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Abstract. An expansion @ ~ J ay and the classes of weakly o-complete and

n
conditionally weakly o-complete, commutative lattice-ordered groups (defined by
means of this expansion) are studied. Next, given a o-subadditive I-seminorm v on I,

where I is an I-subgroup of an I-group G, an expansion a'lz ay, and the resulting exten=
B

sion (Lyr, vpr) of (I v) are studied. The extension procedure ig patterned upon an
integral construction due to MacNeille and Mikusifiski.

1. Introduction. This is‘, in principle, a continuation of the author's
paper [7]. The notion of weak g-completeness -was introduced. there.
(We restrict ourselves to commutative I-groups; l-group = lattice-ordered
group.) The most significant feature of a weakly c-complete I-group G
is that each ¢-subadditive I-seminorm on @ is complete ([7], Theorem 5),
which nieed not hold even for a conditionally complete Riesz space (£71,
Example 3). For this and other reasons, which will be seen later, such
a group seems to be a natural object for modelling some general integra-
tion procedures and examining their interrelations. Here we recall the
definition of weak o-completeness (in an equivalent form) and prove
some related facts. In parallel, we define and investigate conditional
weak g-completeness; an I-group G is conditionally o-complete if and only
if @ is conditionally weakly o-complete and Archimedean (Theorem 3).

Given an I-subgroup L of an I-group @, we define its extension L_ < G
and prove that L_ is closed urder the operation: of taking all elements
a € @ having expangion a~Y a, with a, € I, (Theorem 1). The expansion,

- n
fundamental here, is defined and studied previously in SBection 2.
Next, given a o-subadditive l-seminorm » on L < @, we congider
the expansion aL'Z a,, meaning that a~ 3 a,, {8,} = L and 3'w(a,) < oo,

n n n
define the corresponding extension (I, vy) of (L, ») and prove its basic
properties (Theorems 4-6). The extension. procedure is patterned upon
the integral construction due to MacNeille [4] and Mikusinski [5], [6].
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In the fortheoming part II of thiy paper we study other‘kinds of
extensions of (L, ), their interrelations, integrals and their extensions.
‘2. The expansion o ~Ya, and the extension I_. Throughout the

n
paper (G, +,<) is a commutative I-group (lattice-ordered group; see
[1], [3] for fundamentals). We write o <’ supa, if inf(s —a,)* =0 (or,
n n

equivalently, @ = supaa a,), and b <’ ¥'0, it b <<’ sup( > a,); the accents
X n n % <k
beside “<” mark that supa, or }'b, need not exist ?n rG‘.
n n '
Next, we write a ~ Y a, (or a ~a,+a,+...) if

n
fa— 2%‘<' 2 la,| for each kelN.
n<k n>k

ExAMPLE 1.. Qonsider G = RS, where 8 is an arbitrary set and R
denotes the additive group of real numbers with the natural ordering.
The relation @ ~3 a, holds if and only if

n I

for every se@, %’[a,n(s)] < oo implies a(s) = 3 a,(s).
Proposirion 1. If a ~ Ya,, then |a| <’ Y |a,). I}, additionally, the
series ;S_,‘ |a,] 48 bounded by |a| (z.e.,né'klan} < |a| f:r k e N), then la| = 3 |a,|.
Proof. la| <oy 4o —a)| <’ lay] + 3 |a,]. $
PROPOSITION 2. If g ~ %‘ a, and 7w isz;ermutation of N, then a~ 3 Caiy-
n

Proof. Given i € N, choose j e N so that

Ii={z1), ..;#w(@)} = J: = {1, ..., j}.
Then

i=]a= Yag|<|o—Ya,
n<i n<j

and so

+ng\rlfnl < Ylan+ 3 lal,

n>j ned\I

b Z @y
n>i

From now on we can write, e.g., a ~ 2 b, (whereruns through a count-
13
able set T) or a ~ n}ﬂ,‘b al (where n, m €X), and this is unambiguous.
LevmA 1. If d = S:lpdt and d; <' supe, for oll t e T, where T is arbit-
n

rory, then d <’ supe,.
n

Proof. d = s&pd, = §upd,ne, = supdAae,.
n

tn
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ProPoSITION 3. Let {a,} be a sequence in G. The set A of all elements
a €@ satisfying a ~3 a, i a convew sublattice of G (possibly empty). If
n .
bed for tel and intib,—b| =0, then be A.
i
Proof. Let @, be A and anb<c<avdb. Then

o= erl<la- Salvl- S

? nsk n<k n<k

which yields ¢ € A (Lemma 1 for a two-element set T' is used here). To
prove the gecond asgertion, notice that

a: m‘b——Zan = supUb— Zan
n<k ¢ n<k

Lemma 1 shows that d <’ 3 |a,|.
n>k

o= Tl

ProposiTioN 4. Ifinfla— 3 a,|=0 for all keXN, then a ~3a,.
m n

n<k+m
Proof. The assertion follows from the inequality

o= Zoal-_ 5 o <]e= 3 al

k<n<k+m n<k+m
ProposIioN 5. (1) If a =o0—Ya, (i.e, o3 a, < bk\; 0 for some
n n .
{0} = @), then a ~ 3 ay,.
n B
i) If & ~ 3 a, and the sum la,| ewists in @ then & = 0—) .
Proof. Part (i) is a consequence of Proposition 4, part (i) — of the
inequality: !
la— Y a,|< 3 la™o0.
n<k n>k k

PropostrioN 6. Let {a,} <@, and lit A be as in- Proposition 3, The
set A has at most one element provided that L
(i) the sum Jla,| ewists in @, or )
n

(i) the series > l|a,| is bounded and @ is Archimedean.
1

Proof. The first assertion is a corollary to Proposition 5. If @ is
Archimedean, it possesses- the Dedekind completion Gp (cf. [3], V. 10),
and the bounded series >|a,| has a sum in Gp. If now ¢ ~ D, o, holds

n
in @, it also holds in G5 and so, by Proposition 5, @ is the order sumo — > d,,
n

in Gp.
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ProposiTioN 7. Let a, > 0. We have a ~ 2?" if and only if a <’ Y a,
n n

and 2 Y a,—a<' > a, for keN.

n<k n

Proof. Both conditions are equivalent to the following one:
]a—-ZaﬂI—}— Zang’z% for keXN.
- <k n<k n . .

PROPOSITION 8. Let a, > 0. We have a = 20 if and only if A = {a)s
" n

where A is as in Proposition 3.

Proof. Necessity. By Proposition 7, be A if and only if b < a and
2 Y a,—b<aforkel if and only if b < a and 2¢~b < a.

n<k .

Sufficiency. We may deduce from Proposition 7 that each element

oftheform av Y'a, (k € N) in also in 4. By the assumption, a v D a,= a.
n<k n<k
Hence 0< }a,<a and Proposition 1 yields ¢ = S'a,.
n<k - Lon

When we do not assume that a,> 0, neither ¢ = 0~ 3 a, implies

, , <
4 ={a} (put @, = (-1)*'27'; In2 = Y a, and 4 =R), nor 4 = {a}
implies ¢ =o0—2 a, (see Example 2 and also Proposition 15).

kg

ProPOSITION 9. Let @, > 0, and let A be as in Proposition 3. If a,bed

and a<<b, then b+p(b—a)ed for all peX.

Proof. It is sufficient to consider p = 1. By Proposition 7 < Yo,
: N . n
and' 3 2a, <'a+ 3 a, for k e N. It follows that 2b <' Y'2a, and, in con-
n<k

n n
‘sequence, 2b <’ a4 3 a,. Thus the element 2b —a satisfies the first condi-

n N
tion of Proposition 7, while the second is obvious, because 2b—a > a.

A conditionally o-complete Riesz space X is gaid to be weakly o-dis-
tributive if for every bounded double sequence {9} = X such that v\ 0

for each %, infsupuv,, =0, where ¢ runs through all functions of N
P i

into N (see, e.g., Fremlin [2] and references therefrom). We extend thig
definition to any commutative I-group @ (not necessarily conditionally
o-complete) in the following way: i

G is weakly o-distributive if for every double sequence {uy} < @
such that Uz 0 (k € N) and for every element e > 0 there exists a function

J
@: N->N such that the inequality e <’ SUDg,qy does not hold.
k

(given can readily be verified that the two definitions ave consistent
It e >0, consider v = AVNR

ProrosirioN 10. Let G be weakly o-distributive, and let {a,} = Q. If

icm
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(%) inf 23 |a,|=0 for every disjoint sequence {I,} of finite subseis of N,
k. mely

then the set A (corresponding to {a,} as in Proposition 3) has at most one
element.

Proof. Assume that ¢ e 4 for ¢ =1, 2. Put
3 (oo Da|— D )
n<k

= D)
' k<n<k+i
For every keN we have u\ 0 and
i

1=1,2
la® —a®| < 2 [am_ 2%

A=1,2 n<k

< Upy+2 Z let,, .

k<n<k+j

For every function ¢ € NV we get . A
lat —a®]| 3

[ty| < Ugpy <’ SUDUpgy, FEEN.
F<n <l (k) k .

Condition. (*) is equivalent to the following one:

()

o

inf 2
B pen<k+pk)

la,] =0 for each ¢ e NV.

Taking into account Lemma 1, we infer that
[a®) —a®| < supvyepy, @ NV,
k

which yields a® = a®. 7
Remarks. (a) In case G is a vector space, the number “2” in (*) and
(**) can be omitted. v
(b) Condition (x*) (and hence (*)) is weaker than (i) or (ii) of Prop-
ogition 6. . . . _
The following “transitivity” property of the expansion a ~) a,
. <
is essential for. further investigations.
LevmMA 2. If @ ~ 3 a, and a,, ~3 a(? for each n € N, then a ~ 3 af.
n m n,m

Proof. Arrange a® (n,m e N) in the standard diagonal way into
a sequence, {b,} say. Given g, we may choose k and m(n) (n =1,..., k)

go that
<Iw—2an|+2lan—~ 2 aim
n<k n<k

[ P = lg— (n)
ci= ‘a jé;bp! la %mé('m a P
< Dllaal+ 3 D) laly.

n>k <k m>m{n)
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By Proposition 1, |an1<’2|a§,f’[, and so we get

o< 3 D+ Y Y 1l

n>k m n<k m>m(n)
Hence ¢ <' Y byl
>q

Now lez us consider the following situation. There is given an I-sub-
group L of (a commutative I-group) @, and we take all elements a e @
satisfying @ ~3 a, for some sequence {a,} < L. These elements form
a get, which will be denoted by L_.

TEEOREM 1. L_ is an l-subgroup of G and contains L. If {a,} = L.
and Goa ~3 a,, then aeL_. In particular, L_ s closed under taking
limits of order convergent sequences.

Proof. Clearly, L = L_, because @ ~ a+0-+404-... Suppose a,, v, € L,
a ~) a,; and b ~3 b,. Then
n n

—b ~a;,—b;+a,—b,+...,
because

| (a=0)— ) (a,=b,)
n<k

< D) laal+ D) bl
>k n>k

To prove that at eL_, define a;, = a}", a, = (al-i—az)*‘—-a.f“ )
Fay+a5)" —

\<\’a——’é;an[.+'b—"§ b,

“3— (@y+
(a;+a,)", and so on. We have a, e I, Za =(Ya,) " and

n<k
Ia'*—- 2% < ’“_2 a,| <’ 2 @, -
n<k n<k n>k

It follows that

’ ’
@t~ 0yt —ay -y ay—ay ...

Thus we have shown that L_, is an l-subgroﬁp of ¢. The remaining asser-
tions are consequences of Liemma 2 and Proposition 5.

3. Weak o-completeness and conditional weak c-completemess. The
considerations of the previous section lead to the following definition,
which —in an equivalent form —was introduced in [7]. (As in the whole

paper, G stands for a commutative I-group.)

DEFINITION 1. G is weakly c-complete if for every sequence {a,} in

G* there exists an element « €@ having the expansion a~ 3 a,.
n
From Example 1 we infer that

PROPOSITION 11. The function space RS is weakly o-complete (S —ar-
bitrary). In particular, B dtself is weakly o-complete.

icm
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A complementary notion is that of conditional weak s-completeness:
DEFINITION 2. & is conditionally weakly o-complete it for every se-
quence {a,} = G* such that the series  a, is bounded there exists an
n

element @ e @ satisfying a~ 3 a,.
n

ProPOSITION 12. For a fully ordered G, weak o-completeness is equiv-
alent to conditional weak o-completeness.

Proof. If Z‘a is not bounded, the inequality ¢<< Z‘a holds for

all elements ceG, and 80 a~ > a, for each ae@.
nw

ProrosrrroN 13. Let G (@) be the Cartesian product (= complete
direct product) of a family {G,: t € T} of commutative l-groups; @ is weakly
a-complete (conditionally weakly o-complete) if and only if every group G,
8 such.

The direct product of an infinite family of weakly o-complete groups
need not have the same property (Example 2), but Proposition 13 remaing
true for direct products and conditional weak o-completeness. The lexi-

~cographic product G of two weakly o-complete groups ¢, and G, need

not be even conditionally weakly o-complete (Example 5), but if G is
weakly o¢-complete (conditionally weakly o-complete) and non-empty,
then both & and @, have the same property.
PROPOSITION 14. (i) Suppose G is weakly o-complete. Then for every
sequence {a,} = G there is some a @ having the expansion a~ 3 .
n

(ii) Suppose G is conditionally weakly o-complete. Then the same holds
for each sequence {a,} = G such that the series 3, |a,| is bounded.
n

Proof. Wehave a~ > a,for ¢ =b—oc, where b~ > at ande~ 3 a;.
n n n

ProPoSITION 15. Let {a,} be a sequence in @, and let A be as in Prop-
osition 3. Suppose that A = {a}. Suppose also that (i) G is weakly o-com-
plete, or (il) G is conditionally weakly o-complete and the series D|m,| is

n

bounded. Then the series > ot and D a; are both convergent, and so 3 a,
n n k3

order-converges.
Proof. By (i) or (ii), there are b, c e G* satistying b~ > o} and

o~ 2 ay
the expzmsmns) are umquc (otherwise a would not be unique). Proposition
8 shows that b = 3 a} and ¢ —Z‘a

(3
TEEOREM 2. Let G be a weakly o-distributive commutative Z grou_p.
Suppose that {a,} = G satisfies condition

n
. Hence b—c~ Van, a = b—c and the elements b, ¢ (fulfiling

2 — Studia Math, 77.5
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(%) 1n:f 2 3 la,|= 0 for every disjoint sequence {I,} of finite subsels of N.
nely,
Suppose also that (i) G is weakly o-complete, or (ii) G is conditionally weally
o-complete and the series 3la,| is bounded. Then both series Say and Say
n n W

converge, and so the series > a, is order-convergent.
n

Proof. Proposition 14 shows that there is some a € A. Proposition
10 proves that A = {a}, and we may apply Proposition 1b. -

THEOREM 3. A commutative I-group @ 18 conditionally o-complete (as
o lattice) if and only if G is Archimedean and conditionally weakly a-com-
plete.

Proof. Necessity follows from the definitions and Proposition 5 (i).

Sufficiency. Let a, e G and Y a, be bounded. There exists ae@

"
satisfying @ ~ > a,. Proposition 6 shows that such an element & is unique.
n
By Proposition 8, a = >’ a,. This implies, of course, that @ is conditionally
n

o-complete.

For the rest of this section, let us fix some abbreviations: A is the
class of all commutative I-groups G which are Archimedean, NA —non-
Archimedean, CC--conditionally o-complete, WO —weakly o-complete,
OW(C —conditionally weakly ¢-complete. As well known, no non-trivial ¢
is o-cornplete (as a lattice), and CC Z A. Obviously WC = CWC. By
Proposition 11, AnWC s @. By Theorem 3, 0C = AnCWOC. Now we
are going to show that CON\ WC £ @, NANWOC #= @, NANCWC\ WO
#@ and NAN CWC s @. Thus one can draw a diagram illustrating
the situation, consisting of two concentrie circles (CWC, WC) and the
vertical line going through the centre (NA, A); the right half of the larger
cirele is CC.

BxaMpLE 2. (0C\ WC % 0) Let G < RY consist of all functions
having finite support; G is conditionally complete. There is no ae@
satisfying a N_Zl{n}. Notice algo that 0 ~I1gy—1gy+1py— T +...y

n \
no other element a €@ has this expansion and the series is not order-
convergent in G (cf. the passage after Proposition 8).

ExAMPLE 3. (NANWOC 3= @) Let @ be the lexicographic product of Z

(the integers) and R. Let a, = (2,,7,) € G*, and let Ya, be bounded
n

in G. We have 2z, € Zt; 2, = 0 for n > n,, r, € Rt for n > n,. Put 2= Zzﬂ,

Zr 1f2'r < ooory=0Iif Zr = oo; the element a = (2, r) "has

‘the expanSIOn a ~2a By Proposmon 12, G e WC.

icm
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ExAMPLE 4. (NANCWC N\ WC #0) Let G, =« ZY consist of all
functions having finite support, let G, e WO be non-trivial, and let &
be their lexicographic product. Let 3 a, be bounded in @, where a,

n
= (b, ¢,) € GF. As before, we have b, = 0 for n >n,, and so0 ¢, >0 for
% >my. Since @, is weakly o-complete, there is ¢ e G, satisfying ¢ ~ Dl

Tt follows that o = (3 b,,c) satisties a~ 3 a,. Thus & e CWC. gince

G; ¢ WO (see Example 2), @ ¢ WC (cf. the passage before Proposition 14).
ExaMPLE 5. (NAN CWC # @) Let & be the lexicographic produet
of K and R. Consider the series 2 @, where a,, = (%,, 0), 5, = —1,2, = 1/2,

@y =1[4, 3, =1/8, ..., and an element ¢ — (#,9) €@. Choose k so that
]w Z'wni_ y lmnl = 0 Then

o= Sal-

n<k k<n<k+m

|an|>(011)>0 for allmeN,

and s0 a ~ D@, cannot hold. Thus G ¢ CWC.

4. The expansion a ~ }'a, and the extension (L, vy). Let L be

an l-subgroup of (a commutative I-group) @, and let » be an l-seminorm
on L, that is, a function of L into [0, co] such that »(0) = 0, »(a-+b)
< v(a)+»(b), and »(a) < v(b) whenever |a| < |b| (a,b eL). We say that
» ig a—guba;dditive if »(a) < >'v(a,) whenever la|= 3 |a,| (equivalently:
Dlayl;
subadditivity is a kind of closed graph property. Indeed, let g(a, b)
= »(a—b), let o be the relation aph= p¢(a,d) = 0, let X denote the com-

pletion of the semimetric space L/g, and let ¢ be the quotient mapping
of I into X; » is o-subadditive if and only if

n
whenever [a] <’ cf. [7], Theorem 2). It is worth noting that o-

(@, 2,) € Grg, @ = o—lime, and « =lim#, imply (a,z)eGrg.
n n

(This follows from Theorem 32, (i) < (iv), of [7].)

Given a, a,, € ¢, we write ¢ ~ S‘a if aNZ a,, {a,} = L, and 2 v(ay,)
< oco. (For » =0, a~ Va reduces to aNZ'a whenever {a, }<: L)
ExAavpLE 6. Let (S, o, uy be a posmlve measure space, ¢ = RS,
L — the collection of all simple integrable functions in @, v(a) = [ |a|du
for a e L. A function a €@ is (Lebesgue) integrable if and only § there

exigts a sequence {a,} = L satisfying a ~ 3 a,. This theorem, due to
n
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MacNeille [4] and Mikusixiski [5], was used by the latter author to build
an axiomatic theory of integration in his book [6].

Define L, as the set of all elements a e @ such that ¢ ~ 3 a, holds
n
for some sequence {a,} = L. (Ly = L, and Ly = L_ for » = 0.)

THEOREM 4. Ly, 48 an l-subgroup of G; Ly contains L provided v is

finite (i.e., takes values in [0, oo)).
Proof. Suppose a~2a and b~ Zb Arguing ag in the proof

of Theorem 1, we get a-b ~ a4y —by —I—az—b +..., and so Ly is a sub-
group of G. Ploof that a* € Ly, is similar as that ¥ € L_ in Theorem 1;
it is sufficient to notice that |a,|<< |ay,l, »(ay) < 7(ay).

THEOREM 5. Let » be finite and o-subadditive. The equality
vy (a) = limv(Zan),
B a<k
written whenever a ~. Y a,, defines (correctly) a finite o-subadditive T-semi-
n

norm vy on Ly, which extends v. Furthermore,

vyr(@)

——=inf{2v(an):a~’f‘2an} for  aely.

n n

Proof. Let a~ 3 a,. The number sequence {»( 3 a,)} satisfies the
n n<k

Cauchy condition, because
""(2%)“‘”( 2 a,b)’gv( an)<2v(an).
n<k . n<ktm k<n<k+m n>k
If also a ~ } a,, then
n

S (S Ja Su)< 3 vors 3o

n< n<k n<k n<k n>k n>k

because

IZ% o, ’a—Z]a,,[—l-] Z < Yla+ ) 1)

ns Coakk C >k >k

and v is o-subadditive. Thus, a function vy Ly—[0, co) is well defined.
Evidently, »y{a) = »(a) for @ e L. The (finite) subadditivity of »,, follows
easily from the inequality

(2 )—I—v(Z bn).

n<k nsk

(@ by 4. oy by <

icm
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To prove that vy (lal) = vyle), put o = lay,
Ay = |@y @y +as| —|a;+as], ..., and observe that

l[a[ Za [2 " |a—2kan

It follows tha’u

ay = |ay+ @] — |a,,
lay] < la,} and

< D lag).
n>k

la| &~ @) +a; —a; +ag+a,—ay ...

) = o 3]

<b, b~ 3b,. We have

S D R I

l—i—'b—]an‘gla—z%l+‘b—2bn\‘
< D Mol D) Bl

(S =+ Z) <o Joal -] Zod) <

which ylelds vy(a) < vM(b) Thus vy, is an I-seminorm on Ly, Since v(ay +
Fay+...+ay) <Z‘ y vyr(@) < Xv(a,). Given & >0, we may choose %
n

go large that
D@ —( Y )| < o2 and  Y'wia) <e/2;

n<k . n>k

Hence

arlal) =Tlims () W) = racla

n<k
Let bely, 0<a

15

Hence

+2v(b )0,

then

a (.. o) BRI P SN
and

v(ay+. ..+ak)+2 v(a,) < vy(a)+e.

n>k

This yields the asserted equality expressing vy (a).
Tt remains to prove that »y; is o-subadditive. Let a, a, € L, i e L,

a4 = Za and a, NZaW for n e N. We may assume that ZVM a,) < oo
and that 2 (alm) < var(@,) +627" (by the already proven assertlon ex-

pressing vM) Now we have

D) < D vmlan) te, -

n,m
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and so, in view of Lemma 2, a ~ Y a{®. Hence

n,m

(@) < v (al).

n,m

Since ¢ was arbitrary, the desired inequality follows, and the proof is
complete.

. . Y
Due to Theorem 5, we majy consider the expansion a ~

2, meaning,
n

of course, that a~ 3 a,, {0,} = Ly and 3 vy (a,) < oo
n n

TuEOREM 6. Let » be finite and o-subadditive.
() If o« 2 @y then ae Ly and lmwyla—3 a,)=0. Therefore
n k n<k
L is metrically dense in Ly, (endowed with the semimetric o(a, b) = vy (a—b)).
(i) If & is weakly o-complete, then the space Ly, is metrically complete.

Proof. (i) The argument used to prove that a € Ly, is nearly the
same as in the final part of the proof of Theorem 5; the difference is that

nowGsa ¥ 2a, instead of Lz a= Y a,, but Lemma 2 may be applied

n
a8 before. Having observed that a e L, we may use the o-subadditivity

of vy,
Var (a - Za-n) < EvM(a.n)70.

n<k n>k

(i) Tt is sufficient to prove that each absolutely convergent series
converges. Let {a,} = Ly and vy (a,) < co. Since G is weakly a-complete,

- n

there exists an element a e @ satisfying a~ 3 a, (Proposition 14), and
v n

50 @ % S a,. By part (i), @ € Ly, and } a, converges metrically to a.

n n
In case Ly is weakly o-complete (with respect to 4), assertion (ii)
follows directly from Theorem 5 of [77; but we do not make this asgump-
tion on L,; here, and the metrical completeness of Ly, is & consequence
of the construction of Ly, and the weak o-completeness of G. )
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