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morphism of & into P(w)/Fin. For A€ o let y,&P(w) be any element of the
equivalent class of ¢ (4). Since w, &7, we have obtained a function x: w; ~ P(w).

For any Fe & consider the set Ky = {x € P(w): card(yp\x)<w}. It is easy
to see, Ky is o-compact in P(w) (with Cantor set topology). Hence Ky is a Borel
set. Also, it is easy to see that y~*(Ky) = F.

So #<{x"(B)| B=P(w), B is a Borel set}.

The above family is a o-field which is a countable generating family. The
proof of Proposition | is complete.
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On the homotopy classification
of pairs of linked maps of manifolds
into a linear space

by

C. Bowszyce (Warszawa)

Abstract, It is shown that the linking number of maps f: M — E and ¢g: N — E of connected
closed manifolds into a linear space with disjoint images gives the homotopy classification of such
pairs of maps if dimM+dimN+1 = dimE.

Let M and N be two closed connected oriented smooth manifolds of dimensions
m and n respectively. We shall suppose that 0<m<n. Let E be a real oriented
k-dimensional linear space with k = m+n+122. Denote E, = E\{0}. A pair
(f, g) of smooth maps f: M — E and g: N — E with disjoint images f(M) and
g(N) will be called a pair of linked maps.

Two pairs of linked maps (fy, go) and (f3, g4) are said to be homotopic if there
are two smooth homotopies f;: M — E and g,: N— E with f(M) and g(N)
disjoint for every t e I = [0, 1]. We shall write (f, go) ~(f1, 94) in this case. Denote
by # the set of all homotopy classes of pairs of linked maps.

For a pair of linked maps (f, g) their linking number /(f, g) is defined to be
the winding number around 0 (comp. [2], p. 144) W(P) of the map &: M xN — E,
of oriented manifolds defined by ®(u, v) = g(v)—f() (or the degree of the map
&/|B|: Mx N — S"" if E is Euclidean). It is known ([8], p. 104) that homotopic
pairs of linked maps have the same linking number.

The main result of this paper is the following

THEOREM 1. The function # — Z assigning to a homotopy class of a pair of
linked maps (f, g) their linking number I(f, g) is bijective.

If m = 0 then M is a point and the theorem is really the Hopf classification
theorem (comp. [7], § 7). If m = n = 1 then M and N are diffeomorphic to circles;
this result was obtained by J. Milnor in [6], p. 190 by means of tools developed
there. We shall give also another, more direct proof of this case.

We shall need some lemmas.
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LemMa 2. Let D be an open connected set in a linear space E, (fy, go) @ pair of
linked maps with fo(M), go(NY<=D and 1<m<n. Then there are two pairs of linked
maps, (1, g) and (f,3), with (M), g(N), GN)= D such that I(f,g) = I(fo, go)+1
and I(f, §) = I(fo, go)—1. As maps into D, f, and f belong to one homotopy class
as well as go, g and g.

Proof. Let vy € N. We can slightly deform g, in a small neighbourhood of v,
to a smooth mapping g,: N — D\fo(M) embedding some neighbourhood VenN
of v, into an n-dimensional affine subspace P of E. Similarly for vy € M we deform
fo to f1 M — DNg(N) embedding some neighbourhood U< M of u, in an m-di-
mensional affine subspace L of E. Since k = m-+n+122m-+1, f may be chosen
as the embedding of the whole M in D\g(N) ([1]. (7.9) Satz).

The set f(M) L g,(V) does not separate D because msn<k—2. Therefore
there exists an embedding y: R — D such that y(R) n (j'(‘M yu g (v )) consists
of exactly two points, f(1) = y(0) and g,(vy) = p(1). We can also suppose that
the derivatives y'(0) and y'(1) are orthogonal to L and P respectively (after choosing
some inner product in E). The normal bundle to y(R) in D<K is trivial because
y(R) is contractible ([4], 2.2.5). There is a diffcomorphism i: Rx R¥"' — 7" onto
a tubular neighbourhood T of y(R) in D. We can suppose that for some lincar sub-
spaces L, and P, of R*™! f(U) = h(0,Ly) = f(M)n T and g(V) = fi(1,P,).
Let P, be the orthogonal complement of L in R¥"!, There exists an orthogonal
transformation 4 € SO(k—1) mapping Py onto Py. Since SO(k—1) is connected,
there exists 4 smooth map 1: R — SO(k—1) such that A(0) = idg,; and A(1) = 4.
Define i: Rx R*"1 > T by h(t,w) =k (t, A()w). Then h maps diffcomorphically
Rx R onto T, {0} %L, onto open subset f(U) of L and {I}x.P; onto open sub-
st g((V) of P.

Let ¥: R¥* —[-2,0] be a smooth function with compact support equal
to ~2 on a neighbourhood of 0. Define the maps Gy: Rx R —» Rx R~ by
Gy(t,w) = (t+sp (W), w) for se I Define also g,: N— D and ¢: IXMXN — E
by ga(0) =hoGiah ™t og,(v) for ve ¥, g,0) = g,(v) for ve N\V, &(s,u,r)
=hoGoh™  og,(0)~f(u) for sel, ue M, ve V and &(s, u, v) = g0y ~f () for
sel,ue M, ve N\V. go,9, and g, are in one homotopy class of maps N - D,

(f,g2) is a pair of linked maps and & is the homotopy between the mappings
Do, D10 MxN—E defined by Po(u,v) = g, (0)—f(u), Dy, v) = g,(v)—f1).
@ has only one zero z = (§, ug, ty). The differential &, of & at z maps the tangent
spaces Ty 1, T,,M and T,,N onto the mutually crthogonal subspaces of TyF = [
and. so @, is an isomorphism. From the well-known property  of  winding
numbers (comp. [2], p. 144) I(f, g;)~1(fo, go) = I(f, g2)=I([, g,) = W(d,)~
—W(®,) = +1, the sign + occuring if @, preserves the orientation TIxMxN)
= ROT,,M@T, N and T, E = E, and the sign— otherwise. We put g = g, in
the first and § = g, in the second case.

To get § in the first case and g in the second it is sufficient in the above
construction to take, instead of 4, an Ae SO (k— 1) mapping P, onto P, with a change
of orientation. This is possible because 1<n = k— [ —m<k~1.
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“Lemma 3. If f: M — E is an embedding, g, g,: N — ENf(M) are smooth haps
such that 1(f, go) = H(f, g1) and 2<m<n, then g, and g, are smoothly homotopic.

Proof. We may suppose that M is a submanifold of E and f is an inclusion.
Let G: IxNxE~ E be defined by G(z,v, w) = go(v) +1(g4(t)—go(v)) +w. The
map G is a submersion and by the parametric transversality theorem ([3], Th. 327
there is a small vector wy such that the maps g,, ,: N ~ E\M defined by §,(v)
= ¢,(v)+w, are homotopic to g, and g, respectively and the homotopy Go: Ix N> E
defined by Gyt v) = ﬁo(v)%—l(,gl(v)~go(v)) = G(f,v, wy) is transversal to M.
Define @o, P12 MXN — F and &; IxMxN — E by &u,v) = () —f(w) and
(1, u,0) = Gy(t, v)~f (). The map ¢ is a homotopy from @, to @, and has 0 as
a regular value. There is a bijection between the finite sets ®~*(0) and Gy (M)
such that the local degree of @ at a point (¢, u, v) € $~4(0) is equal to the inter-
section index of G, with M at the corresponding point (¢, v) € G5 (M) (comp. [4],
§5,2). By the well-known property of the winding number, from the equalities
0 =1U(f, 90)—I(f, go) = I(f, G)—I{f, Go) = W(D,)~W(B,) it follows that the
sum of intersection indices of G, with M for all points of Gg*(M) is equal to 0.

Let z, and z, be two points of Gg* (M) with the opposite intersection numbers
1 and -1 respectively. We may suppose that Gy(zy) % Go(z;) by a small modifi-
cation of Gy in a neighbourhood of z,. By transversality G, is an embedding of
some neighbourhood W of {z, z,;} containing no other point of Gg*(3f). Let L be
a smooth closed arc in the interior of I x N joining z, with z, and not passing through
the other points of Gg*(M). Let L; be an open arc such that L, cIN{z, z1} and
INLyc W. The restriction GylL may be approximated by an embedding y: L—E
extending Go{L\L,. Then we choose a small tubular neighbourhood T"of L, in the in-
terior of /' x N diffeomorphic to R x R" and a small tubular neighbourhood ¥ of y(L,)
in Z diffeomorphic to Rx R¥"! (the normal bundles of L, and y(L,) are trivial).
We can approximate Go|T by » monomorphism of trivial bundles G,: T~ Rx R"
- RxR¥" '~V such that Gy|L, = y|L, and the differential of Gy on L, beyond
some compact subset agrees with the differential of Gy|T. By means of G, we can
construct a mapping G,: I'x N — E which is equal to Gy beyond T and is an em-
bedding of some necighbourhood U of L diffeomorphic to a closed disc. Moreover,
G5 Y(M) = Gg'(M) with the same intersection numbers and G5 (M) n U = {24,z }.

The points Gy(z,) and G,(z)) can be joined in M by an arc 4 because M is
connected. By using Whitney's method of eliminating a pair of intersection points
to the manifolds M and G,(U) ([5], Th. 6.6) we get a homotopy G3: IXxN — E
from g, to §; extending G,|/x N\U such that the number of points in G3'(M)
is less by 2 than that for Gg'(M). If m=3 then dimG,(U) = n+12m+124>3,
and those assumptions are sufficient for using Whitney's method. In the case
m =2 we use the fact that ENG,(U) is simply connected, which follows from the
isotopy of discs ([4], Th. 8.3.1) and the extension isotopy theorem ([4], Th. 8.1.3).

Proceeding similarly, we eliminate the remaining intersections and get 2 homo-
topy g2 N = ENM from g, to F;. Therefore go, g,: N~ E\M are homotopic.
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The next lemma is well known (comp. H. Whitney, Differentiable manifolds,
Ann. of Math. 37 (1936), pp. 645-680, Th. 6, p. 657 or R. Thom, La classification
des immersions, Séminaire Bourbaki 1957/58, Exp. 157).

LemMA 4. If fo. f1: M — E are embeddings of a closed m-dimensional manifold
into a k-dimensional linear space and k=2m+2, then there exists a diffeotopy
he: E— E such that hy = idg and f; = hy o f,.

Proof. By composing fo with a suitable translation of E we may suppose
that fo(M) and f,(M) are disjoint. Since k>2(m+1), there exists an immersion
H: I'x M — E which is a homotopy from f;, to f; having no selfintersections when,
k>2(m+1) ([1], (7.8) Satz) or such that it selfintersections are transversal and
no three points are mapped onto the same point ([8], § 4 B)). The number of the
double points of H is finite. By the homogeneity of x M relatively to the boundary
([7], §4) there is a diffeomorphism G: IxM — IxM extending identity on
O(Ix M) such that the counter image of the set of double points by Ho G has in
every set {f} xM at most one point. The map HoG is an isotopy from f,
to fi and the existence of the diffeotopy ky follows by the isotopy extension
theorem.

LemMa 5. Let E = E U {0} be a one-point compactification of a k-dimensional
Euclidean vector space E diffeomorphic to the k-dimensional sphere and C an m-di-
mensional sphere lying in some (m--1)-dimensional linear subspace P of E with
I<m<k—2. Then there exists a submanifold S of ENC diffeomorphic to the
(n = k—m~1)~dimensional sphere and @ smooth strong deformation retraction
ri ENC— S. If C and S are suitably oriented then the linking number of the pair of
inclusions C — E and S — E is equal to 1. ‘

Proof. We may suppose that C is the unit sphere in P. Identify the manifold E
with the unit sphere S* in the Euclidean space Ex R by the stereographic projection
from the point p = (0, 1)e ExR. Let L be the orthogonal complement of P in
ExR and §"=S§*NL the (n = k—m—1)-dimensional sphere. We have the
strong deformation retraction r,: S™\C — S" defined by r,(x, ) = y/iy| for (x,y)
e S™\CcPxL. By the homogeneity of the sphere S* there exists a diffeomorphism:
h: S* — S* which is an identity behind a small neighbourhood of the pole p disjoint
with C such that p¢h(S"). The map r = har,oh™! is a strong deformation
retraction of ENCa/S*\C onto the manifold Sa:h(S"), The sphere C is the boundary
of the unit disc.D in the subspace P and § intersects D transversally at exactly one

point 0. Therefore if C and §' are suitably oriented then the linking number of their
inclusions is 1.

LemMA 6. Let C and S be connected compact oriented digjoint smooth manifolds
without boundaries of dimensions m21 and nx1 respectively in the oriented vector
space E of dimension k = m+n+1 such that the linking number of the pair of inclu-
sions C — E and S — E is equal 1o 1, Let f: M > CcEand g: N -+ S<E be a pair
of linked maps. Then if,9) = I-degf-degg.
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Proof. The map &: MXN - E, defined by &(u, v) = 9()—f(1) can be re-
w

e , fxg
presented as the composition MxN — CxS — E,, where ¥(x,y) = y—x. By
the well-known properties of degrees concerning composition of maps and the
Cartesian product of maps we have

I(f.9) = W(®) = W(¥)-deg(fxg) = I-degf-degg.

Lemma 7. Let M and N be two smooth disjoint simple closed curves in a 3-di-
mensional Euclidean space E. Then there is a smooth homotopy fi: M — ENN such
that fy are immersions for t € I, fy is the inclusion M — ENN and f1 is an embedding
onto an unknotted curve, i.e., there exists a diffeomorphism h: E — E diffeotopic to
the identity on E such that hofi(M) is a circle contained in some plane (comp. [9],
p. 159, Ex. 2).

Proof. For the 1-dimensional manifold M U N there exists a plane P such
that if m: &£ — P is an orthogonal projection then x|M U N is an immersion with
transversal selfintersections such that no three points of M U N have the same
image ([8], §4 B)). -

Choose a point v, in 2 and let x; be a point of M for which the function
@: (M) - R defined by ¢ (x) = |x—xo| attains its maximum. There exists a line L
contained in P orthogonal to the vector x;—x,, intersecting (M) transversally
at exactly two points, n(«) and = (b) near x;, such that if the open arcs M,, M, are
two components of M\{«, b}, then n(M,) and w(M,) are contained in different
halfplancs determined by L on P, m(M,) contains all double points of (M) and
xy € T(My).

Let wy, 3, .., 1 be all points of M mapped on the double points by #|M,
arranged according to a chosen orientation of M. A line orthogonal to P may. be
identified with the oriented line R of reals. If i<, m(u) = 7(;) and u; is overcross-
ing, then we deform smoothly the inclusion fy: M — E by immersions fi M- E
in a small neighbourhood of u, in such a way that nof; = x o f, and for the em-
bedding f; wu, is undercrossing. According to the decomposition E = Px R we
wiite fi = (/,/1"), where f{ = msf, and f{'is a real function. Let f;': M — R be
a smooth function mapping the open ares M, and M, diffeomorphically, preserving
orientation on M, and reversing it on M. 1« Put £y = (f{,f2): M — E. The mappings
U=0)f -+t = (fl, (L= f{ +1f3") for tel are immersions because 77 is. They
are embeddings because If £{(w)) = f{Gr) and 1< then f'(u) <f1'(u), f3/ ) <fa ()
and consequently

(L= D1+ 13 () < (L =11 () + 13 W) -

Let C be a circle in P with centre x, passing through x;. Choose a dif-
feomorphism /5 of M onto C mapping M, and M, into the halfplanes determi.ned
by L containing x, and x, respectively. Put fy = (£4,/2): M ~ E. The map}),mgs
U=Ofst1fs = (1=f] +1fs, /7)) for teT are embeddings of M because f3'|Mo
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and fy/|M, are embeddings, fi(Mo) and f3(My) lie in onc halfplane and fi(M))
and f{(M,) in the other, f{ and C are transversal to L and S5/ (a) # f5'(B).

We see that 7, and f3 are isotopic and by the isotopy extension theorem f; (M)
is unknotted.

Proof of Theorem L. If m = 0 then M is a point. For a pair of linked maps
(f, 9) the set ENF(M) has the homotopy type of an (n = k—1)-dimensional sphere
S" and the theorem follows from the Hopf homotopy classification theorem of
maps of a manifold N into 87, nx1 ([7], § 7). In the sequel we assume m>1.

The map # — Z is surjective by Lemma 2. To prove its injectivity suppose
that (fy, go) and (fy, g;) are two pairs of linked maps and /(fo, go) = I(f1. gy).
Since k = m+n+1=2m+1, we can assume that f, and f; are embeddings ([4],
2.2.13). We shall consider several cases.

a) 2<m = n. We may suppose that g, and g, arc embeddings as well as f;
and f;. We can assume that fo(M), go(N), f1(M), g,(N) are disjoint by composing
fo and g, with a suitable translation of E. The set D = EN(fi(M) U go(N )) is open
and connected because the dimensions of the manifolds f1(M) and go(N) are less
than k—2. By Lemma 2 applied to D, f, and g, there exist maps f,: M — D and
g»: N — D, homotopic to f, and g, respectively as maps into D, such that I(f,, g,)
= I(fy. go)- By Lemma 3 (fo, 90)~(f2 90)=(f2. g2) (1, 42)=2(f1, 9

b) 2<m<n. Since k = m+n+122m+2, by Lemma 4 there exists a dif- |

feomorphism h: E— E isotopic to an identity such that fi = liof,. Then
(Jo» go)=([1s B o go)=(f1, g1) from Lemma 3.

¢) m = 1, n22. M is diffeomorphic to a circle ([7], appendix). Since k =2m+2,
by Lemma 4 there exist diffeomorphisms gy, 1, : E — E isotopic to the identity such
that Jig o fo. and 1, o f; map M onto an oriented circle C-lying in some planc in E
with degree 1 (if necessary we may compose /i, or h; with the rotation of E pre-
serving C and reversing the orientation of C). By Lemma 5 we choose an oriented
manifold S diffeomorphic to the n-sphere, and a strong deformation retraction
r: ENC — S such that the linking number of the inclusions ¢ — £ and § — E
is 1. The maps hy o go and ro ky o g, are homotopic as maps into ENC and also
as maps into E\C, because dim/x N = n+ 1<k and the homotopy may be slightly
deformed to avoid the point co by the transversality extension theorem ([2], p. 72).
Therefore (fy, go)=2(hy © S, ho © go) =By o fo, ¥ 0 B 0 gy). Similarly

(fogeyofi, og)=hofi,rehiogy).

By Lemma 6 degrehgog, = degrohyogi, and so by the Hopl classification
theorem ([71, § 7) (hg o fo, o hig o goy(hy o f1, 7o By o gy) and consequently (/g go)
=(f1, g1)-

d) m = n = 1. We may suppose that g, and g, are embeddings. The manifolds
M and N are diffeomorphic to a circle. By Lemma 7 there are embeddings f,: M
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— ENgo(N) and Ji: M — Exg,(N) such that (fy, go)~(Ty, go), (Fi902(fi. g9
and fo(M) and f;(M) are unknotted curves in the 3-dimensional space E. Choosing
ho, by and r as in case c), we have

(fo, 90) 2= (Jo, gy (g o Jos Fig o go)=(hg o fo. 1o hoogo),
1
(S g0=2(Fro gD =y o fy hyo gy =(hy o Fy, 1o hyogy).
Thus the proof of Theorem 1 is complete.

Tn the case where M or N is nonorientable and all the remaining assumptions
are the same, for a pair of linked maps f:M — E and g: N — E the linking number
modulo 2 denoted by 1,(/, ¢) € Z, can be defined as the winding number modulo 2
of the map @: MXN - £, given by ®(u,v) = g () —f(u).

Tutorem 8. If M or N is nonoricntable then the function # — Z, assigning to
d homotopy cluss of a peir of linked maps (. ) their linking mumber modulo 2 1,( 1)
is hijective. ’

The proof, analogous to that of Theorem I, can be based on the modified
Lemma 3, in which M or N is nonorientable and the linking numbers / ( 11 90)
=1{(f,y() arc replaced by the linking numbers modulo 2 7,(f, g0 = L(f, g
If N is nonorientable then the arc L in /x N should be chosen in such = way thaf,
after setting an arc 4 in M joining the two points of intersection Golzo) and Gylz,),
the interscetion numbers of oriented neighbourhoods of L and 4 in I7xN and M
respectively have opposite sings. If A7 is nonorientable then A should be chosen
in such a way that after sctting L the above condition is satisfied.

Remarks, Theorems | and 8 are valid also for continuous maps and continu-
ous homotopics. This follows by the approximation of continuous maps by
smooth ones. .

In the case m = n it is possible to consider linked pairs of embeddings f: M— E
and g: N - E instead of smooth maps, and isotopies instead of homotopies. From
the results of Hacfiinger ([3], Th. 1') it may be deduced that the analogues of
Theorems 1 and 8 are valid in this case provided 2<m= n. This is not true if m
= == | because of the possibility of a different knotting of M and N,

COROLLARY 9. Let M, N be closed connected smooth manifolds (orientable or
not) of disnensions m and n respectively and E a linear space of dimension k = m+
Fn-b 320 Lot A be the diagonal in Ex E.

a) The function A~ [M x N, Ey] assigning to a homotopy class of a pair of
linked maps (f, g) the homotopy class of the map & defined by ®(u, v) = g(v) —f(u)
is bijective,

by The function # — [Mx N, Ex ENA] dssz‘gning to a homotopy class of a pair
of linked maps (f, g) the homotopy class of their Cartesian product fx g treated as
a map into Ex ENA is bijective.
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Proof. For oriented M and N this follows from the commutative diagram

H—L s M XN, Ex ENA]

\\
1|2 @) Q
AN

Ze—— [MxXN, E]

in which the right vertical bijection is induced by the homotopy equivalence
"h: Ex ENA — E, defined by h(x,y) = y—x, / is the bijection of Theorem 1 and W
the bijection of the Hopf classification theorem. In the unoriented case we have
a similar diagram. ’
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Products of normal spaces with LaSney spaces
by

Takao Hoshina (Ibaraki)

Abstract. In this paper the equivalence of normality and countable paracompactness will
be established for the product of a countably paracompact normal space with a LaSnev space.
This extends Morita, Rudin and Starbird’s theorem.

1. Introduction. All spaces considered in this paper are assumed to be Haus-
dorff and all maps-continuous and onto. Closed images of metric spaces were
characterized by La¥nev [7], and are called Lasnev spaces. Leibo [8, 9] applied
Lagnev spaces to extend the well-known Katetov-Morita coincidence theorem and
other properties of metric spaces in dimension theory (ses [4]).

Let X be a countably paracompact normal spacé. It follows from the results
of Morita [13] (for the proof see [5]) and Rudin and Starbird [18] that for a metric
space Y the product space X x Y is normal if and only if X'x ¥ is countably para-
compact. However, no condition on ¥ other than metrizability seems to be known,
under which the above equivalence is true. Indeed, in case Y is a paracompact
M-space Rudin and Starbird [18] shows that the normality of X x ¥ implies the
countable paracompactness of X'x ¥, but the converse does not hold in general
even if ¥ is compact. The aim of this paper is to show that the above is true in case
of Y being Lasnev. We prove the following theorems:

THEOREM 1. Let X be a normal space and Y a Lagnev space. If X x Y is countably
paracompact, then X x Y is normal.

THEOREM 2. Let X be a space and Y a non-discrete Lasney space. If X x Y is
normal, then X x Y is countably paracompact.

THEOREM 3. Let X be a normal and countably paracompact space and Y a Lasnev
space. Then X'x Y is normal iff Xx Y is countably paracompact.

We note that in case Y is metrizable Theorems 1 and 2 are proved by Morita
[13] and Rudin and Starbird [18] respectively. Also, our results will be applied to
prove that if the product X'x ¥ of a paracompact (resp. collectionwise normal)
space X with a Ladnev space Y is normal then X x Y is paracompact (resp. col-
lectionwise normal). This extends an analogous result for a metrizable space Y,
implied by the results of Morita [12], Okuyama [17] and Rudin and Starbird [18].
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