

## Cantor sets in Prohorov spaces

b

## George Koumoullis (Athens)

Abstract. Let X be a Suslin set in a Prohorov (e.g. complete) metric space and  $\mathscr E$  a partition of X to  $F_{\sigma}$ -sets. It is proved that either  $\mathscr E$  is  $\sigma$ -discretely decomposable, or X contains a compact set homeomorphic to the Cantor set which meets uncountably many members of  $\mathscr E$ .

Introduction. A classical theorem of Suslin states that every analytic subset of a Polish (separable complete metric) space is either countable, or contains a copy of the Cantor set. A generalization to the non-separable case has been obtained by El'kin [1]: every absolutely analytic space (i.e. homeomorphic to a Suslin subset of some complete metric space) is either  $\sigma$ -discrete, or contains a copy of the Cantor set. This theorem had previously been proved by Stone [14] for absolutely Borel spaces.

In this paper we show that completeness can be replaced by the Prohorov property, a measure-theoretic property enjoyed by complete metric spaces. Moreover, a stronger form is obtained, which involves a partition of the space to  $F_{\sigma}$ -sets (see the abstract). This result is proved in Theorem 2 for a class of spaces which includes Suslin subsets of Prohorov metric spaces (Proposition 4). It is also proved that  $F_{\sigma}$ -sets cannot be replaced by  $G_{\sigma}$ -sets.

**Preliminaries.** All topological spaces considered in this paper are assumed to be at least Hausdorff. A non-negative finite Borel measure  $\mu$  on a space X is called tight if  $\mu(B) = \sup\{\mu(K) \colon K \subset B, K \text{ is compact}\}$  for all Borel sets B in X. We denote by  $M^+(X)$  the space of non-negative tight measures on X, endowed with the weak topology. That is, for a net  $\{\mu_i\}$  in  $M^+(X)$ ,  $\mu_i \to \mu$  if and only if  $\int f d\mu_i \to \int f d\mu$  for all bounded continuous real-valued functions f on X. We say that X is a Prohorov space if every compact set H in  $M^+(X)$  is uniformly tight, that is, for every  $\varepsilon > 0$  there exists a compact set K in X such that  $\mu(X \setminus K) < \varepsilon$  for all  $\mu \in H$ .

It is well-known that complete metric spaces are Prohorov, the first result being that Polish spaces are Prohorov [11]. Here all Prohorov spaces will be assumed to be metrizable. One of our main tools will be the deep result of Preiss [10, Theorem 5] that every Prohorov metric space is a Baire space. We shall also

use the fact that the Prohorov property is preserved by countable products and  $G_{\delta}$ -subspaces (see [7]), as well as the following lemma.

LEMMA 1 ([15, Lemmas 5.1 and 5.3]). Let H be a compact subset of  $M^+(X)$  and F a closed subset of X. Then:

- (i) The set  $\{\mu|_F : \mu \in H\}$  is relatively compact in  $M^+(F)$ , where  $\mu|_F$  denotes the restriction of  $\mu$  to the Borel sets in F.
- (ii) If  $\mu(F) = 0$  for all  $\mu \in H$ , then for every  $\varepsilon > 0$  there is an open set V in X such that  $F \subset V$  and  $\mu(V) < \varepsilon$  for all  $\mu \in H$ .

We now present some notions from Hansell ([4] and [5]), needed for the statement of Theorem 2 below.

Let  $\mathscr E$  be a family of subsets of a space X. We say that  $\mathscr E$  is  $\sigma$ -discretely decomposable [4], abbreviated  $\sigma$ -dd, if there is a family  $\{A_{E,n}\colon E\in\mathscr E,\ n\in N\}$  such that  $E=\bigcup\{A_{E,n}\colon n\in N\}$  for every  $E\in\mathscr E$  and  $\{A_{E,n}\colon E\in\mathscr E'\}$  is a discrete family for every  $n\in N$ . A base for  $\mathscr E$  is a family  $\mathscr B$  of subsets of X such that for every  $E\in\mathscr E$  there corresponds  $\mathscr B_E\subset\mathscr B$  with  $E=\bigcup\mathscr B_E$ . A  $\sigma$ -discrete base is a base which is also a  $\sigma$ -discrete family.

Clearly, every  $\sigma$ -dd family of sets has a  $\sigma$ -discrete base; the converse holds when the family is disjoint.

Finally, a function  $f: X \to Y$  is called *co-\sigma-discrete* [5], if  $f(\mathscr{E})$  has a  $\sigma$ -discrete base whenever  $\mathscr{E}$  is discrete (or, equivalently, has a  $\sigma$ -discrete base).

## The main theorem. In this section we prove

THEOREM 2. Let X be a continuous  $co-\sigma$ -discrete image of a Prohorov metric space and  $\mathscr E$  a partition of X to  $F_{\sigma}$ -sets. Then exactly one of the following holds: either (i)  $\mathscr E$  is  $\sigma$ -dd, or (ii) X contains a compact set C which meets uncountably many members of  $\mathscr E$ . In the latter case, C can be chosen to be homeomorphic to the Cantor set.

For the proof of this theorem we shall use the following notation and Lemma 3. Given a family  $\mathscr E$  of subsets of a space X we set

$$\mathscr{E}_Z = \{ E \in \mathscr{E} \colon E \cap Z \neq \emptyset \}$$

and

$$\mathscr{E}|_{\mathbf{Z}} = \{E \cap Z \colon E \in \mathscr{E}\}$$

for every subset Z of X: As in [9] we say that Z is  $\mathscr{E}$ -discrete if for every  $x \in Z$  there exists  $E \in \mathscr{E}$  with  $E \cap Z = \{x\}$ . We shall also denote by  $K(\mathscr{E}, X)$  the largest subset Z of X with the property that no nonempty open set in Z is contained in any member of  $\mathscr{E}$ ;  $K(\mathscr{E}, X)$  is closed in X and is called the "non-locally- $\mathscr{E}$  kernel of X" (see [13, Theorem 1] for the existence of this kernel).

Every continuous function  $f\colon X\to Y$  induces a continuous function  $f_*\colon M^+(X)\to M^+(Y)$  defined by  $f_*(\mu)(B)=\mu(f^{-1}(B))$  for all Borel sets B in Y. In the particular case where X is a subspace of Y and f is the inclusion map, we write  $\bar{\mu}$  instead of  $f_*(\mu)$ . Thus, if H is a compact set in  $M^+(X)$ , then  $\{\bar{\mu}: \mu\in H\}$  is compact in  $M^+(Y)$ .

The following lemma is based on an idea of [3] and [8]; namely, in a separable

metric space we can obtain a 0-dimensional subspace by removing a set of arbitrarily small measure.

LEMMA 3. Let Y be a separable metric space, D a countable subset of Y and H a relatively compact subset of  $M^+(D)$ . Then for every  $\varepsilon > 0$  there exists a closed 0-dimensional subset B of Y such that  $\bar{\mu}(Y \setminus B) < \varepsilon$  for all  $\mu \in H$ .

Proof. Clearly we can assume that H is compact. If d denotes the metric of Y, then for every open set U in Y and every  $x \in U$  there is r > 0 such that

$$\{y \in Y: d(y, x) < r\} \subset U$$

and

$$\{y\in Y\colon d(y,x)=r\}\cap D=\emptyset\,.$$

(Such r>0 exists because the first relation holds for uncountably many r>0 and the corresponding sets in the second are disjoint). It follows that there is a base  $\mathscr B$  for the topology of Y such that  $\vartheta U \cap D = \varnothing$  for all  $U \in \mathscr B$ . Since Y is second countable, we can assume that  $\mathscr B$  is countable, say  $\mathscr B = \{U_n : n \in N\}$ . By Lemma 1 (ii), for every  $n \in N$  there is an open set  $V_n$  with  $V_n \supset \vartheta U_n$  and  $\overline{\mu}(V_n) < \varepsilon/2^n$  for all  $\mu \in H$ . Setting  $B = Y \setminus \bigcup_n V_n$ , we have that B is closed, 0-dimensional (since  $B \subset Y \setminus \bigcup_n \vartheta U_n$ ) and  $\overline{\mu}(Y \setminus B) < \varepsilon$  for all  $\mu \in H$ .

Proof of Theorem 2. First we notice that (i)  $\Rightarrow \sim$  (ii). Indeed, if  $\mathscr E$  is  $\sigma$ -dd and C is a compact set in X, then  $\mathscr E|_C$  is a  $\sigma$ -dd partition of C and [2, Lemma 2] implies that  $\mathscr E_C$  is countable.

Next we prove that  $\sim$  (i)  $\Rightarrow$  (ii). Thus, we assume that  $\mathscr E$  is not  $\sigma$ -dd. Let f be a continuous co- $\sigma$ -discrete function from a Prohorov metric space Y onto X and set  $\mathscr D=\{f^{-1}(E)\colon E\in\mathscr E\}$ . Since f is continuous,  $\mathscr D$  is a partition of Y to  $F_{\sigma}$ -sets. Since f is co- $\sigma$ -discrete,  $\mathscr D$  is not  $\sigma$ -dd. (Otherwise,  $\mathscr E$  would be a disjoint family with a  $\sigma$ -discrete base and so  $\sigma$ -dd).

Let  $Z = K(\mathcal{D}, Y)$ . If Z is empty, then by [13, Theorem 4']  $Y = \bigcup_{n \in \mathbb{N}} F_n$ , where each  $F_n$  is closed in Y and locally  $\mathcal{D}$  (that is, every  $x \in F_n$  has a neighborhood in  $F_n$  contained in some member of  $\mathcal{D}$ ). But now for every  $n \in \mathbb{N}$ ,  $\{D \cap F_n \colon D \in \mathcal{D}\}$  is a discrete family and for every  $D \in \mathcal{D}$ ,  $D \in \mathcal{D} \cap F_n$ , which contradicts the fact

that  $\mathcal D$  is not  $\sigma$ -dd. Therefore Z is nonempty. Moreover, it is easy to see that  $\mathcal D|_Z$  is a partition of Z to  $F_\sigma$ -sets with empty interior in Z. Note also that Z, as a closed subspace of Y, is by Preiss' theorem a Baire space. It follows that every countable union of members of  $\mathcal D|_Z$  has empty interior in Z. Using this fact we can easily construct by induction points  $y(s) \in Z$  for every finite sequence s of natural numbers such that the set Q of all y(s) is  $\mathcal D|_Z$ -discrete and 0 < d(y(s), y(s, n)) < 1/n, where d denotes the metric of Y and  $(s, n) = (s_1, s_2, ..., s_m, n)$  if  $s = (s_1, s_2, ..., s_m)$ . It is clear that Q is countable and dense in itself; so by a well-known theorem of Sierpiński (see [6, p. 287]), Q is homeomorphic to the space of rational numbers.

By Preiss' theorem, Q is not Prohorov and so there is a compact set H of probability measures on O, which is not uniformly tight. Since Y is a Prohorov space, for every  $\varepsilon > 0$  there is a compact set  $K \subset Y$  such that

(\*) 
$$\mu(K \cap Q) > 1 - \varepsilon$$
 for all  $\mu \in H$ .

CLAIM. There is some  $\varepsilon > 0$  such that for any compact set K satisfying (\*),  $\mathcal{D}_{\varepsilon}$  is uncountable.

Suppose that the claim is false and let  $\varepsilon > 0$ . Choose a compact set  $K \subset Y$  such that  $\mu(K \cap Q) > 1 - \varepsilon/2$  for all  $\mu \in H$  and  $\mathcal{D}_K$  is countable. Then

$$K \setminus Q = \bigcup \{K \cap D : D \in \mathcal{D}_K\} \setminus Q = \bigcup \{K \cap D \setminus D \cap Q : D \in \mathcal{D}_K\}.$$

 $\underbrace{K \backslash Q} = \bigcup \left\{ K \cap D \colon D \in \mathcal{D}_K \right\} \backslash Q = \bigcup \left\{ K \cap D \backslash D \cap Q \colon D \in \mathcal{D}_K \right\},$  where  $D \cap Q$  is either the empty set or a singleton (since Q is  $\mathscr{D}$ -discrete). This shows that  $K \setminus Q$  is  $F_{\sigma}$  in K, hence  $K \cap Q$ , as a  $G_{\delta}$ -set in K, is a Prohorov space. Applying the Prohorov property for the relatively compact set  $H_0 = \{\mu |_{K \cap O} : \mu \in H\}$ (see Lemma 1(i)), there is a compact set  $L \subset K \cap Q$  such that  $\mu(K \cap Q \setminus L) < \epsilon/2$ for all  $\mu \in H$ . Then we have  $\mu(Q \setminus L) < \varepsilon$  for all  $\mu \in H$ , which contradicts the fact that H is not uniformly tight.

Now we fix an  $\varepsilon > 0$  as in the claim. If K is any compact set satisfying (\*) and we set C = f(K), then  $\mathscr{E}_C$  is uncountable and the proof of  $\sim$  (i)  $\Rightarrow$  (ii) is complete.

It remains to show that C can be chosen to be a Cantor set. Let K be a compact set in Y with  $\mu(K \cap Q) > 1 - \varepsilon/2$  for all  $\mu \in H$ . We apply Lemma 3 for the compact metric space f(K), the countable subset  $f(K \cap Q)$  and the relatively compact set

$$H_1 = \{f_*(\mu|_{K \cap Q}) \colon \mu \in H\} = f_*(H_0)$$

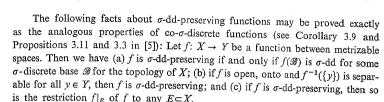
of measures on  $f(K \cap Q)$ . So there is a closed 0-dimensional subset B of f(K) such that  $\bar{v}(f(K)\setminus B) < \varepsilon/2$  for all  $v \in H_1$ . Setting  $K_1 = f^{-1}(B) \cap K$  we have that  $K_1$  is compact and for every  $\mu \in H$ 

$$\mu(K \cap Q \setminus K_1) = \mu(K \cap Q \setminus f^{-1}(B)) = \overline{f_*(\mu|_{K \cap Q})} (f(K) \setminus B) < \varepsilon/2.$$

Therefore  $\mu(K_1 \cap Q) > 1 - \varepsilon$  for all  $\mu \in H$ . By the claim,  $\mathcal{D}_{K_1}$  is uncountable, so  $\mathscr{E}_{I(K_1)} = \mathscr{E}_B$  is uncountable. Finally, by the Cantor-Bendixson theorem [6, p. 253],  $B = A \cup C$  where A is countable and C is compact perfect. Since C is also 0-dimensional, C is homeomorphic to the Cantor set. Since  $\mathscr{E}_A$  is countable and  $\mathscr{E}_B$  $\subset \mathscr{E}_A \cup \mathscr{E}_C, \mathscr{E}_C$  is uncountable.

Suslin sets in Prohorov spaces. In this section we show that the class of spaces for which Theorem 2 holds includes Suslin sets in Prohorov metric spaces. Recall that the Suslin sets in a space X are obtained from the family of closed sets in X by the Suslin operation (or A-operation [6]).

As in [2] we say that a function  $f: X \to Y$  is  $\sigma$ -dd-preserving if  $f(\mathscr{E})$  is  $\sigma$ -dd whenever  $\mathscr E$  is a discrete (or, equivalently,  $\sigma$ -dd) family of subsets of X. It is clear that every  $\sigma$ -dd-preserving function is  $\cos \sigma$ -discrete.



We are now ready to prove

PROPOSITION 4. Every Suslin set in a Prohorov metric space is a continuous σ-dd-preserving (hence also co-σ-discrete) image of some Prohorov metric space.

Proof. Let X be a Prohorov metric space and let  $\mathcal{S}(X)$  denote the family of all subsets of X which are continuous  $\sigma$ -dd-preserving images of Prohorov metric spaces. We first prove that  $\mathscr{S}(X)$  is closed under countable unions and countable intersections.

Let  $\{Y_n: n=1,2,...\}$  be a sequence of elements of  $\mathcal{S}(X)$ . Then there are Prohorov metric spaces  $X_n$  and functions  $f_n: X_n \to Y_n$  for n = 1, 2, ..., such that each  $f_n$  is continuous,  $\sigma$ -dd-preserving and onto. The topological sum  $\sum X_n$  of the sequence  $\{X_n: n=1,2,...\}$  is a Prohorov metric space (see e.g. [15, Theorem 5.5]) and the function  $F: \sum_{n} X_n \to \bigcup_{n} Y_n$  with  $F(x) = f_n(x)$ , if  $x \in X_n$ , is continuous,  $\sigma$ -dd-preserving and onto. Therefore  $\bigcup_{n=0}^{\infty} Y_n \in \mathscr{S}(X)$ .

To show that  $\bigcap_n Y_n \in \mathcal{S}(X)$  we consider the function  $f: \prod_n X_n \to \prod_n Y_n$  defined by  $f((x_n)_{n \in \mathbb{N}}) = (f_n(x_n))_{n \in \mathbb{N}}$ , which is continuous and onto. Moreover, it is not hard to see, using (a) above, that f is  $\sigma$ -dd-preserving. Note also that  $\prod X_n$  is a Prohorov metric space and that the set

$$\Delta = \{ (y_n)_{n \in \mathbb{N}} \in \prod_n Y_n : y_1 = y_2 = \dots \}$$

is closed in  $\prod Y_n$ . Thus,  $f^{-1}(\Delta)$  is a Prohorov metric space and  $f|_{f^{-1}(\Delta)}: f^{-1}(\Delta) \to \Delta$ is  $\sigma$ -dd-preserving. Since  $\Delta$  is homeomorphic to  $\bigcap Y_n$ , it follows that  $\bigcap Y_n \in \mathscr{S}(X)$ .

Finally, we prove that  $\mathcal{S}(X)$  is closed under the Suslin operation. This will complete the proof because X is assumed to be a Prohorov space and so every closed subset of X is in  $\mathcal{S}(X)$ . Let Y be a subset of X which is obtained form  $\mathcal{S}(X)$ by the Suslin operation. By [12, Theorem 2. 6.2] there is  $B \subset X \times N^N$  of the form

$$B = \bigcap_{n \in N} \bigcup_{m \in N} (S_{(m,n)} \times T_{(m,n)}),$$

where  $S_{(n,m)} \in \mathcal{S}(X)$  and  $T_{(m,n)}$  is closed in  $N^N$ , such that  $Y = \operatorname{pr}_X(B)$ . Since each  $S_{(n,m)} \times T_{(n,m)}$  clearly belongs to  $\mathscr{S}(X \times N^N)$ , it follows by the above that B  $\in \mathscr{S}(X \times N^N)$ . Notice also that the projection  $\operatorname{pr}_X \colon X \times N^N \to X$  is  $\sigma$ -dd-preserving by (b) above. Thus, using the fact that the composition of  $\sigma$ -dd-preserving functions is  $\sigma$ -dd-preserving, it follows that  $Y \in \mathcal{S}(X)$ .

**Remarks.** Since every function on a separable metric space is co- $\sigma$ -discrete, Theorem 2 holds when X is a continuous image of a separable Prohorov metric space. Note also that in this case  $\mathscr E$  is  $\sigma$ -dd if and only if  $\mathscr E$  is countable.

By Proposition 4, Theorem 2 holds, in particular, when X is absolutely analytic. If, moreover,  $\mathscr E$  is the partition of X to singletons, Theorem 2 reduces to the case of El'kin's theorem mentioned in the introduction.

It is worth noting that a proof of  $\sim$  (i)  $\Rightarrow$  (ii) in Theorem 2 for absolutely analytic spaces is possible without using the Prohorov property. To do this, observe as in Proposition 4 that every absolutely analytic space is a continuous co- $\sigma$ -discrete image of a complete metric space. (This actually characterizes absolutely analytic spaces; see Hansell [5]). Now we can proceed as in the proof of Theorem 2, where Y is a complete metric space, and find a  $\mathscr{D}$ -discrete, dense in itself, countable subset Q of Y. However, the elements y(s) of Q are now chosen so that:

$$0 < d(y(s), y(s, n)) < 1/2^{\|s\|+1},$$

where  $||s|| = \sum_{j=1}^m s_j$  if  $s = (s_1, s_2, ..., s_m)$ , and d is a complete metric inducing the topology of Y. Then we have that Q is totally d-bounded, so its closure  $K = \overline{Q}$  is compact. We claim that  $K \cap D$  has empty interior in K for every  $D \in \mathcal{D}$ . This will complete the proof because by the Baire Category Theorem  $\mathcal{D}_K$ , hence also  $\mathscr{E}_{f(K)}$ , must be uncountable. To prove the claim assume, if possible, that there is a nonempty open set V in K with  $V \subset K \cap D$ . Then  $y(s) \in V$  for some  $y(s) \in Q$ . Since  $y(s, n) \to y(s)$ , it follows that  $y(s, n) \in V$  for some n, which contradicts the fact that Q is  $\mathcal{D}$ -discrete. This paragraph was communicated to me by Professor D. H. Fremlin to whom I express my thanks.

Finally, we show by an example that Theorem 2 fails for partitions to Borel sets of higher classes (even for partitions to  $G_{\delta}$ -sets). Let  $\Omega$  denote the space of countable ordinals with the discrete topology and set  $S = \Omega^N$ . Then S is a complete metric space and the family  $\mathscr E$  of the sets  $S_{\alpha} = \{x \in S : \sup_{\alpha} x(n) = \alpha\}, \ \alpha \in \Omega$ , is easily seen to be a partition of S to  $G_{\delta}$ -sets. By [14, Lemma 5] there is an  $\mathscr E$ -discrete set which is not  $\sigma$ -discrete and so  $\mathscr E$  is not  $\sigma$ -dd. On the other hand, it is easy to see that every compact subset of S meets only countably many of the  $S_{\alpha}$ 's.

We also mention that Theorem 2 fails in the case of non-metrizable Prohorov spaces. However, a weaker form holds, which in particular solves Problem 12.15 in [16]. Namely, the Sorgenfrey line is not Prohorov. We hope to publish these results elsewhere.

## References

- A. G. El'kin, A-sets in complete metric spaces, Dokl. Akad. Nauk SSSR 175 (1967), pp. 517-520 = Soviet Math. Dokl. 8 (1967), pp. 874-877.
- [2] Z. Frolik and P. Holický, Decomposability of completely Suslin-additive families, Proc. Amer. Math. Soc. 82 (1981), pp. 359-365.



- [3] B. R. Gelbaum, Cantor sets in metric measure spaces, Proc. Amer. Math. Soc. 24 (1970), pp. 341-343.
- [4] R. W. Hansell, Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161 (1971), pp. 145-169.
- [5] On characterizing non-separable analytic and extended Borel sets as types of continuous images, Proc. London Math. Soc. 28 (1974), pp. 683-699.
- [6] K. Kuratowski, Topology, Vol. I, New York-London-Warszawa 1966.
- [7] S. E. Mosiman and R. F. Wheeler, The strict topology in a completely regular setting: relations to topological measure theory, Canad. J. Math. 24 (1972), pp. 873-890.
- [8] J. C. Oxtoby, Homeomorphic measures in metric spaces, Proc. Amer. Math. Soc. 24 (1970), pp. 419-423.
- [9] R. Pol, Note on decompositions of metrizable spaces II, Fund. Math. 100 (1978), pp. 129-143.
- [10] D. Preiss, Metri spaces in which Prohorov's theorem is not valid, Z. Wahrscheinlichkeistheorie verw. Geb. 27 (1973), pp. 109-116.
- [11] Ju. V. Prohorov, Convergence of random processes and limit theorems in probability theory, Theor. Prob. Appl. 1 (1956), pp. 157-214.
- [12] C. A. Rogers and J. E. Jayne, K-analytic sets, in: Analytic Sets, New York 1980, pp. 1-181.
- [13] A. H. Stone, Kernel constructions and Borel sets, Trans. Amer. Math. Soc. 107 (1963), pp. 58-70.
- [14] On σ-discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), pp. 655-666.
- [15] F. Topsøe, Compactness and tightness in a space of measures with the topology of weak convergence, Math. Scand. 34 (1974), pp. 187-210.
- [16] R. F. Wheeler, A survey of Baire measures and strict topologies, Expositiones Math. 1 (1983), pp. 97-190.

DEPARTMENT OF MATHEMATICS ATHENS UNIVERSITY Panepistemiopolis Athens 621, Greece

Received 18 October 1982; in revised form 29 June 1983