

A remark on approximate solving of a class of initial-boundary value problems

by

H. MARCINKOWSKA (Wrocław)

Abstract. The paper is a continuation of the author's earlier work [2]. It deals with a class of initial-boundary value problems for the equation $Au + u_t = f$, where A is a linear elliptic operator of order 2m in space variables with time-depending coefficients. For approximate solving these problems we propose a finite element method based on a suitable family of triangulations of the space-time domain. An estimate of the error is given.

Let Ω be a polyeder in R^n . We are dealing in this paper with approximate solutions of the initial-boundary value problem for the equation

$$Au + u_t = f,$$

where

(2)
$$Au = \sum_{|a|,|\beta| \le m} (-1)^{|a|} D_x^{\alpha} (a_{\alpha\beta}(x,t) D_x^{\beta} u)$$

is an elliptic differential operator defined for $x\in\Omega$, $t\in(0,T)$. Assuming that the coefficients are measurable functions bounded in $D_T=\Omega\times(0,T)$ and that all the derivatives occurring in (2) (understood in the weak sense) are square summable, we can associate with A its Dirichlet bilinear form

(3)
$$a(w,v) = \sum_{|x| | \beta| \le m} (a_{\alpha\beta} D_x^{\beta} w, D_x^{\alpha} v)_{L^2(D_T)}.$$

To formulate the initial-boundary value problem in a weak form we introduce the Hilbert spaces

$$egin{aligned} H_{m,0} &= \{v \in L^2(D_T) \colon \, D_x^a v \in L^2(D_T), \, |a| \leqslant m\}, \ \ H_{m,1} &= \{v \in H_{m,0} \colon \, v_t \in L^2(D_T)\} \end{aligned}$$

with the corresponding norms $\| \ \|_{m,0}$ and $\| \ \|_{m,1}$ defined by the scalar products

$$(w,v)_{m,0} = \sum_{|\alpha| \le m} (D_x^a w, D_x^a v)_{L^2(D_T)}$$

and

$$(w, v)_{m,1} = (w, v)_{m,0} + (w_t, v_t)_{L^2(D_T)},$$

respectively. In $H_{m,1}$ one more norm is introduced, namely

$$|||v|||_m^2 = ||v||_{m,0}^2 + ||v(\cdot,0)||_{L^2(\Omega)}^2 + ||v(\cdot,T)||_{L^2(\Omega)}^2$$

(the value of v for t=0 and t=T in the sense of trace). The boundary condition is defined by a linear subspace V of $H_{m,0}$, which is supposed to contain the set $C^{\infty}_{0,x}(D_T)$ of all functions infinitely differentiable in $\overline{D_T}$, vanishing in some neighbourhood of the set $\partial \Omega \times [0,T]$. We suppose that $a(\cdot,\cdot)$ is V-elliptic. This means that there exists a constant d>0 such that

$$a(v, v) \geqslant d ||v||_{m,0}^2$$

for all $v \in V$. Introducing on $H_{m,1} \times H_{m,1}$ the bilinear form

$$B(w,v) = a(w,v) - (w,v_t)_{L^2(D_T)} + (w(\cdot,T),v(\cdot,T))_{L^2(D_T)}$$

and denoting

$$l_{f,u_0}(v) = (u_0, v(\cdot, 0))_{L^2(\Omega)} + (f, v)_{L^2(D_T)},$$

we give the following weak formulation of our initial-boundary value problem:

(P) given $u_0 \in L^2(\Omega)$ and $f \in L^2(D_T)$, find a $u \in V$ satisfying

$$(5) B(u,v) = l_{f,u_0}(v)$$

for all $v \in V \cap H_{m,1}$ vanishing for t = T.

It has been proved in [2] that (P) is solvable and its solution is unique in the space $H_{m,1}$. Moreover, if $u \in H_{m,1}$, it has the following properties:

I. u is a solution of (P) if and only if it satisfies in D_T the differential equation (1) together with the initial condition

$$(6) u(\cdot,0) = u_0$$

and boundary conditions

 (b_1) $u \in V$,

$$(b_2) \quad (Au, v) = a(u, v)$$

for all $v \in H_{m,1}$, $v(\cdot, T) = 0$.

II. Identity (5) holds for all $v \in V \cap H_{m,1}$.

Note that (b_2) implies some "natural" boundary conditions on $\partial \Omega \times (0, T)$.

If W is a finite dimensional subspace of $V \cap H_{m,1}$, the approximate problem is formulated as follows:

(\tilde{P}) find a $\tilde{u} \in W$ such that

$$B(\tilde{u},\varphi) = l_{f,u_0}(\varphi)$$

holds for all $\varphi \in W$.

Problem (P) is a kind of Galerkin approximation of the initial-boundary value problem in question, where the basic functions depend on x, t. Particularly, if W consists of spline functions, we are led to a finite element method based on a triangulation of the space-time domain D_T .

It was proved in [2] that

(7)
$$|||u - \tilde{u}|||_{m} \leqslant cd^{-1} \inf_{\varphi \in W} ||u - \varphi||_{m,1},$$

where c is a positive constant depending on the operator A and the domain D_T . Using (7), we are going to obtain further estimates of the error $e = u - \tilde{u}$, assuming a special form of approximating functions and some regularity of the exact solution u. Namely, let us consider a triangulation T_h of the domain Ω (see [1]) with $h = \max \operatorname{diam} \varkappa$ and a partition S_τ : $0 = t_0 < t_1 < \ldots < t_r = T$ of the segment (0,T) with $\tau = \max_{1 \le j \le r} (t_j - t_{j-1})$. The finite family of cylinders $\varkappa \times (t_{j-1},t_j)$ with $\varkappa \in T_h$ and $j=1,2,\ldots,r$ is obviously a triangulation of D_T , which we denote by $T_h \times S_\tau$. The approximating space W is now constructed as the finite element space $W_{h,\tau}$ (see [1]) corresponding to $T_r \times S_\tau$. Given a family of triangulations $\{T_h \times S_\tau\}$,

is obviously a triangulation of D_T , which we denote by $T_h \times S_\tau$. The approximating space W is now constructed as the finite element space $W_{h,\tau}$ (see [1]) corresponding to $T_h \times S_\tau$. Given a family of triangulations $\{T_h \times S_\tau\}$, we shall assume that each finite element (K, P, Σ) with $K \in T_h \times S_\tau$ may be obtained from a pattern one $(\hat{K}, \hat{P}, \hat{\Sigma})$ by an affine transformation of the form

(8)
$$x = A\hat{x} + a, \quad t = a\hat{t} + \beta \quad ((\hat{x}, \hat{t}) \in \hat{K})$$

with a non-singular $n \times n$ matrix A and $\alpha \neq 0$. To formulate our approximation result we use the following notation:

 ϱ for the upper bound of diameters of balls contained in a fixed $\varkappa \in T_h$; $H_p(\varSigma)$ for the Sobolev space of order $p=0,1,2,\ldots$ over a domain $\varSigma \subset R^{n+1}$ with the norm denoted by $\| \ \|_{p,\varSigma}$;

$$\leftert v
ightert _{p,\mathcal{Z}}=\left(\sum_{\leftert a
ightert =p}\left\Vert D^{a}v
ightert _{L^{2}\left(\mathcal{Z}
ight) }^{2}
ight) ^{1/2}\qquad ext{for}\qquad v\in H_{p}(\mathcal{Z});$$

P, for the set of all polynomials in variables x, t of order $\leq r$.

All the quantities corresponding to the pattern finite element will

be marked with .

THEOREM. Suppose that

(i)
$$u \in H_{r+1}(D_T)$$
 with $r > m + (n-1)/2$;

(ii)
$$P_r \subset \hat{P} \subset H_m(\hat{K})$$
;

(iii)
$$W = W_{h,\tau} \subset H_m(D_T);$$

(iv) there are two positive constants σ_1 , σ_2 such that

$$\sigma_1 \tau \leqslant \varrho \leqslant h \leqslant \sigma_2 \tau$$
.

Then

(9)
$$||e||_{m} \leq \gamma \hat{c} h^{r+1-m} |u|_{r+1, D_{T}}$$

with constant & depending on the pattern element and

$$\gamma = cd^{-1}(\sigma_2/\sigma_1)^{m+r+1}$$
.

The proof is quite similar to the proof in elliptic problems (see [1]). In view of (7) it is sufficient to estimate $||u - \Pi_{h,\tau}u||_{m,D_T}$, where $\Pi_{h,\tau}$ is the interpolation operator connected with the space $W_{h,r}$. Note that in view of (iii) the interpolate $\Pi_{h,\tau}u$ is defined by the values at the knots of the derivatives $D^a u$, $|a| \leq m-1$, but (i) ensures that $u \in C^{m-1}(\overline{D_n})$ according to the Sobolev lemma, and so these values are well defined. Denoting by B the matrix of the affine transformation (8) we have for $K \in T_h \times S_{\tau}$ and l = 0, 1, ..., m

$$|u - II_{h,r}u|_{l,K} \leq \hat{c}_1 ||B^{-1}||^l ||B||^{r+1} |u|_{r+1,K}$$

where | | | denotes the spectral norm of the matrix in question. But

$$||B|| \le \sqrt{||A||^2 + \alpha^2}, \quad ||B^{-1}|| \le \sqrt{||A^{-1}|| + \alpha^{-2}}$$

and (see [1], Theorem 3.1.3)

$$||A|| \leqslant h/\hat{\varrho}$$
, $||A^{-1}|| \leqslant \hat{h}/\varrho$;

thus

$$||B|| \leq \sqrt{h^2/\hat{\varrho}^2 + \tau^2/\hat{\tau}^2}$$

and similarly

$$||B^{-1}|| \leq \sqrt{\hat{h}^2/\varrho^2 + \hat{\tau}^2/\tau^2}$$

Elementary calculation yields

$$|u - \Pi_{h,\tau} u|_{l,K} \leqslant \hat{c}_2(\sigma_2/\sigma_1)^{l+r+1} h^{r+1-l} |u|_{r+1,K}.$$

We obtain (9) after summing both sides of (10) over all $K \in T_h \times S_\tau$ and l = 0, 1, ..., m.

References

- fill P. Ciarlet, The finite element method for elliptic problems, New York 1978.
- [2] H. Marcinkowska, On internal approximations of parabolic problems, Ann. Polon. Math. 42(1983), 173-180.

Received October 5, 1982

(1812)