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On some dense subspaces of topological linear spaces

by
Z. LIPECKI (Wroclaw)

Abstract. We consider the following completeness-type property of ametrizable
topological linear space X introduced by 8. Mazur and W. Orlicz: (K.) Everysequence

() in X with z,~0 contains asubsequence (x,, ) such that theseries Z‘wnk is convergent.

We give a general example showing that property (K) is not mult1phca.t1ve On th
other hand, we represent every F-space of dimension 2% as the direct algebraic sup
of two dense subspaces X, and X, with property (K)such that X; x X, also hag pro-
erty (K). ’

The prcsent paper deals with the existence and some completeness-
type properties of dense (linear) subspaces of infinite-dimensional topo-
logical linear spaces. It falls into three sections. '

Section 1 establishes the existence of a decomposition into a large
family of dense subspaces with the same dimension as the whole space
(Theorem 1).

Sections 2 and 3, which are independent of Section 1, contain some
results related to the fo]lowmg property of a metrizable topologlcal linear
space X: . ‘
(K) Ewvery sequenca () n X with @,~0 contains a subsequence (z,,)

such that the series Z‘m s convergent. -
k=1

This property was first isolated (in the wider context of linear spaces
with convergence), already in the forties, by Mazur and Orlicz. They
realized that in some basic theorems of functional analysis property (K)
can be used as a substitute for completeness (see their paper [10], p. 169;
of. also [1], postulate (a;), p. 203). Property (X) was rediscovered (and
given the present name) in the seventies at the seminar guided by Professor
Jan Mikuginski at Katowice.

The existence of & noncomplete (metrizable) topological linear space
with property (K) was first proved, under the continunm hypothesis,
by Kli§ ([8], Theorem 2) and next, without that hypothesis, by Labuda
and the author ([9], Theorem 2). In [2], Theorem 2, it was proved (in
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the wider context of Abelian groups) that property (K) implies that X
is a Baire space. Those results were already applied by Drewnowski [4].

Below we give a general example showing that property (K) is not
multiplicative (Theorem 3). On the other hand, we represent every I'-
space X with dimX = 2% as the direct algebraic sum of two dense sub-
spaces X, and X, with property (K) such that X, x X, also has property (K)
(Theorem 4). As a consequence, X admits a strictly stronger linear top-
ology with property (K) (Corollary 3).

Most proofs are based on ideas already applied in [8], [9] and [2].
Therefore some arguments are presented fairly concisely.

1. Existence of dense subspaces of large dimension and codimension.

It is well known that a subspace of a topological linear space whieh is
of codimengion 1 is either closed or dense in the space. Recently the interest
in dense subspaces of large dimension and codimension was raised by
De Wilde and Tgirulnikov ([3], Bxample 3.6). (A related problem had
already -been considered by Klee [7].) Independently of [3], such sub-
spaces, with an additional property, were constructed in [9]. Here wo
shall establish a result which implies [3], Remark (ii). It also partially
generalizes [9], Theorem 2. .
" TemorEM 1. Let X be a topological linear space which has a base of
cardinality < dim X. Then there ewists a sequence (X,),.,, where @ is the
initial ordinal of cardinality Aim X, of dense subspaces of X such that dim X,
= dim X for all a < ¢ and X is the direct algebraic sum of (X,),<,

Proof (cf. [9], proof of Theorem 2, and [2], proofs of Lemma 1 and
Theorem 1). Liet % be a bage for X with card# < dim X. Arrange % into
a transfinite sequence (Uy)acp With each element of # repeated (dim .X)-
times. Then it is easy to construct inductively a double sequence (wﬁ)ﬂsaw
of elements of X such that for all f<<a< g

i ¢lin{ef: f<a <aora =aand f'<pf} and afeU,.

Let Y be an algebraic complement of lin {af: ‘ﬁ < o< ¢} and put

X, =Y+lin{a): y<g} and X, =1lin{a%: a<<a' < g}
for 1<ta< g As essily seen, (X,),., is then as desired.

We note that the assumption of Theorem 1 holds if X is metrizable
and infinite-dimensional (cf. [9], p. 94, footnote (*)). This assumption
is also satisfied by the nonmetrizable space R®. On the other hand, it
fails if X is a linear space such that every subspace of X is closed (cf.
.[9], Example 1).

LevmA 1. Bvery linear space Z can be represenied as the union of dim Z
‘pairwise disjoint convewx. sels. :
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;Prqof (Pf' [7], proof of (3)). Let (%a)acps Where @ is an ordinal of
fzs,rdmahty dimZ, be & Hamel bagis for Z and let (fa)acy be the correspond-
Ing sequence of coefficient functionals. Put

Z,={zeZ: f(z) <0 for < a and Sulm) > 0},
Z, ={meZ: fa(x) <0 for f< ®}.
Then Z = | ) Z, and the Zs are pairwise disjoint convex sets.

a<p
The following corollary slightly generalizes an old result of Klee
([73, (4))- »
CO%%OL]E‘ARY 1. Let X be a topological Uinear space whick has a base
of cardinality < AimX and let m be a cardinal with m < dim X, Then X
can be represented as the umion of m pasrwise disjoint dense convex sets.
Proof. By assumption and Theorem 1, there exist subspaces Y and Z
of X such that X =¥ @ Z, ¥ is dense in X and dim Z — m. Let (Z,

g . a)u
be the decomposition of Z given by Lemma 1. Then (Y 42Z,) e, is tli:

desired decomposition of X.

2. x-subspaces. Following Drewnowski [4], we call a subspace ¥
of a topological linear space X a #-subspace provided every linearly in-

o
dependent sequence (,) in X such that 2 x, is subseries convergent con-
. . oo n=1
tains a subsequence (#,,) with kzl‘ 2, eX.

Under the continuum hypothesis, the existence of a proper x-gub-
space of I, is implicit in [8], proof of Theorem 2. A more general result
without the continuum hypothesis, is given in [9], Theorem 2. ’

Clearly, every x-subspace of an F-space (i.e., a complete metrizable
topological linear space) has property (K). However, there exist F-gpaces
having dense subspaces with property (K) which are not x-subspaces,

Examere (J. Burzyk). Let X and Z be F-spaces such that dim X — 2%
and dim Z > 2%, Let ¥ be a (proper) dense subspace of X with property
(K) (see [9], Theorem 2). Then Y xZ is a dense subspace of X xZ with
property (K). Nevertheless, ¥ xZ is not a x-subspace of X xZ. Indeed,
fgc reX\Y and a linearly independent requence (%,) in Z such that
“211{,” is subseries convergent. Then the sequence ((27"2,u,)) is also linearly
independent and > (27", u,) is subseries convergent in X xZ. However,

n=1

for every ny; < my < ...

o

2(2—"%{”7 Uy) = (( ) 24%)% ) M“") #¥xZ.

k=1 k=1

3

)
]
-
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Drewnowski showed that every x-subspace of an F-space has dimen-
sion > 2% ([4], Lemma), We shall show that x-subspaces are large in two
other respects.

THEOREM 2. Suppose X is a topological linear space which contains

©o
a linearly independent sequence (u,) such that ) u, s subseries convergent.

n=1
If Y is a w=-subspace of X, then

(a) codim ¥ < 2%;

(b) Y is dense in X ().

Proof. (a): Assume, to get a contradiction, that codim ¥ > 2%.
Then X contains a linearly independent set {v;: £ € T} such that card T
> 2% and

lin{z,: te T}nlin(Y U {u,:

Then, for every t e T, the sequence (2 "x;+u,) is linearly independent.

% e N}) = {0}.

Moreover, 2 (2~"x,+u,) is subseries convergent. Since card Z' > 2%, there

exist 1, 1,‘2 € T with ¢; % ¢, and n, < n, < ... such that

(2 2"”k)x,i+2 Uy, € X
) =1 k=1
for i =1,2. Hence #, —a;,¢Y, a contradiction.
(b): Fix x éX with @ 5 0. Then « ¢lin{w,,,: & e N} for n large
enough. We assume without loss of generality that « ¢lin{u,: n e N}.
Next fix a neighbourhood U of 0 in X. By passing to a subsequence,
we may assume that for every ke N and all scalars v4,..., ¥, with

» k, we have 2 Py, € U.
Since the sequence (27"z -+-u,,) is hnearly independent and. 2(2“% +u,)

n=1

[yl < 2" for n =1,..

“is subseries convergent, we have, by assumption,

Yy = (Z.o' 2‘"lc)m—|— iju,% e¥
fe=1 k=1

On the other hand,

(i 2—%)‘1_7/_, zeU,

k=1

for some n; <My <...

To0
as ( 327"~ < 2% for i e N.

(*) This assertion was found by L. Drewnowski and, independently, by the
author. The proof given here is due to the authoxr.
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Theorem 2 above sheds some light on Theorem 2 of [9]. Namely,
it shows that if X satisties the assumption of the former theorem, then
the condition that dim X< 2% of the latter theorem is necessary, while
the denseness assertion is redundant.

3. Products of spaces with property (K). Obviously, the (Cartesian)
product of two complete metric spaces is again complete. Similarly, the
product of two Baire spaces one of which is second countable is again
a Baire space (see, e.g., [6], Theorem 5.1). Somewhat suprisingly, prop-
erty (K), which is in between, fails to be multiplicative. A general counter-
example is given by the forthcoming Theorem 3.

Before stating it, we quote the following definition ([9], Definition 1).
A sequence (w,) in a topological linear space X is called (topologically
linearly) m-independent if for each bounded sequence (4,) of secalars such
that 3 1,2, = 0 we have (4,) = 0. Note that if dimX > ¥,, then X con-

n=1
taing an m-independent sequence (see [5], Theorem, for a stronger result).

THEOREM 3 (). Let X be a topological linear space with card X = 2%
and let ¥ be o subspace of X with dim Y < 2%. Then there emist x-subspaces
X, and X, of X such that X,nX, = Y.

In particular, if ¥ = lin {4,: n € N}, where (w,) is an m-independent

sequence such that 3 u, is subseries comvergent, then X, x X, does not have
n=1

property (K).

Proof. We omit the construction of X, and X,, which follows & known
pattern ([8], proof of Theorem 2, and [9], proof of Theorem 2).

In order to prove the last assertion observe that the sequence ( (%, 4,))
is linearly independent, (u,,,)—0 and (u,,%,) € X; X X,. Moreover,

since (u,) is m-independent, for every n, < n, < ... we have 2""% ¢Y,
f k=1

and so

L

(3 s > thny) # X X X
k=1 i k=1

‘We note that, in the case where X is an infinite-dimensional separable
I-gpace, Theorem 3 provides an example of a Baire space which does
not have property (X). The first example to this effect was given in [2],
Theorem 3. '

The next two auxiliary results are concerned with an arbitrary topo-
logical linear space X. They improve [9], Proposition 3 and Corollary 1.

(®) A similar result was obtained independently by J. Burzyk.
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PROPOSITION. Assume (#,) is & linearly independent sequence in X such
that :ij s subseries convergent. Then there evists & sequence Ny << Ny, < ...
of 02221 natural numbers such that the sequence

Dy Tpyg1s By Bpypry ooe
18 m- mdependent ‘
Sketch of p1 oof. Argumg as in [9], proof of Proposition 3, we ma;y

assome that 2% is bounded multiplier convergent.
=1
Put

N1

= {mei:v <1, 6 =1,y nt1; max(lul, ) >3-

OIe'l.rly, G, is compact and 0 ¢ 0,. Hence for each # we can find m >
such that

{Z Awg 41 <1,0 =m, m+1, } cXNC,.
i=m .

This allows us to define a sequence 7, << %3 < ... of odd natural numbers
such that 2 A, € XNC,, whenever |4, < 1. The last condition jmplies

ot
the msertxon (ef. [9], proof of Proposmon 1).
GOROLLARY 2. If ( ) end (y,) are linearly mdependem sequenaes mn

X such that Za: and Z'yn are subseries comvergent and

n=1 n=1
Iin{mn: ne N"}r\lin{yn: n € N} = {0},

then, given a family {(vary gM) Mc N} of pairs of scalurs with v ;| +|ga] > 0
Jor all M = N, we have

dim7lin {”M ZlM 'n,)aa +oar ylM (n)Y,: M < N} = 2%,
. n=]1 n—-l
Proof. The sequence

9"'17J1y oy Yoy oo

is hnea,rly independent and the corresponding series is subseries eonvergent
Hence, applying the Proposition, we may -assume that the sequences
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(,) and (y,) have the property that for every pair (1,), (u,) of bounded
sequences of sealars such that ‘

2 A+ Z Yl =0
n=1 " n=1

we have (4,) = (u,) = 0.
Let (M)<ne be a sequence of pairwise a.]most disjoint infinite
subsets of N. We claim that the corresponding sequence

(’VMIGZ 11|fIk (7'/)mn+QMk ZlMlc(%)y")lgkgl
n=l n=1

of vectors is linearly independent. Indeed, if

3 00 004 .
Ig: '}’k(”ng 1Mk(”’°)mn+QMk£1Mk(W)@/n) =0,

where (yy)i<r< 18 @ sequence of scalars, thén, by ‘the agsumption intro-
duced at the beginning of the proof, we haye

Z'Vk"‘Mkle (n) = Z'Vlc QM;cle(n) =0
k=1 Je=1

for all » ¢ N. Since

/ALY M,#@
S isis
. i
we have Vivar, = ykng =0, and 50 =0 for k= =1,..., 0

The assertion now follows from Sierpinski’s theorem on the existence
of 2% pairwise almost disjoint .infinite . subsets of N,

Corollary 2 allows us to strengthen partially Theorem 2 of [9] as
follows.

THEOREM 4 Let X be an - -space with dim X = 2“0. Then there e.wast
subspaces. X, and X, of X such that .

(i) X =X, DX,; . ., ;

(it) I’or every paw (), (¥,). of linearly- mdepcndmt sequences in X

such that Zw and 2 Y, are subseries convergent amd
n=1

lin{mn: n'e N}nlir’x{yn: ne N} = {0}

there ewists an infinite set M < N with

e o«
Z’lM(ﬂ)mneXl and ZIM(ﬂ)yneXz.

n=1 n=1
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In particular, X, and X, are %-subsﬁaces of X and X, x X, has prop-
erty (K). ’

Proof. Arrange the family of all pairs of sequences satisfying the
conditions of (ii) into a transfinite sequence ((w,’;), (y;))Kw ‘where ¢ ig
the initial ordinal of cardinality 2%. We shall construct inductively two
increasing sequences (X3),., and (X3),., of subspaces of X such that
for all a< ¢ .

1y XinX; = {0};

(2) There exists an infinite set M, = N with 3 1 au,(n)ay, € X7 and

00 n=1
leM,,(%)yZ € X3;
e

(3) Aim X4 < 2% for ¢ =1, 2.

Suppose the construction has been carried out for all § < «. Put
Y5 = {J X7 Since dim(Y:-+Y2) < 2%, it follows from. Corollary 2 that

f<a
etere exists an infinite set M, < N such that

(T2 ¥ Atin 3 1, ()2, ZmlMu(nm} = {0}.

n=1 nm=1

00 o
Put  X§ =lin (T30 {3 1, (n)23}) and X§ =lin (Y30} 3 1p,(n)3))-
n=1 =
Clearly, (1)—(3) hold. : .
Let ¥ be an algebraic complement of the subspace ({J X3+ (| X2
a<q a:
and put X, = Y+ |J X7 and X, = |J X% Then (1) and (2) lIIlI.\<l§7 (i)

. a<y a<e@
and (ii), respectively.

In connection with Theorems 3 and 4, we note that nothing is known
about squares of noncomplete spaces with property (XK).

CorROLLARY 3. Huvery F-space X with dimX = 2% admits a strictly
stronger (metrizable) linear topology with property (K).
) Proof (3). L.et X, and X, be given by Theorem 4. Then the addition
in X when restricted to X, xX, is continuous and one-to-one and maps
X, X X, onto X. Since, in view of Theorem 2 (b), X, X.X, is noncomplete,
the inverse mapping is not continuous. This yields the assertion.

Corollary 3 contrasts with a classical theorem stating that the com-

plete metrizable linear topologies on a given linear space are mutually
incomparable.

(%) The idea of this proof was shown to me by L. Drewnowski.
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Added in proof. 1. Theorem 1is related to another result due to V. L. Klee (see
R. R. Phelps, Subreflexive normed tinear spaces, Arch. Math. (Basel) 8 (1957), 444-450,
Theorem 3.1).
2. In the litorature there exist analogues of Theorem 1 for metric spaces (see,
e.g., W. Sierpinski, Sur la décomposition des espaces métriques en ensembles disjoimts,
Fund. Math. 36 (1949), 68~71).
3 (Drewnowski). Example on p. 415 can be generalized as follows: Every F-space
X for which there exists an infinite-dimensional cloged subspace Z with dim X /Z = 2%
contains a dense subspace wilh property (K) which is not a x-subspace of ;(ef. [4],
. 63).
r )4 (Drewnowski and the author). The argument given in Example on p. 415

' ghows that if X is a topological linear space, Z is an infinite-dimensional F-space

and X, and Z, are subspaces of X and Z, respectively, such that X, x Z, is a x-subspace
of X xZ, then Xy = X. In particular, in the situation of Theortm 4, X, x X, is not -
a x-subspace of X xX.

5 (Drewnowski). Corollary 3 can be deduced from the decomposition X = X, @ X,,
where X, is a dense subspace of X with property (K) and dim X, = 1, which followe
from [9], Theorem 2. Moreover, Corollary 3 holds if X contains a closed tubspace Z

with dim X/Z = 2%. .
The author is much indebted to L. Drewnowski for these and other related

remarks.
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