

Integral extension procedures in weakly σ -complete lattice-ordered groups, I

by

M. WILHELM (Wrocław)

Abstract. An expansion $a \sim \sum_n a_n$ and the classes of weakly σ -complete and conditionally weakly σ -complete commutative lattice-ordered groups (defined by means of this expansion) are studied. Next, given a σ -subadditive l-seminorm ν on L, where L is an l-subgroup of an l-group G, an expansion $a \stackrel{\nu}{\sim} \sum a_n$ and the resulting extension (L_M, ν_M) of (L, ν) are studied. The extension procedure is patterned upon an integral construction due to MacNeille and Mikusiński.

1. Introduction. This is, in principle, a continuation of the author's paper [7]. The notion of weak σ -completeness was introduced there. (We restrict ourselves to commutative l-groups; l-group = lattice-ordered group.) The most significant feature of a weakly σ -complete l-group G is that each σ -subadditive l-seminorm on G is complete ([7], Theorem 5), which need not hold even for a conditionally complete Riesz space ([7], Example 3). For this and other reasons, which will be seen later, such a group seems to be a natural object for modelling some general integration procedures and examining their interrelations. Here we recall the definition of weak σ -completeness (in an equivalent form) and prove some related facts. In parallel, we define and investigate conditional weak σ -completeness; an l-group G is conditionally σ -complete if and only if G is conditionally weakly σ -complete and Archimedean (Theorem 3).

Given an l-subgroup L of an l-group G, we define its extension $L_{\sim} \subset G$ and prove that L_{\sim} is closed under the operation of taking all elements $a \in G$ having expansion $a \sim \sum\limits_n a_n$ with $a_n \in L_{\sim}$ (Theorem 1). The expansion, fundamental here, is defined and studied previously in Section 2.

Next, given a σ -subadditive l-seminorm v on $L \subset G$, we consider the expansion $a \sim \sum_{n} a_n$ meaning that $a \sim \sum_{n} a_n$, $\{a_n\} \subset L$ and $\sum_{n} v(a_n) < \infty$, define the corresponding extension (L_M, v_M) of (L, v) and prove its basic properties (Theorems 4-6). The extension procedure is patterned upon the integral construction due to MacNeille [4] and Mikusiński [5], [6].

In the forthcoming part II of this paper we study other kinds of extensions of (L, ν) , their interrelations, integrals and their extensions.

2. The expansion $a \sim \sum_{n} a_n$ and the extension L_{\sim} . Throughout the paper $(G, +, \leq)$ is a commutative *l*-group (lattice-ordered group; see [1], [3] for fundamentals). We write $a \leq \sup_{n} a_n$ if $\inf_{n} (a - a_n)^+ = 0$ (or, equivalently, $a = \sup_{n} a \wedge a_{n}$, and $b \leqslant' \sum_{n} b_{n}$ if $b \leqslant' \sup_{n \leqslant k} (\sum_{n \leqslant k} a_{n})$; the accents beside " \leq " mark that $\sup a_n$ or $\sum b_n$ need not exist in G.

Next, we write $a \sim \sum a_n$ (or $a \sim a_1 + a_2 + ...$) if

$$\left|a - \sum_{n \leqslant k} a_n\right| \leqslant' \sum_{n > k} |a_n|$$
 for each $k \in N$.

EXAMPLE 1. Consider $G = R^S$, where S is an arbitrary set and R denotes the additive group of real numbers with the natural ordering. The relation $a \sim \sum a_n$ holds if and only if

for every $s \in S$, $\sum_{n} |a_n(s)| < \infty$ implies $a(s) = \sum_{n} a_n(s)$.

Proposition 1. If $a \sim \sum a_n$, then $|a| \leqslant' \sum |a_n|$. If, additionally, the series $\sum_{n} |a_n|$ is bounded by |a| (i.e., $\sum_{n \in \mathbb{Z}} |a_n| \leqslant |a|$ for $k \in \mathbb{N}$), then $|a| = \sum_{n} |a_n|$.

Proof. $|a| \leq |a_1| + |a - a_1| \leq |a_1| + \sum |a_n|$.

Proposition 2. If $a \sim \sum_{n} a_n$ and π is a permutation of N, then $a \sim \sum_{n} a_{\pi(n)}$. **Proof.** Given $i \in N$, choose $j \in N$ so that

$$I\!:=\{\pi(1),\,...,\,\pi(i)\}\subset J\!:=\{1,\,...,j\}.$$

Then

$$b:=\left|\,a-\sum_{n\leqslant i}a_{n(n)}\,\right|\leqslant \left|\,a-\sum_{n\leqslant j}a_n\,\right|+\sum_{n\in\mathcal{I}\smallsetminus I}|a_n|\leqslant'\sum_{n>j}|a_n|+\sum_{n\in\mathcal{I}\smallsetminus I}|a_n|,$$
 and so

$$b \leqslant' \sum_{n>i} |a_{\pi(n)}|.$$

From now on we can write, e.g., $a \sim \sum b_t$ (where t runs through a countable set T) or $a \sim \sum_{n,m} a_m^{(n)}$ (where $n, m \in N$), and this is unambiguous.

LEMMA 1. If $d = \sup_{r} d_t$ and $d_t \leqslant \sup_{r} e_n$ for all $t \in T$, where T is arbitrary, then $d \leq ' \sup e_n$.

Proof.
$$d = \sup_{t} d_t = \sup_{t,n} d_t \wedge e_n = \sup_{n} d \wedge e_n$$
.

PROPOSITION 3. Let $\{a_n\}$ be a sequence in G. The set A of all elements $a \in G$ satisfying a $\sim \sum a_n$ is a convex sublattice of G (possibly empty). If $b_t \in A \ \, \textit{for} \ \, t \in T \ \, \textit{and} \ \, \inf |b_t - b| \, = \, 0, \ \, \textit{then} \ \, b \in A.$

Proof. Let $a, b \in A$ and $a \land b \leqslant c \leqslant a \lor b$. Then

$$\Big| \left| c - \sum_{n \leqslant k} a_n \right| \leqslant \Big| \left| a - \sum_{n \leqslant k} a_n \right| \vee \Big| \left| b - \sum_{n \leqslant k} a_n \right|,$$

which yields $c \in A$ (Lemma 1 for a two-element set T is used here). To prove the second assertion, notice that

$$d: = \left| b - \sum_{n \leq k} a_n \right| = \sup_{t} \left(\left| b - \sum_{n \leq k} a_n \right| \wedge \left| b_t - \sum_{n \leq k} a_n \right| \right);$$

Lemma 1 shows that $d \leq ' \sum_{i} |a_n|$.

Proposition 4. If $\inf_{m} |a - \sum_{n \le k+m} a_n| = 0$ for all $k \in \mathbb{N}$, then $a \sim \sum_{n} a_n$.

Proof. The assertion follows from the inequality

$$\left(\left|\left|a - \sum_{n \leqslant k} a_n \right| - \sum_{k < n \leqslant k + m} |a_n|\right)^+ \leqslant \left|\left|a - \sum_{n \leqslant k + m} a_n\right|\right|$$

PROPOSITION 5. (i) If $a = o - \sum a_n$ (i.e., $|a - \sum a_n| \le b_k \ge 0$ for some $\{b_k\} \subset G$), then $a \sim \sum a_n$.

(ii) If $a \sim \sum a_n$ and the sum $\sum |a_n|$ exists in G, then $a = 0 - \sum_n a_n$.

Proof. Part (i) is a consequence of Proposition 4, part (ii) - of the inequality:

$$\Big| \, a - \sum_{n \leqslant k} a_n \, \Big| \leqslant \sum_{n > k} |a_n| \searrow_k \, 0 \, .$$

PROPOSITION 6. Let $\{a_n\} \subset G$, and let A be as in Proposition 3. The set A has at most one element provided that

(i) the sum $\sum |a_n|$ exists in G, or

(ii) the series $\sum |a_n|$ is bounded and G is Archimedean.

Proof. The first assertion is a corollary to Proposition 5. If G is Archimedean, it possesses the Dedekind completion G_D (cf. [3], V. 10), and the bounded series $\sum_{n} |a_n|$ has a sum in G_D . If now $a \sim \sum_{n} a_n$ holds in G, it also holds in G_D and so, by Proposition 5, a is the order sum $o-\sum\limits_{n}a_n$ in G_{D} .

PROPOSITION 7. Let $a_n \geqslant 0$. We have $a \sim \sum_n a_n$ if and only if $a \leqslant \sum_n a_n$ and $2 \sum_{n \geq 1} a_n - a \leqslant \sum_n a_n$ for $k \in \mathbb{N}$.

Proof. Both conditions are equivalent to the following one:

$$\left|a - \sum_{n \leqslant k} a_n \right| + \sum_{n \leqslant k} a_n \leqslant' \sum_n a_n \quad \text{ for } \quad k \in \mathbb{N}.$$

PROPOSITION 8. Let $a_n \ge 0$. We have $a = \sum_n a_n$ if and only if $A = \{a\}$ where A is as in Proposition 3.

Proof. Necessity. By Proposition 7, $b \in A$ if and only if $b \leqslant a$ and $2 \sum_{n \leqslant k} a_n - b \leqslant a$ for $k \in N$ if and only if $b \leqslant a$ and $2a - b \leqslant a$.

Sufficiency. We may deduce from Proposition 7 that each element of the form $a \vee \sum_{n \leqslant k} a_n \ (k \in N)$ in also in A. By the assumption, $a \vee \sum_{n \leqslant k} a_n = a$. Hence $0 \leqslant \sum_{n \leqslant k} a_n \leqslant a$ and Proposition 1 yields $a = \sum a_n$.

When we do not assume that $a_n \ge 0$, neither $a = o - \sum_n a_n$ implies $A = \{a\}$ (put $a_n = (-1)^{n+1}n^{-1}$; $\ln 2 = \sum_n a_n$ and A = R), nor $A = \{a\}$ implies $a = o - \sum_n a_n$ (see Example 2 and also Proposition 15).

PROPOSITION 9. Let $a_n \ge 0$, and let A be as in Proposition 3. If $a, b \in A$ and $a \le b$, then $b+p(b-a) \in A$ for all $p \in N$.

Proof. It is sufficient to consider p=1. By Proposition 7, $b\leqslant'\sum_n a_n$ and $\sum_{n\leqslant k} 2a_n\leqslant'a+\sum_n a_n$ for $k\in N$. It follows that $2b\leqslant'\sum_n 2a_n$ and, in consequence, $2b\leqslant'a+\sum_n a_n$. Thus the element 2b-a satisfies the first condition of Proposition 7, while the second is obvious, because $2b-a\geqslant a$.

A conditionally σ -complete Riesz space X is said to be weakly σ -distributive if for every bounded double sequence $\{v_{kj}\}\subset X$ such that $v_{kj}\searrow 0$ for each k, $\inf_{\varphi}v_{k\varphi(k)}=0$, where φ runs through all functions of X into X (see, e.g., Fremlin [2] and references therefrom). We extend this definition to any commutative l-group G (not necessarily conditionally σ -complete) in the following way:

G is weakly σ -distributive if for every double sequence $\{u_{kj}\} \subset G$ such that $u_{kj} \geq 0 \ (k \in N)$ and for every element e > 0 there exists a function $\varphi \colon N \to N$ such that the inequality $e \leqslant' \sup u_{k\varphi(k)}$ does not hold.

(given can readily be verified that the two definitions are consistent It e>0, consider $v_{kj}=u_{kj}\wedge e$).

PROPOSITION 10. Let G be weakly σ -distributive, and let $\{a_n\} \subset G$. If

(*) $\inf_k 2\sum_{n\in I_k} |a_n| = 0$ for every disjoint sequence $\{I_k\}$ of finite subsets of N,

then the set A (corresponding to $\{a_n\}$ as in Proposition 3) has at most one element.

Proof. Assume that $a^{(i)} \in A$ for i = 1, 2. Put

$$u_{kj} = \sum_{i=1,2} \left(\left| a^{(i)} - \sum_{n \leqslant k} a_n \right| - \sum_{k < n \leqslant k+j} \left| a_n \right| \right)^+.$$

For every $k \in N$ we have $u_{kj} = 0$ and

$$|a^{(1)}-a^{(2)}| \leqslant \sum_{i=1,2} \left| \, a^{(i)} - \sum_{n \leqslant k} a_n \, \right| \leqslant u_{kj} + 2 \sum_{k < n \leqslant k+j} |a_n| \, .$$

For every function $\varphi \in \mathbb{N}^{\mathbb{N}}$ we get .

$$|a^{(1)}-a^{(2)}|-2\sum_{k< n\leqslant k+\, \varphi(k)}|a_n|\leqslant u_{k\varphi(k)}\leqslant '\sup_k u_{k\varphi(k)}, \qquad k\in N\,.$$

Condition (*) is equivalent to the following one:

$$(**) \qquad \inf_k 2 \sum_{k < n \leqslant k + \sigma(k)} |a_n| = 0 \quad \text{ for each } \varphi \in N^N.$$

Taking into account Lemma 1, we infer that

$$|a^{(1)}-a^{(2)}|\leqslant'\sup u_{k\varphi(k)}, \quad \varphi\in N^N,$$

which yields $a^{(1)} = a^{(2)}$.

Remarks. (a) In case G is a vector space, the number "2" in (*) and (**) can be omitted.

(b) Condition (**) (and hence (*)) is weaker than (i) or (ii) of Proposition 6.

The following "transitivity" property of the expansion $a \sim \sum_n a_n$ is essential for further investigations.

LEMMA 2. If $a \sim \sum_{n} a_n$ and $a_n \sim \sum_{m} a_m^{(n)}$ for each $n \in \mathbb{N}$, then $a \sim \sum_{n,m} a_m^{(n)}$.

Proof. Arrange $a_n^{(n)}$ $(n, m \in N)$ in the standard diagonal way into a sequence, $\{b_p\}$ say. Given q, we may choose k and m(n) (n = 1, ..., k) so that

$$\begin{aligned} c := \left| \left| a - \sum_{p \leqslant q} b_p \right| = \left| a - \sum_{n \leqslant k} \sum_{m \leqslant m(n)} a_m^{(n)} \right| \leqslant \left| \left| a - \sum_{n \leqslant k} a_n \right| + \sum_{n \leqslant k} \left| a_n - \sum_{m \leqslant m(n)} a_m^{(n)} \right| \\ \leqslant' \sum_{n \geqslant k} \left| a_n \right| + \sum_{n \leqslant k} \sum_{m \geqslant m(n)} \left| a_m^{(n)} \right|. \end{aligned}$$

By Proposition 1, $|a_n| \leq '\sum |a_m^{(n)}|$, and so we get

$$c \leqslant \sum_{m>k} \sum_{m} |a_m^{(n)}| + \sum_{n \leqslant k} \sum_{m>m(n)} |a_m^{(n)}|.$$

Hence $c \leqslant' \sum_{p>q} |b_p|$.

Now let us consider the following situation. There is given an l-subgroup L of (a commutative l-group) G, and we take all elements $a \in G$ satisfying $a \sim \sum a_n$ for some sequence $\{a_n\} \subset L$. These elements form a set, which will be denoted by L_{\sim} .

THEOREM 1. L_{\sim} is an l-subgroup of G and contains L. If $\{a_n\} \subset L_{\sim}$ and $G \ni a \sim \sum a_n$, then $a \in L_{\sim}$. In particular, L_{\sim} is closed under taking limits of order convergent sequences.

Proof. Clearly, $L \subset L_{\sim}$, because $a \sim a+0+0+\dots$ Suppose $a_n, b_n \in L$, $a \sim \sum_{n} a_n$ and $b \sim \sum_{n} b_n$. Then

$$a-b \sim a_1-b_1+a_2-b_2+\ldots$$

because

$$\Big| \left((a-b) - \sum_{n \leqslant k} \left(a_n - b_n \right) \Big| \leqslant \Big| \left| a - \sum_{n \leqslant k} a_n \right| + \Big| b - \sum_{n \leqslant k} b_n \Big| \leqslant' \sum_{n > k} |a_n| + \sum_{n > k} |b_n|.$$

To prove that $a^+ \in L_{\sim}$, define $a_1' = a_1^+$, $a_2' = (a_1 + a_2)^+ - a_1^+$, $a_3' = (a_1 + a_2)^+ + (a_1 + a_2)^+ - (a_1 + a_2)^+$, and so on. We have $a_n' \in L$, $\sum_{n < k} a_n' = (\sum_{n < k} a_n)^+$ and

$$\left|a^+ - \sum_{n \leqslant k} a'_n\right| \leqslant \left|a - \sum_{n \leqslant k} a_n\right| \leqslant' \sum_{n > k} |a_n|.$$

It follows that

$$a^+ \sim a_1' + a_1 - a_1 + a_2' + a_2 - a_2 + \dots$$

Thus we have shown that L_{\sim} is an *l*-subgroup of G. The remaining assertions are consequences of Lemma 2 and Proposition 5.

3. Weak σ -completeness and conditional weak σ -completeness. The considerations of the previous section lead to the following definition, which—in an equivalent form—was introduced in [7]. (As in the whole paper, G stands for a commutative l-group.)

DEFINITION 1. G is weakly σ -complete if for every sequence $\{a_n\}$ in G^+ there exists an element $a \in G$ having the expansion $a \sim \sum a_n$

From Example 1 we infer that

Proposition 11. The function space R^S is weakly σ -complete (S-arbitrary). In particular, R itself is weakly o-complete.

A complementary notion is that of conditional weak σ -completeness:

Definition 2. G is conditionally weakly o-complete if for every sequence $\{a_n\} \subset G^+$ such that the series $\sum a_n$ is bounded there exists an element $a \in G$ satisfying $a \sim \sum a_n$.

Proposition 12. For a fully ordered G, weak o-completeness is equivalent to conditional weak o-completeness.

Proof. If $\sum_n a_n$ is not bounded, the inequality $c \leqslant' \sum_n a_n$ holds for all elements $c \in G$, and so $a \sim \sum_n a_n$ for each $a \in G$.

Proposition 13. Let G $(\neq \emptyset)$ be the Cartesian product (=complete)direct product) of a family $\{G_t: t \in T\}$ of commutative l-groups; G is weakly σ-complete (conditionally weakly σ-complete) if and only if every group G, is such.

The direct product of an infinite family of weakly σ -complete groups need not have the same property (Example 2), but Proposition 13 remains true for direct products and conditional weak σ -completeness. The lexicographic product G of two weakly σ -complete groups G_1 and G_2 need not be even conditionally weakly σ -complete (Example 5), but if G is weakly σ -complete (conditionally weakly σ -complete) and non-empty, then both G_1 and G_2 have the same property.

PROPOSITION 14. (i) Suppose G is weakly o-complete. Then for every sequence $\{a_n\} \subset G$ there is some $a \in G$ having the expansion $a \sim \sum a_n$.

(ii) Suppose G is conditionally weakly σ-complete. Then the same holds for each sequence $\{a_n\} \subset G$ such that the series $\sum |a_n|$ is bounded.

Proof. We have
$$a \sim \sum\limits_n a_n$$
 for $a = b - c$, where $b \sim \sum\limits_n a_n^+$ and $c \sim \sum\limits_n a_n^-$.

PROPOSITION 15. Let $\{a_n\}$ be a sequence in G, and let A be as in Proposition 3. Suppose that $A = \{a\}$. Suppose also that (i) G is weakly σ -complete, or (ii) G is conditionally weakly σ -complete and the series $\sum |a_n|$ is bounded. Then the series $\sum_{n} a_n^+$ and $\sum_{n} a_n^-$ are both convergent, and so $\sum_{n} a_n$ order-converges.

Proof. By (i) or (ii), there are $b,c\in G^+$ satisfying $b\sim \sum a_n^+$ and $c \sim \sum a_n^-$. Hence $b-c \sim \sum a_n$, a=b-c and the elements b, c (fulfilling the expansions) are unique (otherwise a would not be unique). Proposition 8 shows that $b = \sum a_n^+$ and $c = \sum a_n^-$.

Theorem 2. Let G be a weakly σ -distributive commutative l-group. Suppose that $\{a_n\} \subset G$ satisfies condition

(*) $\inf_k 2 \sum_{n \in I_k} |a_n| = 0$ for every disjoint sequence $\{I_k\}$ of finite subsets of N.

Suppose also that (i) G is weakly σ -complete, or (ii) G is conditionally weakly σ -complete and the series $\sum\limits_n |a_n|$ is bounded. Then both series $\sum\limits_n a_n^+$ and $\sum\limits_n a_n^-$ converge, and so the series $\sum\limits_n a_n$ is order-convergent.

Proof. Proposition 14 shows that there is some $a \in A$. Proposition 10 proves that $A = \{a\}$, and we may apply Proposition 15.

THEOREM 3. A commutative l-group G is conditionally σ -complete (as a lattice) if and only if G is Archimedean and conditionally weakly σ -complete.

Proof. Necessity follows from the definitions and Proposition 5 (i). Sufficiency. Let $a_n \in G^+$ and $\sum_n a_n$ be bounded. There exists $a \in G$ satisfying $a \sim \sum_n a_n$. Proposition 6 shows that such an element a is unique. By Proposition 8, $a = \sum_n a_n$. This implies, of course, that G is conditionally σ -complete.

For the rest of this section, let us fix some abbreviations: A is the class of all commutative l-groups $\mathcal G$ which are Archimedean, NA—non-Archimedean, CC—conditionally σ -complete, WC—weakly σ -complete, CWC—conditionally weakly σ -complete. As well known, no non-trivial $\mathcal G$ is σ -complete (as a lattice), and CC \subseteq A. Obviously WC \subset CWC. By Proposition 11, A \cap WC \neq Ø. By Theorem 3, CC = A \cap CWC. Now we are going to show that CC \setminus WC \neq Ø, NA \cap WC \neq Ø, NA \cap CWC \setminus WC \neq Ø and NA \setminus CWC \neq Ø. Thus one can draw a diagram illustrating the situation, consisting of two concentric circles (CWC, WC) and the vertical line going through the centre (NA, A); the right half of the larger circle is CC.

EXAMPLE 2. (CC \ WC \neq \emptyset{\mathcal{O}}) Let $G \subset R^N$ consist of all functions having finite support; G is conditionally complete. There is no $a \in G$ satisfying $a \sim \sum_n 1_{\{n\}}$. Notice also that $0 \sim 1_{\{1\}} - 1_{\{1\}} + 1_{\{2\}} - 1_{\{2\}} + \dots$, no other element $a \in G$ has this expansion and the series is not order-convergent in G (cf. the passage after Proposition 8).

EXAMPLE 3. (NA \cap WC $\neq \emptyset$) Let G be the lexicographic product of Z (the integers) and R. Let $a_n = (z_n, r_n) \in G^+$, and let $\sum_n a_n$ be bounded in G. We have $z_n \in Z^+$; $z_n = 0$ for $n > n_0$, $r_n \in R^+$ for $n > n_0$. Put $z = \sum_n z_n$, $r = \sum_n r_n$ if $\sum_n r_n < \infty$ or r = 0 if $\sum_n r_n = \infty$; the element a = (z, r) has the expansion $a \sim \sum_n a_n$. By Proposition 12, $G \in$ WC.

EXAMPLE 4. (NA \(\cap CWC \> WC \neq \emptyset)\) Let $G_1 \subset Z^N$ consist of all functions having finite support, let $G_2 \in WC$ be non-trivial, and let G be their lexicographic product. Let $\sum_n a_n$ be bounded in G, where $a_n = (b_n, c_n) \in G^+$. As before, we have $b_n = 0$ for $n > n_0$, and so $c_n \geqslant 0$ for $n > n_0$. Since G_2 is weakly σ -complete, there is $c \in G_2$ satisfying $c \sim \sum_n c_n$. It follows that $a = (\sum_n b_n, c)$ satisfies $a \sim \sum_n a_n$. Thus $G \in CWC$. Since $G_1 \notin WC$ (see Example 2), $G \notin WC$ (cf. the passage before Proposition 14).

EXAMPLE 5. (NA \ CWC \neq \emptyset) Let G be the lexicographic product of R and R. Consider the series $\sum_n a_n$, where $a_n = (x_n, 0), x_1 = -1, x_2 = 1/2, x_3 = 1/4, x_4 = 1/8, \ldots$, and an element $a = (x, y) \in G$. Choose k so that $|x - \sum_{n \geq k} x_n| - \sum_{n \geq k} |x_n| \geqslant 0$. Then

$$\Big| \left| a - \sum_{n \le k} a_n \right| - \sum_{k < n \le k+m} |a_n| > (0,1) > 0 \quad \text{ for all } m \in \mathbb{N},$$

and so $a \sim \sum_{n} a_n$ cannot hold. Thus $G \notin CWC$.

4. The expansion $a \stackrel{\sim}{\sim} \sum_n a_n$ and the extension (L_M, ν_M) . Let L be an l-subgroup of (a commutative l-group) G, and let v be an l-seminorm on L, that is, a function of L into $[0, \infty]$ such that v(0) = 0, $v(a+b) \leq v(a) + v(b)$, and $v(a) \leq v(b)$ whenever $|a| \leq |b|$ $(a, b \in L)$. We say that v is σ -subadditive if $v(a) \leq \sum_n v(a_n)$ whenever $|a| = \sum_n |a_n|$ (equivalently: whenever $|a| \leq \sum_n |a_n|$; cf. [7], Theorem 2). It is worth noting that σ -subadditivity is a kind of closed graph property. Indeed, let $\varrho(a,b) = v(a-b)$, let ϱ be the relation $\varrho = \varrho(a,b) = 0$, let ϱ denote the completion of the semimetric space ϱ (ϱ , and let ϱ be the quotient mapping of ϱ into ϱ ; v is σ -subadditive if and only if

 $(a_n,x_n)\in\operatorname{Gr} q,\quad a=o-\lim_n a_n\quad \text{and}\quad x=\lim_n x_n\quad \operatorname{imply}\quad \ (a,x)\in\operatorname{Gr} q.$

(This follows from Theorem 2, (i) ⇔ (iv), of [7].)

Given $a, a_n \in G$, we write $a \stackrel{r}{\sim} \sum_n a_n$ if $a \sim \sum_n a_n$, $\{a_n\} \subset L$, and $\sum_n \nu(a_n) < \infty$. (For $\nu = 0$, $a \stackrel{r}{\sim} \sum_n a_n$ reduces to $a \sim \sum_n a_n$ whenever $\{a_n\} \subset L$.)

EXAMPLE 6. Let (S, \mathscr{A}, μ) be a positive measure space, $G = R^S$, L — the collection of all simple integrable functions in G, $v(a) = \int\limits_S |a| d\mu$ for $a \in L$. A function $a \in G$ is (Lebesgue) integrable if and only if there exists a sequence $\{a_n\} \subset L$ satisfying $a \stackrel{*}{\sim} \sum a_n$. This theorem, due to

MacNeille [4] and Mikusiński [5], was used by the latter author to build an axiomatic theory of integration in his book [6].

Define L_M as the set of all elements $a \in G$ such that $a \stackrel{r}{\sim} \sum_n a_n$ holds for some sequence $\{a_n\} \subset L$. $(L_M \subset L_{\sim}, \text{ and } L_M = L_{\sim} \text{ for } \nu = 0.)$

THEOREM 4. L_M is an l-subgroup of G; L_M contains L provided v is finite (i.e., takes values in $[0, \infty)$).

Proof. Suppose $a \stackrel{"}{\sim} \sum_n a_n$ and $b \stackrel{"}{\sim} \sum_n b_n$. Arguing as in the proof of Theorem 1, we get $a-b \stackrel{"}{\sim} a_1-b_1+a_2-b_2+\ldots$, and so L_M is a subgroup of G. Proof that $a^+ \in L_M$ is similar as that $a^+ \in L_{\sim}$ in Theorem 1; it is sufficient to notice that $|a'_n| \leq |a_n|$, $v(a'_n) \leq v(a_n)$.

THEOREM 5. Let v be finite and σ-subadditive. The equality

$$v_M(a) = \lim_k v \Big(\sum_{n \leqslant k} a_n \Big),$$

written whenever $a \stackrel{*}{\sim} \sum_n a_n$, defines (correctly) a finite σ -subadditive l-seminorm v_M on L_M , which extends v. Furthermore,

$$v_M(a) = \inf \left\{ \sum_n v(a_n) \colon a \overset{\star}{\sim} \sum_n a_n \right\} \quad \textit{for} \quad a \in L_M.$$

Proof. Let $a \stackrel{\sim}{\sim} \sum_n a_n$. The number sequence $\{v(\sum_{n \leqslant k} a_n)\}$ satisfies the Cauchy condition, because

$$\Big| v \Big(\sum_{n \leqslant k} a_n \Big) - v \Big(\sum_{n \leqslant k+m} a_n \Big) \Big| \leqslant v \Big(\sum_{k < n \leqslant k+m} a_n \Big) \leqslant \sum_{n > k} v(a_n).$$

If also $a \stackrel{*}{\sim} \sum_{n} a'_{n}$, then

$$\left| v \left(\sum_{n \leqslant k} a_n \right) - v \left(\sum_{n \leqslant k} a'_n \right) \right| \leqslant v \left(\sum_{n \leqslant k} a_n - \sum_{n \leqslant k} a'_n \right) \leqslant \sum_{n > k} v(a_n) + \sum_{n > k} v(a'_n) \searrow 0,$$

because

$$\Big|\sum_{n\leqslant k}a_n-\sum_{n\leqslant k}a_n'\Big|\leqslant \Big|\,a-\sum_{n\leqslant k}a_n\,\Big|+\Big|\,a-\sum_{n\leqslant k}a_n'\Big|\leqslant'\sum_{n\geqslant k}|a_n|+\sum_{n\geqslant k}|a_n'|$$

and v is σ -subadditive. Thus, a function $v_M \colon L_M \to [0, \infty)$ is well defined. Evidently, $v_M(a) = v(a)$ for $a \in L$. The (finite) subadditivity of v_M follows easily from the inequality

$$\nu(a_1+b_1+\ldots+a_k+b_k) \leqslant \nu\left(\sum_{n\leqslant k} a_n\right) + \nu\left(\sum_{n\leqslant k} b_n\right).$$

To prove that $r_M(|a|) = r_M(a)$, put $a_1' = |a_1|$, $a_2' = |a_1 + a_2| - |a_1|$, $a_3' = |a_1 + a_2 + a_3| - |a_1 + a_2|$, ..., and observe that $|a_n'| \le |a_n|$ and

$$\left||a| - \sum_{n \leqslant k} a_n'\right| = \left||a| - \left|\sum_{n \leqslant k} a_n\right|\right| \leqslant \left|a - \sum_{n \leqslant k} a_n\right| \leqslant' \sum_{n > k} |a_n|.$$

It follows that

$$|a| \stackrel{*}{\sim} a'_1 + a_1 - a_1 + a'_2 + a_2 - a_2 + \dots$$

Hence

$$v_{M}(|a|) = \lim_{k} v\left(\sum_{n \leq k} a'_{n}\right) = \lim_{k} v\left(\left|\sum_{n \leq k} a_{n}\right|\right) = v_{M}(a).$$

Let $b \in L_M$, $0 \leqslant a \leqslant b$, $b \stackrel{"}{\sim} \sum_n b_n$. We have

$$\begin{split} \left(\left|\sum_{n\leqslant k}a_n\right|-\left|\sum_{n\leqslant k}b_n\right|\right)^+ &\leqslant \left(\left|\sum_{n\leqslant k}a_n\right|-a\right)^+ + \left(b-\left|\sum_{n\leqslant k}b_n\right|\right)^+ \\ &\leqslant \left|\left|\sum_{n\leqslant k}a_n\right|-a\right| + \left|b-\left|\sum_{n\leqslant k}b_n\right|\right| \leqslant \left|\left|a-\sum_{n\leqslant k}a_n\right| + \left|b-\sum_{n\leqslant k}b_n\right| \\ &\leqslant' \sum_{n>k}|a_n| + \sum_{n>k}|b_n|. \end{split}$$

Hence

$$\nu\left(\sum_{n\leqslant k}a_n\right)-\nu\left(\sum_{n\leqslant k}b_n\right)\leqslant\nu\left(\left(\left|\sum_{n\leqslant k}a_n\right|-\left|\sum_{n\leqslant k}b_n\right|\right)^+\right)\leqslant\sum_{n>k}\nu(a_n)+\sum_{n>k}\nu(b_n)\underset{k}{\rightarrow}0\;,$$

which yields $v_M(a) \leqslant v_M(b)$. Thus v_M is an *l*-seminorm on L_M . Since $v(a_1 + a_2 + \ldots + a_k) \leqslant \sum_n v(a_n)$, $v_M(a) \leqslant \sum_n v(a_n)$. Given $\varepsilon > 0$, we may choose k so large that

$$\Big| v_M(a) - v \Big(\sum_{n \leqslant k} a_n \Big) \Big| < \varepsilon/2 \quad \text{ and } \quad \sum_{n > k} v(a_n) < \varepsilon/2;$$

then

$$a \sim (a_1 + \ldots + a_k) + a_{k+1} + a_{k+2} + \ldots$$

and

$$v(a_1+\ldots+a_k)+\sum_{n>k}v(a_n)< v_M(a)+\varepsilon.$$

This yields the asserted equality expressing $\nu_M(a)$.

It remains to prove that v_M is σ -subadditive. Let a, $a_n \in L_M^+$, $a_m^{(n)} \in L$, $a = \sum_n a_n$ and $a_n \stackrel{\sim}{\sim} \sum_m a_m^{(n)}$ for $n \in N$. We may assume that $\sum_n v_M(a_n) < \infty$ and that $\sum_m v(a_m^{(n)}) < v_M(a_n) + \varepsilon 2^{-n}$ (by the already proven assertion expressing v_M). Now we have

$$\sum_{n,m}\nu(a_m^{(n)})<\sum_n\nu_M(a_n)+\varepsilon,$$

and so, in view of Lemma 2, $a \stackrel{r}{\sim} \sum_{n,m} a_m^{(n)}$. Hence

$$v_{M}(a) \leqslant \sum_{n,m} v(a_{m}^{(n)}).$$

Since s was arbitrary, the desired inequality follows, and the proof is complete.

Due to Theorem 5, we may consider the expansion $a \stackrel{r_M}{\sim} \sum_n a_n$, meaning, of course, that $a \sim \sum_n a_n$, $\{a_n\} \subset L_M$ and $\sum_n r_M(a_n) < \infty$.

THEOREM 6. Let v be finite and \sigma-subadditive.

(i) If $a \stackrel{r_M}{\sim} \sum_n a_n$, then $a \in L_M$ and $\lim_k r_M(a - \sum_{n \le k} a_n) = 0$. Therefore L is metrically dense in L_M (endowed with the semimetric $o(a,b) = r_M(a-b)$).

(ii) If G is weakly σ -complete, then the space L_M is metrically complete.

Proof. (i) The argument used to prove that $a \in L_M$ is nearly the same as in the final part of the proof of Theorem 5; the difference is that now $G \ni a \stackrel{r_M}{\sim} \sum_n a_n$ instead of $L_M^+ \ni a = \sum_n a_n$, but Lemma 2 may be applied as before. Having observed that $a \in L_M$, we may use the σ -subadditivity of r_M :

$$\nu_M \left(a - \sum_{n \leqslant k} a_n \right) \leqslant \sum_{n > k} \nu_M(a_n) \underset{k}{\longrightarrow} 0.$$

(ii) It is sufficient to prove that each absolutely convergent series converges. Let $\{a_n\} \subset L_M$ and $\sum\limits_n \nu_M(a_n) < \infty$. Since G is weakly σ -complete, there exists an element $a \in G$ satisfying $a \sim \sum\limits_n a_n$ (Proposition 14), and so $a \stackrel{r_M}{\sim} \sum\limits_n a_n$. By part (i), $a \in L_M$ and $\sum\limits_n a_n$ converges metrically to a.

In case L_M is weakly σ -complete (with respect to G), assertion (ii) follows directly from Theorem 5 of [7]; but we do not make this assumption on L_M here, and the metrical completeness of L_M is a consequence of the construction of L_M and the weak σ -completeness of G.

References

[1] G. Birkhoff, Lattice Theory, Providence 1967.

[3] L. Fuchs, Partially Ordered Algebraic Systems, Budapest 1963.

[5] J. Mikusiński, Sur une définition de l'intégrale de Lebesgue, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 203-204.

[6] J. Mikusiński, The Bochner Integral, Basel und Stuttgart 1978.

[7] M. Wilhelm, Completeness of l-groups and of l-seminorms, Comment. Math. 21 (1979), 271-281.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY, WROCŁAW

Received October 21, 1982 (1826)

 ^[2] D. H. Fremlin, A direct proof of the Matthes-Wright integral extention theorem, J. London Math. Soc. 11 (1975), 276-284.

^[4] H. M. MacNeille, A unified theory of integration, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 71-76.