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(iiy If &eC”, then &oseC" for each s.
(iv) If éeC", then & is either convergent or lotally divergent.

The Example 3 of the ¢*-group (X, 8,4, +) of equivalence clagses
of B-meagurable functions with convergence almost everywhere shows
that in general for (*-groups we have ¢’ = ¢'" Z 0. Indeed, if f, —f
in measure but not almost everywhere, then {[f,]) € C—0" in view of
(iv) of Corollary 3. In fact, it is easy to sec that (X, £, 4, ) is “C""-eom-
plete” in the sense that each {([f,]> € ¢'' converges in (X, &, 1, ).
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On the structure of L,-solution sets of
integral equations in Banach spaces

by
WEADYSEAW ORLICZ and STANISEAW SZUFLA (Poznat)

Abstract. In this paper we consider the integral equation
i
1L sty =p W)+ [ f(t 8, w(s))ds
o

in a Banach space X. We prove that under suitable assumptions the set of allsolutions
of (1), belonging to a certain Orlicz space L, (J, X), is a compact R;.

Let X be a separable Banach space. For any compact interval J
and for any N-function ¢ (cf. [4], [6]) we shall denote by L,(J, X) the
Orlicz space of all strongly meagurable functions #: J — X for which
the number

llull, = inf {9’ >0: [o(lu(s)lr)ds < 1}
J

is finite. It is well known that <{L,(J, X),]-||,> is a Banach space. More-
over, we shall denote by H,(J, X) the closure in L,(J, X) of the set of
all bounded functions. For properties of the spaces L, (J, X) and B, (J, X)
see [4], pp. 76-106.

In [7] we gave some conditions which guarantee that the integral
equation

i
(1) a(t) =p()+ [f(tys, a(s))ds

has at least one solution « belonging to a certain space L,(J, X). In this
paper we shall show that under the same assumptions as in [7] the seb
8§ of all solutions « e L, (J, X) of (1) is a compact B, in the sense of Aron-
szajn, i.e., § is homeomorphie to the intersection of a decreasing sequence
of compact absolute retracts.

Let L'(J, X) denote the Lebesgue space of Bochner integrable func-
tions u: J — X provided with the norm |lull; = [ llu(s)lds, and let g and

J

8. be the ball measures of noncompactness in X and I'(J, X), respectively.
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Without loss of generality we shall always assume that all functions
from L'(J, X) are extended to B by putling «(¢) = 0 outside J. Tor
any set V of functions belonging to L'(J, X) denote by » the function
defined by v(t) = g (V(t)) for ¢ e J (under the convention that f(4) = oo
if A is unbounded), where V() = {u(t): w e V}. The following result
has been proved in [7]:

LEMMA 1. Suppose that V is a countable subset of L'(J, X) and there
exists p e L'J, B) such that [lu(2)|| < u(t) for all weV ond ted. Then
the function v is infegrable on J and for any measurable subset T of J

2) Bl{ fucyat: we V})gfw(t)dt.
T T
If in addition lm sup [ |u(t+h) —u(t)|dt = 0, then
b0 uey J
3 B(V) < [w(yan.

J .

Assume that D = [0,d] and M, N are complementary N-functions.
We introduce- the following conditions concerning f.

Cl. (%, 8,%) = f(t, 8, ) is a function from D*xX into X which is
continuous in o for almost every ¢, s e D, and strongly measurable in
(¢, 8) for every o e X.

02. |If(t, s, a)ll < K (t, s)(b(s) +H(llw])} for t,s €D and @ e X, where
beLy(D,R), H is a nonnegative nondecreasing continuous function
defined on [0, co) and K(¢,8) >0 for i,seD.

C3. 1° N satisfies the condition A’, ie., there exist A, u, > 0 such
that N (uv) < AN (%) N (v) for w4, v > w,.

2° K € B, (D%, R).

3% ¢ is an N-function and there exist a, y, %, > 0 such that

=
N(eH (w)) < yp(u) < yM(u)  for w3 uy

C4. 1° N satisties the condition A,, i.e., there exist A, %, 0 such

that
N(Au) > -uN(u)‘ for = u,
2° K e Ly (D* R).
3° There exist 4, %, >0 such that
H(u) < AM(u)fu for = u,

4° ¢ i3 an N-function satisfying the condition A’ and such that
I o M(E (1, 9)))dsdt < oo
I

(the existence of ¢ follows from 1° and 2°).

icm
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05. 1° @ is an N-function and the function N satisfies the condition
A,, ie., there exist A, u,>>0 such that N(2u)<< AN (u) for % > u,.

2° There exists y >0 such that H(w) < yN Y(p(w)) for > 0.

3° K(t,) e By(D,R) for almost every teD and the function
t — |K (%, *)lly belongs to H,(D, E).

It is well known (cf. [4], Th. 19.1, Th. 19.2, L. 16.3, Th. 17.6) that
conditions C1-C3 imply that the operator F defined by

13
F(@)(t) = [ f{t, 8, w(s))ds
0

maps the unit ball in IL,(D,X) into E,(D, X), and conditions 01, Cc2,
plus C4 or 05, imply that F is a mapping of H,(D, X) into itself.

Now we shall present some inequalities concerning the operator F.
We distinguish three cases:

(1) Tt €3 holds, then by Lemma 19.1 of [4] there exists & constant
¢ such that for any measurable subset T of D and # e L,(D, X), llzll, <1,
we have

(4) I () plly < CHE Y plar

Moreover, there exist a,y, 1, >0 such that
a
1
(5) 22 ol < (1 [ 27 (aEz{lo(s)) s
6

a
1
< {1+ N{attpu) +7 [ slio)as)
[}
for any e L,(D, X) with [ll, <1.
(2) If 04 holds, then by Th. 19.2 of [4] there exists a congtant C
guch that for any measurable subset T of D and » € L, (D, X) we have

(6) I17(@) 22lp < ClE iy pllpoae(1Bly +{[E (2)]|x) -

Moreover, as C4, 3° implies that there exist a, 7, 4, > 0 such that N(eH ()
< nu for u > u,, we see that for any » € L,(D, X) and teD

t
) 2 oo,y < {1+ Df (o (o(s) 1)) ds)

i
1
< ;(1 + N {oH (1)) +1 ) f 2 () ds) .
(3) Under condition 05 for any » e H,(D, X) we have
¢

©®) ez, ol < 7o Uog, )y < v+v Of o(lz(s)l) ds .-
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Moreover, using C2 and applying the Holder inequality, we obtain
(9) IF@MI< k(t)(”b||zv“|"HH(“a”Z[o, t]”)”N) for almost every te D,

and consequently

(10) 17 (@) xzlly < Mozl (10 g+ (lloo])]|v)

for any measurable subset T of D and z e, (D,X), where k(l)=
20K (t, *) %10, 1llpr. Furthermore, by the Hoélder inequality, from 2 it
follows that for any ¢ e D such that K (3, ) € Wy (D, R)

(11) J Ut 8, 2(9))l1ds < 2UIK (2, ) plly (10 g -+ )] )
P

for any measurable subset P of [0,¢] and x e E,(D, X).
Denote by B(D, X) the closed ball in F,(D, X) with center 0 and
radius 7. Our fundamental results are given by the following theorems:
TaEoREM 1. Assume that conditions 1, C2 and C3. hold. Assume in
addition that

4

(12) Lm sup j | (@) (£ D) —F (@) ()| &t = 0
h—0 zeB! (D x)0 X
and
- (13) Bf(t, 8, 2) < Bty s, B(2))
Sor almost every t, s € D and for every bounded subsct 7 of X where (1, s u)
—>h(t, s, u) is a nonnegative funciion defined for 0<s<t< dy u =

satzsfymg the. following conditions:
(i) for anmy mnonnegative ueL'(D,R) there cxists the integral

ofh(t, 8, (8))ds for almost every t e D;

(i) for any 0, 0 <a<<d, u =0 a.c. zs the only nonnegative integrable

Junction on [0, a] which satisfies u(l) < f bty s, u(s))ds almost everywhere
on [0, a]. ‘

Then for any p e B, (D, X) ilz,me exists an interval J = [0, a] such
that the set 8 of all solmwm of (1) belonging to BL(J, X) is a compact R,

THEOREM 2. Assume that comlztmw Cl, C2, C4 and (13) hold. If for
any v >0 l

(14) lim sup f 17 (@) (¢ -+h) —T () ()| @t = 0,
"""ozeBr(D.X)"

then for any p € B, (D, X) the set S of all solutions of (1) belonging to W, (D, X)
8 a compact R,
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TurorEM 3. Assume that conditions C1, C2, C5 and (14) hold. If the
Junction f satisfies (13) with a function h satisfying the condilions

(i)’ for any nmnegatwe % e E oD, R) there exists the integral

fh(t s,u(s))ds  for almost every teD;

(ii)" for any a, 0 < a<d, w =0 a.e. is the only nonnegative function
on [0 a] which belowgs to B,([0,a], B) and satisfies

)< f h t, 8, u(s))ds almost everywhere on [0, al,

then for any p € B, (D, X) there exists an interval J = [0, a] such that
the set S of all solutions of (1) belonging to B,(J, X) is a compact Rj.

Proof. Fix a function p € B, (D, X). We choose a number ¢, 0 < a < d,
in such a way that

OIVE %10,a1x pllas + 1P A0, all, < 1 under condition O3;

a = d under condition C4;

¢ < min(d, w,), where [0, »_ ) is the maximal interval of existence of
the maximal continuous solution z of the integral equation

I3
1) 2 =5 [ oI Bl ds,
[

under condition C5.
Let J = [0, a]. For simplicity we introduce the following denotations:

'=1'J,X), L,=1L,J,X), B,=H8(J,X), B,=DB,J,X)
and
B, if €3 holds,

% = ‘E it C4 or 05 holds.

?

First we shall show that F is a continuous mapping of @, into Z,.
Let @,,,€Q, and lim |z, —u,/, = 0. Suppose that [F(z,) — I (@e)llp
N—+00

does not converge to 0 as n — co. Then there are ¢ > 0 and a subsequence
(mnj) such that

(16) - 1F (2, )-—F(mo)\|¢>a for j=1,2,...
and hm T, () = @, (t) for almost every ¢ e J. As @, — o, in @, , the sequences
(fq?(ll% 1\)ds) and (f l,,(s)lds) are bounded. By (11), (8), (7) and (8),

from this we deduce tha.t for almost every ¢ € J the sequence (|| f(2, s, 2,(s) ||)
is equi-integrable on [0, ¢]. Since for almost every ed

limf(t, s, mnj(s)) =f(t,s,20(s)) for almost every s e [0,1],
J>00
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the Vitali convergence theorem proves that
lim F (e, ) (£) = F(%)(t)

J~00
On the other hand, from inequalities (4), (6) and (7) or (10) and (8) (accord-
ing as 03, C4 or O5 holds) it follows that the sequence (11’( )) has equi-
absolutely continuous norms in I,. This implies that ]1m||7”( n) — 1 (@),

for almost every teJ,

= 0, in contradiction with (16).

Choose a positive number » in such a way ’ohalt
(1) r =1 if C3 holds;
(2) under condition. C4,

. 1 -
r=1 +l’P[]zp‘I‘CH-K”(pOM(”bHN““ - (1 + IV (o (1)) +

0o f 0(5)ds)exp (2 } s ),

k(1) = 2|K (7,

where
m, = sup{|lul: ue B}, ) %io,1ll
and

glt) = lp (0] + (||b||N+%+ %N(aﬂ(m)))k(t);

(3) it C5 holds, then » = 2-sup 2(¢), where # is the maximal sol-

teJ
ution of (15).
Let
- By, if 03 or O4 holds,

-~ .
{w e B, f«p(llw(s)[{)ds<'rw1} it CB holds.
0

It is clear that U < Bj,.

Let us remark that
(17) sup{||H (|lo)||y: @ € U} < oo.
It follows immediately from. (5), (7) or (8), according as C3, C4 or 06 holds.
Hence, by (4), (6) or (10), the set {F(#): v € U} has equi-absolutely
continuous norms in L.

Note also that

(18) limsup | F () (- +h) ~F(@)]l, = 0.

B0 zelU

icm®
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Indeed, if we suppose the contrary, then there exist ¢ > 0 and sequences
(@,), (b,) such that limh, =0, z, € U and

(19) 1B (@) (- b)) —F (), > for = =1,2,...
By (12) or (14) we have
hm“F (a’n)("i'hn) —T (%)Hx =0.

700

As the functions t — |[F(w,)(t+h,) —F ()OI, » =1,2,...,
absolutely continuous norms in L, this implies that

11m||l7’(wn) “+h,)—F(w

have equi-

”lp = 7

which contradiects (19).
For any positive integer n we define a mapping &, by

G (@)(t) = p@)+F(#)(r,(f)) for xeU andited,
where
for 0<<t<a,,
2D =1 for a,<t<a
and a, = a/n.

From the continuity of F it follows that &, is a continuous mapping
of U into H,.

Fix n. It can easily be verified that for any @,y € U the following
implication holds

(20) z—@,(2) =y —G,(y) =» =Y.
Suppose that a;, 2, € U and

j—~o
Since @, (x;)(8) = G (2e) (1) = p(8) for 0<I<ay,
Yim [[ (#; —%o) %0,a,lls = 0. Further,

j—>00

(21) implies that
(1) = a;(1) — G (%) (8) +p () +F (%) (t —a,)
= T (t) -G (wj) 1) —I"p )+F(Mm an]) (i “n,)

for a, <t< 2a, and j = 0,1,2,... By (21) and the continuity of F, this
proves tha.t 11m [1(2; —20) ,g[awd%][l,,, = 0. By repeating this argument we

wo) Lrosiaglle = 0 for¢ =1,

Trom this and (20) we deduce that the mapping I G,:U—E,
is a homeomorphism into (I —the identity mapping).

obtain hml[(m .y My 8O thart llm uw, —,|l= 0.
Fad
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Now we shall show that there exist & positive number ¢ and a positive
integer x, such that

(22) B, = (I-6G,)(1)
(1) Assume C3 and put ¢ = 1 —O Ky o1 pllar —12210,all¢- For given

n and y e B we define a sequence of functions @y, ¢ =1,...,n, by the
formulas

@,(1) = () +p (1)

for all n = n,.

for 0Lt a,,
<

(t for 0Kty
O N
for da,<i<a,
e () = Y(O)+p W) +F (@) (rp (1)  for g, <1< (i-1)a,.
‘We observe that
Ly (t) = y(t) _‘_1’ (t) _I'F (@z) (Tn(t)) for 0 <i< ia‘ni

2;0[0, 0,1 =2, and @, e H,([0, ia,], X).

Obviously, &, < lyl,+pll, < 1. Moreover, if ||&;]l, < 1 for some i < n—1,
then from (23) and (4) it follows that .
Wss1lle < 11l Uplp + O 210,01 x llar < 1.

This shows that «, € B;. Since w,—G,(z,) =y, we conclude that BZ
= (I—6,)(By).

(2) Assume C4. For given # and y e B} let 2, be the function defined
by (23). Then

(24) 7 (1) =y () +p () +F (w,) (r, (1) for ted.

By the Holder inequality, from C2 and (24) it follows that
Nl ()11 << My (O 112 (1o, () (1Bllay 4+ 1L (|[tg0, 00 | o) o
where %, (1) = k(r,()) and k(t) = 2[E(t, *) gyl Hence, by (7),

I3
(25) o (1< 1y ()10 0) - (8 [ T (),
0

101 ‘
whero g,(1) = np<t)u+(nbnN+; + ¥ (e (w) (0. As p € B(D, X)
and K EtEM(D2 ) &), the functions p and % are integrable on J. Putting
w(t) = uf llz, (s)lids and integrating (25) between 0 and t we get

a a t
wi) < [ wellds+ [ q0)as+L (K@i fo ted,
0 0 0

icm

On the structure of Ly-solulion sets 473

which implies

wl{2) <( fa v (sl ds + f gn(s)ds) exp(lal f kn(s)ds) for  ted.
0 0 0

a a a
Since [ T, (8)ds < [k(s)ds and [ lly(s)llds < m,llyl, < m,, this shows
0 0 o

that
Of e (5)1ds < (my + f (5)d5) exp (17_ f ic(s)ds).

Consequently, by (6), (7) and (24), we obtain
I, lp < Wl i1l +IF (2) 1l < L-+lipl,+

O e 1l + - (145 (@ )+ [ Lo )
0

1
<1+ply+ 01K o (nbnN += (1 + (o () +

—{-n(mq,—kfaq(s)ds)e:;p (%fk(s)ds))) =7.

Thus B (I—-&,)(B}), ie., (22) holds with ¢ = 1.
(3) Assume C5. We choose a positive number ¢ such that ¢ <1/2
and the maximal continuous solution 2, of the equation

11 .
2(t) = o-+3 [ (21 (51 +2R(5) (1Bl +7 +v2(s)))ds
0
is defined on J and z,(f) < 1-¢(f) for t e J, where # is the maximal sol-
ution of (15). As p € B, we may choose & positive integer m, such that
1= supllp—p(-—a)ll, <c Let ¢ = ¢—1. For given n>=>mn, and y € B
nzn, ~

let 2, bg the function defined by (23). Then, by (9), (8) and (24), we have

e, < ly@OI+Hp@l  for  0<t<a,

and
i—a,

()1 < Ly Ol + 1 (D1l -+ ) (IBly +7+v [ glln(s)i)ds)

for almost every t e [a,,a], which implies

o (Il (1) < oo 20y (D) +21p () —p (E—a)l) + )
[ ol as))-

0

i
o (21—, 425 () (Dl +7 +7
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1

Put w(t) = [ ¢(lw,(s)l)ds. As k€ (D, B) and p € B, we may integrate
0

the last inequality between 0 and i e [a,, @] which yields

i
w(t) <} [ o2y (s)I+2Ip(s) —p (s —a)l) ds +

t .
+1 [ o (2lp(s—a)l +28(s—a,)(1bly-+y -+yw(s —ay)))ds

%
(under the convention that p(s) =0 if s < 0).
Hence

1

w(t) <1 [ o2y +21p(s) —p (s —a,)l) s +
t

+3 [0 (20 )I+28(s) (Blly+y +yw(s)))ds  for ted.

0
y

Since |yll,+lp~p(—a,)l,<¢< 4, we have

3
% Of @ (2l (5)1+2lp () —p (s —a)l) s < liyll, +lip —2 (- —au)l, < ¢,

and consequently

i
w(t)<o+3[ o [20p ()1 +2k(s) (Iblly +y+yw(s)|)ds  for ted.
0

Applying now Theorem 2 of [1] we get w(t) < #,(f) for ¢ €J, so that
a

[ o(lon(s)l)ds < 1+supa(t) = r~1.

[

This ends the proof of (22).
Consider now the mapping & defined by

G(@) =p+F(@®) for wel.
As G, () (t) —G(@)(t) = F{a)(r,(5)) —F («)(t), from (18) it follows that
(26) Eg][Gn(m)—G(w)ll,,, =0 uniformly in 2e U,

‘We shall show that I — G is a proper mapping, that is,

20 (I—-6)'(Y) is compact for any compact subset ¥ of H,.
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Let Y be a given compact subset of #,, and let (#,) be an infinite sequence
in (I—@)~(X). Since wu,~p—F(u,)e¥ for n =1,2,..., we can find
a subsequence (unj) and y €Y such that

(28) jl_iilll%nj —p—F (w) —yll, = 0
and .
(29) jl;ug(unj(t) —p (8 —F(unj)(t)} =y(t) for almost every tedJ.
Let V ’—"{“n,-: j=1,2,...} and W =F(V). It is clear from (28) and
(29) that
(30)
B(V) = B (W) and B(V(t) = p(W() for almost every ted,

where 3 and §, are the measures of noncompactness in X and I', respect-
ively. Moreover, from (11) and (17) it follows that

(31) P ()t < Ak(t) for weU and ted,

where %(t) = 21K (t, ) oo 20 4 = [Blly+sup{|[H (lo)||x: o € U}. As
the function % is integrable and V < U, by Lemma 1 from (18) and (31)
we deduce that the function t —wv(t) = B(W (1)) is integrable on J. Ob-
viously, »(t) < Ak(t) for ¢t e J. Note that under condition 05 the function
keB,(J,R) and therefore v € E,(J, E). .

Fix t € J for which (13) holds and K (3, -) € By (J, E). Then, by (11§
and (17), we have

(32) [1I1(t, 5, 2(0))]|ds < 24K (2, ) spllar
P
for any measurable subset P of [0,¢] and x & U.

Furthermore, by the Iegorov theorem and (29), for every & > 0 there
exists a closed subset J, of J such that mes(J \ J,) < & and

Lim (s, () =P () —F (1) (s)) =y(s) uniformly on J,.
Joo

Hence, in view of the Luzin theorem, from (31) and (32) we infer that
for a given & >0 there exist a closed subset T of [0,1] and a positive
number § such that

(33) H%n,(s)ll<5 for seT and j=1,2,...

and

(34) [lflts s, um@)lds < for §=1,2,.
P
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where P == [0, 1]\ T. As ||f(t, s, 1, (s H<Kt s (b(s)~]—£l'(ﬂunj(s)|])),from

(83) it follows that
[17(ts s,un],(s))[l <n(s) for seTandj=1,2,...,

where 7(s) = K (i, s)(b(s)+H (6)). Tt is clear that under the assumptions

of Theorem 1, 2 or 3 the function #» is integrable on T.
Let Z = {f(t, - (")) § = 1,2, ...} and

[Z(s)as ={ [ £{t, s, uny(0))ds: § = 1,2, ...
T A

By (2) we have

(35) B([2&as)< [BZ(s)ds
Iy [
Moreover, (34) implies that
(36) ﬂ(fZ(s)ds) <&
P

Since F(V)(¥) = [Z(s)ds+ [Z(s)ds, from (35) and (36) we obtain
P »

BIEV)W) < [B(Z(s))ds+e.

7
On the other hand, by (13),

- B(Z(s)) <h(tys, B(V(s))) for almost every se[0,1].
Hence, by (30),

i
< [h{tys,0(0)ds+e< Sty s, 0(8)ds+e.
T e

As ¢ is arbitrary, this shows that

fhts'v ds.

Since the last inequality holds for almost every ¢eJ and v e I'(J, R)
or v.e B (J, E) (according as 03, C4 or CB holds), we deduce that v (f) = 0
for almost every t edJ. Applymo' now Lemma 1 and using (30), we got

o
Bu(V) = < [o@ar =o.
0
Thus the set V is relatively compact in I', so that we can find a sub-

sequence (’M'nji)’ of (u,nj) which is convergent in L'. On the other hand, the
sequence (F(u,,j)) has equi-absolutely continuous norms in L,, and con-

i
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sequently, by (28), the sequence ('w,,j) has equi-absolutely continuous
norms in L, Hence the sequence (un;,) 1s convergent in L, As U is & com-
plete metric subspace of L,, this proves (27).

Owing to (22), (26) and (27) it is clear that the mapping ¢: U — H,
satisfies all agsumptions of Theorem 7 of [2], which proves that the seb
(I—G)"1(0) is a compact Rs; Moreover, similarly as for @, in the proof
of (22), it can be shown that if & € §, then # ¢ U. Hence 8 = (I—-G)~ 1(0)
and consequently 8 is a compact R,
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