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A theorem on matrices and its applications
in fumctional analysis

by
PIOTR ANTOSIK and CIIARLES SWARTZ (Las Cruces, N. Mex.)

Abstract. Wo ostablish a theorem on infinite matrices of real numbers which
can bo regardod as an abstract “sliding-hump” type resuls. To illustrate the usefullness
of the theoren, we derive several well-known results in functional analysis and measure
theory. In particular, we prove the Orlicz—Petitis Theorem and a result of Diestel and
Traires on strongly additive veetor measures.

Recently there have been several presentations in the literature of
aasstract “sliding-hump” type results with applications to various topies
in functioral analysis and measure theory. For example, in the recent
book of Diestel and Uhl ([7]), Rosenthal’s Lemma ([11]) is used to estab-
lish- many of the major results of vector meagure theory. In the same spirit
the Antosik-Mikusiniski Diagonal Theorem has been employed to establish
many of the classical results of functional analysis and measure theory by
sliding-hump type methods (ef. [1], [9], [13]). In this note we present
a very simple theorem on infinite matrices of real numbers and show that
it too can be viewed as an abstract “sliding-hump?” type result. In particu-
lar, we indicate how this result can be employed to derive several major
theorems of functional analysis and measure theory. Our result is of
a much more elementary character than Rosenthal’s Lemma since it
only concerns matrices of real numbers whereas the Rosenthal Lemma
deals with measures and its proof in [7] requires non-trivial methods.
There is an clementary proof of the Rosenthal Lemma given in [2] which
was motivated by suggestions of Pap. Our result is also of a somewhat
simpler nature than the Antosik-Mikusinski Diagonal Theorem in that
it deals with matrices of real numbers whereas the diagonal theorem deals
with matrices having values in a normed group.

We begin by stating a lemma on matrices of real numbers which
will be used in the proof of the abstract sliding-bump theorem.

Lmmma 1. Let wye R for 4,5 e N. Then there is a subsequence {p}
such that the diagonal submatrios Doy = Yii has the property that all elements
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on the diagonal have the same sign, all of the elements over the diagonal have
the same sign and ol of the elements below the diagonal have the same sign.

Proof. First we show that there exists a diagonal submatrix of
{z;} such that all of the clements below the diagonal have the same sign.
~ In faet, there exists an increasing sequence of positive integers {my}
such that m,; =1 and the @, ,, for i>2 have the same sign. Again
there exists a subsequence {my;} of {my} such that my, = my, My = My,
and the @, , for ¢> 3 have the same sign. By induction, wo select
a sequence of sequences such that the jth sequence {my}{2, is a subsequence
of the (j—1)st sequence, my, = my_,;, for k =1, ..., and the numbers
L for k> j-+1 have the same sign. Note that the diagonal sequence
mu is & subsequence of each {m;}{2, and the numbers By for ¢ =13
have the same sign. In other words, the columng of the matrix {“'mum,
starting from the diagonal are nonnegative or nonpositive. Dwdentiy
there exists a subsequence {m;} of {m;} such that numbers below the
diagonal of the matrix {w,, m} are of the same sign.

Applying the result above to the transpose matrix y,; = Buymy »
there is a subsequence {k;} of {m,} such that the elements over the diagonal
of {z, a3 are all of the same sign. Finally, we take a subsequence {p;}
of {k;} such that the elements ,, have the same sign. The matrix {m, -
then satisfies the required conditions.

We now establish the theorem concerning matrices of real numbers
which will serve as our abstract “sliding-hump” result.

THEOREM 2. Let {w;} be a mairio of real azumbers such that each subse-
quence {m;} has o subsequence {n} with {2 By Y2, bounded. Then for
each ¢ > 0 there is a subsequence {p,} of pomwe integers such that Z‘I
< ¢ for all 4 € N.

Proof. First we prove the theorem under additional assumptions,
Assume @ also satisfies:

(1) the diagonal {w,} is Hounded,

(2} 5 = 0if i < j, i.e., all elements over the diagonal are zero,

(8) 3= 0 if > j,i.e, all clements below the diagonal are nonnega~
tive.

By passing to a submatrix if nocessary, we may assume
that there exists an M > 0 such that | 2 #y] < M for all ¢. By (2) and

-1
(3), we have '2 By < lwyl+M so by (1) there is an M;>0

i—1
such that 3 &y < M, for all 4. Set & = /2! for j e N. We assert that
i=i »

Z Ieie;1 <

©
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there exist an index j, and a subsequence {m,;} such that Myy = J; and
By, << &1 fOr 4 > 1. For if this is not the case, then for each j there exists
an mdex k; such that ;> ¢ for each 4> J;. If ¢> max {kl, k3,

then 2, @y 2> jey so that if § is such that M, < js,, then 2’ @y > 1![1

‘which glves the desired contradiction.

Congider the matrix {wmhm . By the same argument as above, there
exist an index j, and a subsequence {my} of {my} such that m, = m,,,
Mg = My, a0d @, 0 << g f0T ¢ > 2. By induction there exists a sequence
of sequences such that {m,, ]2, is a subsequence of {0 8eny Mpga g

=my,; for i<k+1 and @, mw< &, for ¢> k. Set p; = my. Then we
-1
have @, < ¢ for i > j. Hence _V‘ LIRS 2 /27 < /2 for all 4. This

establishes the result under the addltlonal hypothems above.

We now prove the general result under the additional hypothesis
(1),1.e., we assume the diagonal is bounded. By using Lemma 1 and passing
to a submatrix if necessary, we may assume that the numbers {wy: 1> 4}
have the same sign. Set g; = 1. Since the rows of the matrix converge
to 0, there exists a g, > ¢, such that 4,451 < /2% Then there exists a g,
> g, such that |z, | < /2% and [@gy0! < £/2%. By induction, there is
a subsequence -{g;} such that |v,, ) < /2’ for 4 < j. This implies that
52 LIS ¢/2% for all 1. By hypothesis there is a subsequence {p,} of

{g.} such that { 2 Tp,p;} 18 bounded.
g=1

Consider the matrix {y,} defined by y,; = [0, i 42 J and yy
=0 if ¢ < j. Clearly {y;} satisties conditions (1), (2), and (3). From the
inequality

Z'yﬁ = ’2 p,pj' Sl W

j=1
< IZ Ppy;
=

it follows that {y,} also satisties the hypothesis of the theorem. By what

has been proven above there is a subsequence {i,} of positive integers such
i1

that 3 Yrury < £/2 for all 4. Setting s; = p,, , we have
i=1

+| 2 mﬂml +212pnyl5
J=it1

21'/’17'] + 2 ]ws,,sjl < C/2+8/2 = &

F=i41

Thus, the theorem is established under the additional assumption (1).
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We claim that a matrix satisfying the hypothesis of the theorem has
& bounded diagonal. If this is not the case, we may assume by passing
to a submatrix if necessary that ;- co. Consider the matrix 2y = |y "y
Then {z,;} has a bounded diagonal and satisfies the hypothesis of the the-

orem since 3 Pngny = @gngl ™ 3 Bpny- By the hypothesis of the theorem
B 1 f=1
and what has been proven above, there is a subsequence {p;} of positive

integers such that { mmpj} is bounded and 3 [#pz;l << 1/2. Then
f=1 i

oo
p -1
1 = gyl < ltpypy IZ “’ﬂm] + D e
=1 e

and the right-hand side of this inequality is less than 1 for ¢ large since
y,p; > 0. This contradiction establishes the general form of the theorem.

The conclusion of Theorem 2 is very similar to the conclusion of
Rosenthal’s Lemma for o-fields as applied to measures which are generated
by series ([7], I. 4. 1). That is, if {w,} is such that the series > %15 abso-

7 .
Iutely convergent for each 4 and P is the power set of N, , then 4, (B) = 3
jeli

defines a countably additive measure on P. The conclusion of Rosengha,l’s

Lemma for this sequence of measures is that there is a subsequence {p:}

such that 3 |, | () = 3 |n, o] << & for each ¢; exactly the conclusion of
j 4 g5t

J
Theorem 2. Note, however, a matrix {zy} can satisfy the hypothesis of
Theorem 2 and be such that 3w, is not convergent. Indeed, the matrix

7
#; = 1/j satisties the hypothesis of Theorem 2 but not the conditiong
above.

Even the field version of the Rosenthal Temma for finitely additive
measures does not seem to directly yield Theorem 2. Let {zy} be a real
matrix. If X is the field of subsets of N consisting of subsets which are
either finite or have finite complements, then i (B)y = 3w, for B finite

Jel

and u,(H) = —j%‘n oy for F infinite defines a finitely additive measure

2. However, to apply Rosenthal’s Lemma to this sequence of meagures

requires that the measures be uniformly bounded, and if {w,} is the matrix

* @y = 1[j, each of the g, is unbounded, but Theorem 2 iy applicable to the
matrix {w}.

From these observations it is clear that Theorem 9 may be applicable

to situations where the Rosenthal Lemma ig not applicable. The applica-

tions which follow in the sequel will clearly indicate that Theorem 2 can,

be regarded as an abstract “sliding-hump” result in much the same gpirit
as the Rosenthal Lemma.
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Note that Theorem 2 cannot be generalized to matrices with values
in an infinite dimensional normed space. For example, if e, is the nth
unit vector in ¢, and if z; = ¢; when i > j and @y =0 if ¢ < j, then
satisfies the hypothesis of the lemma, but the conclusion clearly does not
hold with ¢ = 1.

As a first application of Theorem 2 we derive a result of Diestel
and Faires on strongly additive vector measures ([6], [7], 1.4.2). Actually,
using Theorem 2, we derive a more general result which contains the Die-
stel-Faires Theorem as well as a result of Rosenthal ([127]) as special cases.
For this we require two preliminary lemmas.

First we need a result of Drewnowski on strongly additive measures
([81)- Recall that if X is a c-algebra and X is a normed space, an additive
set function u: Z—X is strongly additive if whenever {B;} is a disjoint
sequence from ZX, then u(F;)—0. Concerning such measures, Drewnowski
has proved ‘

Lemyma 3 (Drewnowski). Let X be o cr-algebm} of subsets of S and
let py: Z—X be strongly additive. If {B,} is a disjoint. sequence from X,
then there is a subsequence {B,} such that each p, is countably additive
on the o-algebra generated by the {Fny}-

Drewnowski does not explicitly state this result in [8] but the proof
follows from his lemma and the argument on page 728 of [8] (see also
Proposition 2). Diestel and Uhl state the result for a gsingle measure ([7],
L.6). .
‘We also require the following technical lemma on infinite matrices
of real numbers.

Lemva 4. Let 2; € R be such that there exists 8 > 0 with

supZ logl < oo, logl =6 and 2 |2yl < 8/2 for each i.
ii= it
Then

sup| Myzy| > U012 for £ = {i}el”,
j=1
where ||C|| = sup [

J

Proof. For each %,
ol (=]
l.}:tf%] = [ty — ’2?51213
=1 )

= 18— 121 D) el = 1l 6— 11201 8/2.
g

Taking the sup over ¢ implies sup| 3, #2| > (]| 6/2.
» i d=1
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The operator interpretation of Lemma 4 is the following: the matrix
- )

{27} induces a linear operator U:1*—1" by U{ = { > 424} The condi-
=1

tions of TLemma 4 insure that U is continuous and ||UZ[| = [iL]|6/2 so that
U has a bounded inverse.

‘We now prove our first main theorem. Throughout the remainder
of the paper X will denote a Banach space with dual X'. The duality
between X and X' will be denoted by ¢ , >. N will denote the positive
integers and for any set S, P(S) will denote the power set of 8. If J = N,
1*(J) will denote the subspace of I® which consists of those sequences
which vanish outside of J.

TEEOREM 5. Let u: P(N)—=X be bounded and finitely additive. If
{u(§)} does mot converge to 0O, then there is a subsequence {m} such that for
any subsequence {p,} of {my}, T{ = [ du defines a topological isomorphism

J

T: 1°(J)>X, where J = {p,: ke N}.
Proof. There are a subsequence {I;} and a é > 0 such that [ju (%) =

For notational convenience agsume I, = k. Pick a", € X' such that 1|w,c|[
=1 and <&y, p(k)) = |u(k)). Now for each m, ,u: P(N)->R defined
by @, u(B) = (&, u(H)> defines a bounded finitely additive measure.
By Drewnowski’s Lemma 3, there is a subsequence {m,} such that each
@, 4 is countably additive on the o-algebra X generated by {m}. Pub
@y = wm[ u(my). Then w,; satisties the conditions of Theorem 2 since u is
bounded and each 3 1s countably additive on X. Thusg, there is a subse-

quence {n;} of {m} such that 2 @y, w(m)] < 6/2 for each 4. If {p,} is

any subsequence of {n,} and J = {p;: k € N}, define T: Igz(J)=X by
T¢ = [{ du. By the countable additivity of @, u on Z,
T

ITE) > 1<y, TEO] =] [ taap, | =| Xty ap,m00)]
J F=1

for ¢ = {1} e1™. I 2y = a, u(p;), then Lemma 4 implies ||T¢] = IC]8/2.

As an immediate consequence of Theorem 5 we obtain the following
result of Diestel and Faires ([7], 1.4.2, [6]).

CoROLLARY 6 (Diestel-Faires). Let X be a o-algebra of subsets of & and
v: X=X be bounded, finitely additive but not strongly additive. Then X
contains a subspace (fopologically) isomorphic to 1°°.

Proof. If » is not strongly additive, there are a disjoint sequence
{B;}< 2 and a 6> 0 such that ||v(H,)|> d. Define u: P(N)-=X by
w(4) =v(\JB;). Then u satisfies the conditions of Theorem 5 and the

Jed

result iz immediate.
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Similarly, we obtain as a corollary of Theoreris the following result
of Rosenthal ([127).

COROLLARY 7 (Rosenthal). Let T: I®*—+X be bounded and linear. If
there is an infinite I < N such that T restricted to oy(I) is an isomorphism,
then there is an infinite J = I such that T restricted to 1° (J) is an isomor-
phism.

Proof. Define u: P(N)—=X by p(d) = T(0,), where O, denotes
the characteristic function of A. Then u is bounded, finitely additive
and T¢ =1\{ {du. By hypothesis there is a 6 > 0 such that |[u(3)]] = [TC0x |

> 6 for¢ e I. Thus, Theorem 5 gives the result.

Rosenthal actually obtains a more general result than Corollary 7 in
Proposition 1.2 of [12]. For the countable case of his result which is given
in Corollary 7 our methods are much simpler.

In [13], Swartz used the Antosik-Mikusinski Diagonal Theorem
to derive several well-known results of Bessaga and Pelezyniski, Diestel,
and Pelezynhski. These results were obtained as corollaries of Lemma 3
of [13]. We now indicate how Lemma 3 of [13] can be obtained from The-
orem 2. A series ; in X is said to be weakly unconditionally convergent
(wa.e.) it 3 <o, m,p| < oo for each ' eX’ ([3]). Recall that if 3,
is w.u. . and X is a B-space, then for each {;} € ¢, the series 3 f;2; con-
verges, and the map T: {f;}~3#; defines a bounded linear operator
from ¢, into X ([3], [13]). Also, we have sup{> I<&', #,»|: o' <1} < oo
for a w.u.c. series >, ([3], [13]).

THEOREM 8. Suppose that X is a Banach space which contains ¢ w.u.c.
series > @y, with ||m,|l > 6 > 0 for each m. Then there is a subsequence {m}

such that for amy subsequence {p;} of {my}, T{ = 2 Yy & = {ti} € ¢o,

defines a topological isomorphism T of ¢, into X.

Proof. Pick a, € X’ such that |o,] =1 and (o, 2,> = |z, I
@y = {@y, &>, then z;; samsﬁes the condition of Theorem 2. Hence, there

is a subsequence {m;} with 2 l(mmt,w,n])l < 6/2 for each 4. Let {p,}

be any subsequence of {m;}. If T is defined as above, then by Lemma 4
1T¢ll = sup [Kay, TOH| = [E16/2 for e

Theorem 8 can now be used to derive a classic result of Bessaga and
Pelezysski on w.u.c. series ([3], [7], I.4.5), a result of Diestel on strongly
additive vector measures ([5], [7], 1.4.2), and a result of Pelezyriski on
unconditionally converging operators ([10]). We refer the reader to [18] for
details.

Finally, we show that Theorem 2 can be used to derive one of the
most important and interesting theorems of functional analysis, namely,
the Orlicz—Pettis Teorem. ([7], I.4.4).
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TaEOREM 9 (Orlicz—Pettis). If the series Dw,, in X is weak subseries
conwergent, then it is norm subseries convergent.

Proof. It suffices to show |z,[|-> 0, for once this is established the
proof may be completed in the usual faghion (ef. [4], IV.1.1). Let &> 0.

By replacing X by the closed subspace generated by the {w,} we
may assume that X is separable. Pick z, ¢ X', |lo,| = 1, such that <,
@y = |@,]l. By the Banach-Alaoglu Theorem there exist a subsequence
@} and o’ € X' such that ,, — o' weak*. If z; = (g, — @y, then
forany 4 = N ]% @y <2U§ @ ||, Where j%mmj iy the weak sum of the

E. €. &.

J
corresponding subseries. Thus, {,} satisfies the condition of Theorem 2.
Let {m;} be the subsequence of Theorem 2. Then

(4) 1Bl < 1y, =y @y > 1418 5 @,

o0 oo
ul ’ y
< %ﬂ Ky = a1+ | 3 <@, — 'y @ |+ 3]
3 F=1

-]
<ot | o=y D]+ ol
J=1

Now the second term on the right-hand side of (4) goes to 0 since zr;nk —a'
— 0 weak*, and the third term on the right-hand side of (4) goes to 0 since
%y, —0 weakly. Thus, (4) shows that {z,} has a subsequence which goes
to 0, and since the argument can be applied to any subsequence, this im-
plies that z,— 0.

In conelusion, if one examines the development of vector measure
theory as given in [7], I.4, it can be concluded that Theorem 2 can be
considered as a reasonable, elementary substitute for the Rosenthal
Lemma.

The authors would like to thank the referee for some useful remarks
and suggestions.
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