-subspaces (see [7]), as well as the following lemma.

Lemma 1 ([15, Lemmas 5.1 and 5.3]). Let H be a compact subset of M*(X)
and F a closed subset of X. Then:

@) The set {ulg: we H} is relatively compact in M*(F), where ply denotes
the restriction of u to the Borel sets in F.

(ii) If p(F) = 0 for all pe H, then for every >0 there is an open set Vin X
such that F<V and u(V)<e for all ue H.

‘We now present some notions from Hansell ([4] and [5]), necded for the
statement of Theorem 2 below.

Let & be a family of subsets of a space X. We say that & is o-diseretely de-
composable [4], abbreviated ¢-dd, if there is a family {4g,: Eed, ne N} such
that E = | {4g,,: neN} for every Ee & and {Ag,: Ee &} is a discrete family
for every n e N. A base for & is a family 4 of subsets of X such that for every Ee &
there corresponds #Zyc® with E = ) #y. A o-discrefe base is a base which is
also a o-discrete family.

Clearly, every o~dd family of sets has a o-discrete base; the converse holds
when the family is disjoint.

Finally, a function f: X — Y is called co-o-~discrete [5)], if (&) has a o-discrete
base whenever & is discrete (or, equivalently, has a c-discrete base).

“'The main theorem. In this section we prove

THEOREM 2. Let X be a continuous co-o-discrete image of a Prohorov metric
space and & a partition of X to F,-sets. Then exactly one of the following holds:
either (i) & is o-dd, or (ii) X contains a compact set C which meets uncountably many
members of &. In the latter case, C can be chosen to be homeomorphic to the Cantor set.

For the proof of this theorem we shall use the following notation and Lemma 3.
‘Given a family & of subsets of a space X we set

6, ={Ecé: EnZ+ 0)
and

flz={EnZ: Ec &)}

for every subset Z of X: As in [9] we say that Z is &-discrete if for every X 6 Z
there exists £e & with £~ Z = {x}. We shall also denote by K (&, X) the largest
subset Z of X with the property that no nonempty open set in Z is contained in
any member of &; K(&,X) is closed in X and is calied the “non~locally-& kernel
of X (see [13, Theorem 1] for the existence of this kernel).

Every continuous function f* X — ¥ induces a continuous function S MUY
— M*(Y) defined by f,(u)(B) = u(f ~'(B)) for all Borcl sets B in Y. In the pat-
ticular case where X is a subspace of ¥ and f'is the inclusion map, we write fi instead
of fu(). Thus, if His a compact set in M*(X), then {i: & H'} is compact in M*(¥).

The following lemma is based on an idea of [3] and [8]; namely, in a separable
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metric space we can obtain a O-dimensional subspace by removing a set of
arbitrarily small measure.

LeEMMA 3. Let Y be a separable metric space, D a countable subset of Y and H
a relatively compact subset of MT(D). Then for every e>0 there exists a closed
0-dimensional subset B of Y such that p(Y\B)<e for dll pe H.

Proof. Clearly we can assume that H is compact, If d denotes the metric of Y,
then for cvery open set U in Y and every x e U there is r>0 such that

{rey: dy,¥)<rjcU
and
{ye¥:d(y,x)=1}nD=0.

(Such r>0 exists because the first relation holds for uncountably many r>0 and
the corresponding sets in the second are disjoint). It follows that there is a base #
for the topology of ¥ such that SU N D = & for all Ue #. Since Y is second
countable, we can assume that & is countable, say # = {U,: n e N}. By Lemma 1 (ii),
for every n e N there is an open set ¥, with V,=8U, and A(V,)<e/2" for all pe H.
Setting B = ¥\ U ¥,,, we have that B is closed, 0-dimensional (since B< Y\LJ 8U,)

and B(Y\B)<e for all pe H.

Proof of Theorem 2. First we notice that (i) = ~ (ii). Indeed, if & is o-dd
and C is a compact set in X, then &|¢ is a o-dd partition of C and [2, Lemma 2]
implies that &¢ is countable.

Next we prove that ~ (i) = (i). Thus, we assume that & is not o-dd. Let f be
a continnous co-o-discrete function from a Prohorov metric space ¥ onto X and
set @ = {f "(E): Ee &}. Since f is continuous, & is a partition of ¥ to F,-sets.
Since f is co-o-discrete, & is not ¢-dd. (Otherwise, & would be a disjoint family
with a o-discrete base and so o-dd).

Let Z = K(@, Y). If Z is empty, then by [13, Theorem 4'] ¥ = U F,, where

neN
each F, is closed in ¥ and locally & (that is, every x € F, has a neighborhood in F,
contained in some member of 2). But now for every neN, {Dn F,: DeJ} is
a discrete family and for every De @, D = U D n F,, which contradicts the fact
n

that @ is not o-dd. Therefore Z is nonempty. Morcover, it is easy to see that @[y is
a partition of Z to F-sets with empty interior in Z. Note also that Z, as a closed
subspace of ¥, is by Preiss’ theorem a Baire space. It follows that every countab.h:
union of members of &, has empty interior in Z. Using this fact we can easily
construct by induction points y(s) € Z for every finite sequence s of natural numbers
such that the set @ of all p(s) is @|;-discrete and 0<d(y(s), y(s, n))<1/n, where
J denotes the metric of Y and (5, 71) = (54, S35 vees Sn 1) i 5 = (5, $2, .00, 5. I‘t is
clear that @ is countable and dense in itself; so by a wcll-knowx.l theorem of Sier-
pifiski (sec [6, p. 287]), Q is homeomorphic to the space of rational numbers.


GUEST


158 G. Koumoullis

By Preiss’ theorem, Q is not Prohorov and so there is a compact set H of
probability measures on Q, which is not uniformly tight. Since ¥ is a Prohorov
space, for every £>0 there is a compact set K< Y such that

(*) wEn Q)>1—e for all ueH.

Crama. There is some ¢>0 such that for any compact set X satisfying (%), @ x IS
uncountable. )

Suppose that the claim is false and let e>0. Choose a compact set K< ¥ such
that u(K 0 @)>1—¢/2 for all pe H and Dy is countable. Then

ENQ=U{KnD: Ded\Q =U{KnD\Dn Q: De@y},

\)71;;& D n Q is either the empty set or a singleton (since Q is 9-discrete). This
shows that K\Q is F, in K, hence K n Q, as a Gs-set in K, is a Prohoroy space.
Applying the Prohorov property for the relatively compact set Hy = {ulgnoi e H 1
(see Lemma 1(i)), there is a compact set LK n Q such that w(Kn O\L)<gf2
for all pe H. Then we have u(Q\L)<e for all e H, which contradicts the fact
that H is not uniformly tight.

Now we fix an ¢>0 as in the claim. If X is any compact set satisfying (x) and
we set C = f(K), then &¢ is uncountable and the proof of ~ (i) = (ii) is complete.

It remains to show that C can be chosen to be a Cantor set, Let K be a compact
set in ¥ with p(K n Q)>1—¢/2 for all pe H. We apply Lemma 3 for the compact
metric space f(K), the countable subset /(K ~ Q) and the relatively compact set

H = {f*(H’KnQ): ﬂEH};=f*(Ho)

of measures on f(K n Q). So there is a closed 0-dimensional subset B of J(K) such
that 7(f(K)\B)<z/2 for all ve H,. Setting X, = f~(B) ~ K we have that K, is
compact and for every pe H

HE 0 ONKy) = p(K 0 ONTH(B)) = filblkag) (FK)NB)<s/2 .

Therefore u(Ky 0 Q)>1~¢ for all ue H. By the claim, 9y, is uncountable, so
€ yxyy = &p is uncountable. Finally, by the Cantor-Bendixson theorem [6, p. 253),
B = A u Cwhere 4 is countable and C is compact perfect. Since € is also 0-di-
mensional, C is homeomorphic to the Cantor set. Since &4 is countable and &y
o, U E¢, &¢ is uncountable.

Suslin sets in Prohorov spaces. In this scction we show that the class of Spaces
for which Theorem 2 holds includes Suslin sets in Prohorov metric spaces. Recall
that the Suslin sets in a space X are obtained from the family of closed sets in X by
the Suslin operation (or & -operation [61).

As in [2] we say that a function f: X — Y is o-dd-preserving if f(&) is o-dd
whenever £ is a-discrete (or, equivalently, ¢-dd) family of subsets of X. It is clear
that every ¢-dd-preserving function is co-o-discrete.
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The following facts about o-dd-preserving functions may be proved exactly
as the analogous properties of co-o-discrete functions (see Corollary 3.9 and
Propositions 3.11 and 3.3 in [S)): Let f* X —» Y be a function between metrizable
spaces. Then we have (a) f is o-dd-preserving if and only if J(#B) is o-dd for some
o-discrete base 4 for the topology of X; (b) if f is open, onto and f~*({y}) is separ-
able for all y € ¥, then fis o-dd-preserving; and (c) if fis o-dd-preserving, then so
is the restriction f|p of f to any EcX.

We are now rcady to prove

ProrosiTiON 4. Every Suslin set in a Prohorov metric spdce is d continuous
a-dd-preserving (hence also co-o-discrete) image of some Prohorov metric space.

Proof. Let X be a Prohorov metric space and let & (X)) denote the family of
all subsets of & which are continuous o-dd-preserving images of Prohorov metric
spaces. We first prove that & (X) is closed under countable unions and countable
intersections.

Let {¥,: n=1,2,..} be a sequence of elements of &(X). Then there are
Prohorov metric spaces X, and functions f;: X, — Y, for n =1,2,..., such that
cach £, is continuous, o-dd-preserving and onto. The topological sum Y X, of the

"

sequence {X,: n = 1,2, ...} is 2 Prohorov metric space (see e.g. [15, Theorem 5.5])
and the function F: )\ X, » U Y, with F(x) = f,(x), if xeX,, is continuous,

n n
o-dd-preserving and onto. Therefore ) ¥, e & (X).
To show that [} ¥, € &(X) we consider the function f+ I1%, - T] ¥, defined
n n

n
by f((%nen) = (/4(5)nen, Which is continuous and onto. Moreover, it is not hard
to see, using (a) above, that f is ¢-dd-preserving. Note also that I1 X, is a Prohorov
metric space and that the set "

A=A{hene[[ Yy =y, =}
n
is closed in [ ¥,. Thus, f~*(4) is a Prohorov metric space and flp-say: fHA) - 4
n .
is o-dd-preserving. Since 4 is homeomorphic to () ¥;, it follows that N Y, e&(X).
n

n

Finally, we prove that & (X) is closed under the Suslin operation. This will
complete the proof becausc X is assumed to be a Prohorov space and so every
closed subset of X'is in 8 (X). Let ¥ be a subset of ¥ which is obtained form Z(X)
by the Suslin operation. By [12, Theorem 2, 6.2] there is BcXx N™ of the form

B = ﬂ U (S(m n) X-T(m, n)) ’
neN meN

whete Sq,uy € #(X) and T, is closed in NV, such that ¥ = pry(B). Since each
Sonm % Tin,my cloarly. belongs to & (X' xNV), it follows by the above that B
e P(Xx NV). Notice also that the projection pry: X' x NV — X is o-dd-preserving
by (b) above. Thus, using the fact that the composition of o-dd-preserving functions
is o-dd-preserving, it follows that ¥e £ (X).
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Remarks. Since every function on a separable metric space is co-o-discrete,
Theorem. 2 holds when X is a continuous image of a separable Prohorov metric
space. Note also that in this case & is o-dd if and only if & is. countable.

By Proposition 4, Theorem 2 holds, in particular, when X is absolutely analytic.
If, moreover, & is the partition of X to singletons, Theorem 2 reduces to the case
of El’kin’s theorem mentioned in the introduction.

Tt is worth noting that a proof of ~ (i) = (ii) in Theorem 2 for absolutely
analytic spaces is possible with‘out using ths Prohorov property. To do this, observe
as in Proposition 4 that every Absolutely analytic space is a continuous co-g-discrete
image of a complete metric space, (This actually characterizes ubsolutely analytic
spaces; see Hansell [5]). Now we can proceed as in the proof of Theorem 2, where
Y is a complete metric space, and find a Z-discrete, dense in itself, countable sub-
set Q of Y. However, the elements y(s) of @ are now chosen so that:

0<d(p(s), ¥(s, m)<1/211%1,

m
where [jsl} = Y 5; if 5 = (s, 82, v, 5,), and d is a complete metric inducing the
f=1

topology of Y. Then we have that Q is totally d-bounded, so its closure K = @ is
compact. We claim that K n D has empty interior in X for every D e 9. This will
complete the proof because by the Baire Category Theorem %y, hence also &y ,.
must be uncountable. To prove the claim assume, if possible, that there is a non-
empty open set ¥ in K with V<K n D. Then y(s)e V for some y(s)e Q. Since
y(s,n) = y(s), it follows that y(s,n) e ¥V for some n, which contradicts the fact
that Q is Z-discrete. This paragraph was communicated to me by Professor
D. H. Fremlin to whom I express my thanks, )
Finally, we show by an example that Theorem 2 fails for partitions to Borel
sets of higher classes (even for partitions to Gj;-sets). Let Q denote the space of
countable ordinals with the discrete topology and set S = Q, Then S is a complete
metric space and the family & of the sets S, = {xeS: supx(n) = a}, e Q, is
n

easily seen to be a partition of S to G,-sets. By [14, Lemma 5] there is an & -discrete
set which is not o-discrete and so € is not o-dd. On the other hand, it is easy to
see that every compact subset of S meets only countably many of the S’s.

We also mention that Theorem 2 fails in the case of non-metrizable Prohorov
spaces. However, a weaker form holds, which in particular solves Problem 12.15
in [16]. Namely, the Sorgenfrey line is not Prohorov. We hope to publish these
results elsewhere.
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