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Countable subsets of Suslinian continua
by

Piotr Minc (Auburn, Ala.)

Abstract. An example of a Suslinian continuum Y with no countable set intersecting all non-
degenerate subcontinua of Y is given.

All spaces are considered to be metric. A continuum is a connected and com-
pact space. A continuum is Suslinian if it does not contain uncountably many
mutually exclusive nondegenerate subcontinua.

In 1971 A. Lelek posed the following question: If ¥ is a Suslinian continuum,
does there exist a countable set 4 in Y such that 4 intersects every nondegenerate
subcontinuum of Y? ([2], Problem 10, P 726). A partial positive answer was given
by A. Lelek in the case where Y is hereditarily unicoherent (3], Th. 2.2, p. 133):
The aim of this note is to describe an example which gives a negative answer to
this question. :

The author would like to express his gratitude to Professor W. Kuperber;
and Professor E. Tymchatyn for valuable remarks during the preparation of
this note.

CONSTRUCTION OF THE EXAMPLE. Denote by I the unmit interval [0, 1]. Let
h: I'— Ibe a mapping defined by the following formula:

-2,

For an acbitrary finite collection 4 of subintervals of J, we will say that 4 has
the property () provided that for every Jy,J, € 4 either J; = J, or Jycint/, or
Jyeintd, or Sy = @

For any collection 4 with the property (x) let us adopt the following notation.
L(4) is the sct of all left ends of intervals from 4, and R{4) is the set of all right
ends of intervals from A. For a point p € L(4) U R(A) let d(p) denote the length
of the interval from A4 having p as an endpoint.

Set r(A) = tmin{la~b|: a # b, a, be L(4) U R(4)}.

Forn = 1,2, ... let us definc a mapping g,[4}: I — I by the following formula:

for 0<%,
for ¥<tgt.
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p+d(p)11"(P(A;) for p—r(A)<t<p and peL(4),
2t4-2r(4)—p
g,l41(7) = {p— d(P)"’"( _p> for p<t<p+r(4) and pe R(4),

r(4)
2—2r—p for p+r{d)<tg<p+2r(d) and pe R(4),
t for the remaining ¢.

for p—2r(d)<t<p=—r(4) and peL(4),

Set go[A4] = id;.
Observe that g,[4] is a continuous mapping such that the preimage of any
point from 7 is finite.

1. PROPOSITION. ¢,[4](p) = p for pe L(A) U R(A) and g,[41(J) = J for Je A.

2. ProPOSITION. If J€ A, J is not contained in any other clement of A4 and

= [a, b], then g,[41(0, b]) = [0, b] and g,[A]([a, 1]) = [a, 1].
If J, = [ay, b,] and J, = [a,, b,] are elements of A such that J, is the minimal
element of A4 containing Jy in its interior, then

guldllay, b2]) = [ag, b,].

be a sequence of finite collections of mutually exclusive sub-
n

guldl(lay, by]) = [a5,5,] and

Let By, By, ...

intervals of I. Let 4, = |J B,. Let us assume that for every n =0, 1, ... the col-
k=0

lection A, has the property (x). For each pair n>m of positive integers let us define
a mapping g, ,: I— I by a formula

Gnym = g;px[Am]gnx+1[Anx>l-1] gn—I[An—l] .

Set g, , = id.
We will construct by induction a sequence B,, By, ...

O) BO = {I},
1), the collection {g, ,(J)| Je& 4,} has the property (x) for every m<n,

such that

1
2), diamg, o(J)<—— for Je B,,
’ n+1

1
3), diam(S)<%r(4,-() and diamg,,,,‘,('S)s-Ii-
n
I- U J,

JeBpn

for every component § of

4), diam(J)<4{r(A4,-,) for Je B, and
5), for Jy € B, and J, € A,_, cither

gn,O("l)cgn,O(JZ) or gu,o(‘ll) ] é’n,u(-ll) = Q'
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Let us suppose that sets By, ..., B,_, satisfying these conditicns are constructed.
1t suffices to construct B,. By 1),, 4 there exist functions Gn,m for m<n. Consider
the set Z = g, (dn, o(L(4s=1) U R(4,-,))). Note that Z is a finite set such that
Jn0 is @ local homeomorphism on I—Z. Take a finite set P</—Z such that

1 .
diam g"’0(3)<;1——i;—f and diam(S)<1ir(4,_,) for every component S of I—P. Now,

in order to obtain a collection B, it suffices to take a collection of sufficiently small
intervals about points from P. (Condition 1), is easy to fulfil because g, ,, is a local
homeomorphism on I—Z).

Let us denote by T the inverse limit lim{/,, g, ,}, where I, = I. Let g, be
the projection of T onto I,. For every JeB, (k=0,1,..) the _sequence
{7o =T, gym>n=m>k} is an inverse system, denote its limit by T'(J).

3. Lemma. If E is a subcontinuum of T such that T(J)n E # O # E-T(J)
for a certain Je B, (k=1,2,..) then T(J)cE.

Proof. There exists an integer m>k such that g,(E)—J # @ for n>m. There-
fore there is an a € g,4,(E) such that g,., (@) ¢J. Since g,((E)nJ # @, it
follows that g,(E) = gy41,ngs+1(E) contains J for every nzm. Hence T(J)=E.

4. LEMMA. Let E be a subcontimum of T(Jy) (for J; € By,) such that, for every k
and every J e By, if EcT(J) then J,=J. Let Jy € By, be such that Jo<J, and such
that, for every k and every J& By, if Jo=J then either Jo = J or Jy<J. Then if J,
cintg,(E) for a certain nzk,, then T(J,)<E.

Proof. By 2 it follows that J,cintg,s (E). Thus Jycintg,(£) for every
mzn. Hence T'(Jy) < E.

5. LeMMa. If E is a nondegenerate subcontinuum of T then there are k and J, € B,
such that

TU)<E and E-T(J) + &.

Proof. Observe that go(F) is nondegenerate; therefore there is an » such
4
that diamgy(E)>- h

Let J, € B, be such that EcT(J,) and for every & and every J € By, if EcT(J)
then J; </. By condition 2),, we have k;<n.

By condition 3), therc is a J, € B, such that J, n g,(E) # &. Let J; be an
clement of A4, distinct from J; containing J, and such that no other clement of 4,
but J; contains Jj.

If g (E) nJy # @ for every mzn then the lemma follows by 3. So we may
assume that there is an m>n such that g,(E) nJ; = &. We may also assume
that g,.,(E)nJ; # @. Let J; = [a, b]. Without loss of generality we may as-
sume that g,(E)<[0, a]. :

We have

gm(E.) 8] [a—r(Am—l)’a] #* a.
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By conditions 2),,, 3),, and 4),,, there exists a J; € 4,, such that J, <intg,(E) n
N [a~4r(4,,-,), a]. Observe that by the choice of r(4,,-) no element of 4,,_,
but J; contains Jy. Now the lemma follows by 4.

Let X, be a space resulting from Jx {0, 1, ..., 2"~1} by the following identifi-
cation: a pair (x, /) is identified with a pair (y, /) provided that there exists a k<n
such that x = y e L(B,) U R(B,) and E(i2*7"" 1) = E(j2*~""1), where E(a) denotes
the integral part of the real number a.

Points of X, will be denoted in the same way as points of Ix {0, 1, ..., 2"—1),

Let us denote by p, the projection of X, onto L

For every n =1,2,..., let f, ,_;: X, —» X,_, be defined by the formula

(gn, n—l(X)q zn—kE(iZk_"_l)-i-j) for
i+1 ) j
“é‘u——i "(An—1)<x<p—wr(f1,,_l),
J=0,1,.,2" =1,k =1,2,..,n—1 and pe L(B),

Fon=106, 1) = 1(Gn,n-1(%), 2°*E(2¢7"71) +) for
J j+l
p+ ET_I I’(A,,_I)SXSP"F 2_"_7‘ I"(A,,_l),

J=0,1,.,2""1, k=1,2,..,n—1 and p € R(B)),
(g,,,,,_i(x), E(%)) for the remaining x.

Observe that f, ,_, is a continuous function and the preimages of points are
finite.
For n>m let us define Jomt X, — X, by the formula

fn,m =./;u+1,mfm+2,m+1 “'f;z,n—l'

Set X = lim{X,, f, .}, and denote by f, the projection of X onto X,.
6. PROPOSITION. The diagram

Snom
}("l.e' Xﬂ
lpm lpu is commutative,
J o<ty

It follows that mappings p, induce a mapping p: X = T such that p,f, = g,p.

For every n=1,2,.., k<n, Je B, and j = 0,1, ey 25701, Tet CU) de-
note the component of p,’(J) which contains Jx { jarmkrn,

Observe that if k<m<n, then f, (CU)) = CU().

Let Ci(/) be the inverse limit of the sequence CXJ), C¥**(J), ..., where J e B,
and j=0,..,25"1-1,

7. PROPOSITION. The diameters of CiJ)'s tend to zero when k tends to infinity
and J € By.
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The proof of the following propasition is the same as that of 3.

8. PrOPOSITION. If E is a subcontinuum of X such that E A CJ) # B+ E~
—C{J) for a certain J & By, and a certain j = 0, ..., 2%"1 then C{J)<E.

9. PROPOSITION. The set p~Y(t) is zero-dimensional Sor cvery teT.

2k=1-1

' (TWU) = jL=Jo Ci(J) jor jeB,.

By Theorem 6 § 47, I from [1], the definition of the property (x) and con-
ditions 1), and 5), of the construction of the sequences By, By, ..., in the interior
of go(T('J)), where J & By, there exists a point #(/) which does not belong to any
go(T(J") for J' € B, and k'>k.

Set (gop) ™ (t(/)) N C{J) = K,(J). Observe that this set is homeomorphic to
the Cantor set.

Let Z be the ternary Cantor set on the unit interval I. For every k= 1,2, ...,
let Zy(0), Z,(1), ..., Z(2*"* ~1) be the natural partition of Z into a collection of
open-closed sets such that

Zif(i) = Zyy1(20) U Zsq(2i41),

Note that Z = Z(0).

Consider the Cartesian product X xZ. Let R be an equivalence relation on
this set such that the class of abstraction of a point (x, z) is a one-point set unless
(x,2) e Ky(J)yx Z,(1) for certain k = 1,2, ...,J¢ B, and i,j=0,1,..,2%'_1 On
each set K(J) x Z,(i) the relation R induces an upper semi-continuous decomposition
such that the quotient space is homeomorphic to the Cantor set, and is such that
the classes of abstraction are at most two point sets and for every z,, z, € Z,(i)
there exist x;, x, € Kj(J) such that (x, z1) R(x3, 2,). Such a relation may be ob-
tained by a homeomorphism identifying K{(J)x Z,(i) with ZxZ and the relation
(21, 25)~ (24, 2,) O ZXZ.

Observe that the relation R induces an upper semi-continuous decomposition
of XxZ (see 7). Let YV = XxZ|R and let s: XxZ — Y be the quotient map.
Note that Y is a continuum.

10. LEMMA. For every countable set W'Y there exists a nondegenerute sub-
continuum of Y which misses W. :

Proof. The set s™'(W) is countable. Thus there exists a zeZ such that
Xx{z} ns"!(W) = @. Hence the nondegenerate continuum s(Xx {z}) does not
intersect W.

Observe that the function u: Y — T defined by the formula u(s(x, 2) = p(2)
is a continuous function. '

11. PROPOSITION. The set u™(t) is zero-dimensional Jor every teT.

12. LEMMA. For every mondegenerate subcontinuum E of Y there exist ze Z,
k=1,2,..,JeB, and j=0,.. 2% ' ~1 such that s(C{T)x {z})<E.


GUEST


128 P. Minc

Proof. By 11, the set u(E) is a nondegenerate subcontinuum of 7. There exist
k=1,2,.., and J€ B, such that

TJ)cu(E) and y(E)~T(J) # @

see 5).

( th K be the union of all the sets K;(J),j€0, ..., =11,k =1,2,... Denote
by B the set s(KxZ). Note that Y—B can be considered as a subset of X'xZ.
Denote by v the projection of X'xZ onto X. Observe that pvly-p = uly-p and
u(B) is a zero-dimensional set. Thus po(E—B)cu(E) and u(E)—pv(E~Bycu(B)
is zero-dimensional. Therefore po(E—B) n T(J) # J # po(E—~B)-T(J). By 9 it
follows that there is a j = 0, ..., 287" —1 such that

s(E=B)n CJ) # @ # o(E—B)=C{J).

Hence
En s(Cj(J)xZ) # @B # E—s(Cj(J)xZ).

We will prove the following claim.
CrLaM. For every n = 1,2, ... there exists an i = 0,1,..,2" =1 such that

Cicle(En $(X % ZAi))—B).

Assume that the claim is false. So there is an n such that, for every 7= 0,..
v, 2""1—1, there is an open in X set ¥, such that V;n CyJ) # @ and
V0 o(E N s(XxZ(i))—B) = 9.

For every i=0,..,2""*~1, let ¥} be an open set intersecting Cy(J) and
such that Vi< cl¥VicV,. Let U be a neighborhood of C(J) in X such that

(i) for every k'>n, J € By and j' = 0,..,2 1=1 if clUn K;(J) # 9D,
then Cp(J)=Cy(J) and

(ii) for every k'=n, J € By (J' # 1), j'= 0, ., 2¥~1_1 andi=0,..,2"" " ~1,
if C") A U=V, # @ then G, Vi = .

Let E, be a component of En s(UxZ) which intersects s(Cj(J)xZ). By
Theorem 1 § 47, III from [1] it follows that

E,~s(CAI)XZ) # @.

Let E' be an arbitrary component of E,~s(C/(J)xZ). Again by Theorem 1
§ 47, IIL from [1]), clE’' A s(CAN)xZ) # @. By the choice of U, there is an
=0,..,2"*—1 such that E’CS(XXZ,,([)).

Let E” be the union of v(E'—B) and of all continua Cp(J')(k'>n,J" € By
and j' = 0,1, ..., 2¥"1—1) such that E'&s(C{J)xZ) # @. Observe that £ is
connected and clE'—Cy(J) = E”. On the other hand, CE" AV =& (see (i)
and E"—Cy(J) # @, thus by § we have

AE" A CyJ) = .
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Hence s(clE"XZ) n s(CASYxZ) = @. But clE'cs(clE" x Z), which contradicts
the fact that clE' ns(Cy/)xZ) # @, This contradiction préves the clai .
There is a zeZ such that if zeZ () (n=1,2,..,i=0,. 2"“‘—1n)1.then
Cil)eclo(E n s(XXZ,)-B).
It suffices to prove that s(C{J) x {z})= E. Otherwise there exists a point x & Cy(J
such that s(x,z)¢ L. Thus there exists a neighborhcod V of x in' ke 2 (i
a set Z,(7/) containing z such that sVxZMNE=@. 1t 'fOHOWAS tailn t
VolE o s(XxZ()~B) = & which contradicts the property of - z T]é'l
contradiction completes the proof of the lemma. S
13. THEOREM. Y is a Suslinian continuum such thar Jor every countable set W'Y
there is a nondegenerate continuum which does not intersect W. ‘
Proof. It suffices to prove that Y is Suslinian (see 10).

' Let {E,},e¢ be an uncountable collection of nondegenerate subcontinua of Y.
Since continua Cy(/)’s form a countable collection, by 12 there is a C(J), a Je B -
and an uncountable set G’ =G such that for every « € G' there is a z Jst’such th;
s(C(yx{z})<E,. There are i =0, ...,25"1—1 and oy, 0 € G suzh that z,, ,
f_:Zk(i). By the construction the intersection of s(Cy(J)x {z, }) and s(C(J) >: « -‘15
is non-void. Hence E, N E,, # @, which completes the prgof. ’ o
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