(iii) If $\xi \in C''$, then $\xi \circ s \in C''$ for each s.

(iv) If $\xi \in C''$, then ξ is either convergent or totally divergent.

The Example 3 of the C^+ -group $(X, \mathfrak{L}, \lambda, +)$ of equivalence classes of B-measurable functions with convergence almost everywhere shows that in general for C^+ -groups we have $C' = C'' \subseteq C$. Indeed, if $f_n \to f$ in measure but not almost everywhere, then $\langle [f_n] \rangle \in C - C''$ in view of (iv) of Corollary 3. In fact, it is easy to see that $(X, \mathfrak{L}, \lambda, +)$ is "C"-complete" in the sense that each $\langle [f_n] \rangle \in C''$ converges in $(X, \mathfrak{L}, \lambda, +)$.

References

- [1] C. Ferens and J. Mikusiński, Urysoln's condition and Cauchy sequences, in: Proceedings of the Seminar of S. L. Sobolev No 1, Novosibirsk 1978, 122-124.
- [2] R. Frič and V. Koutník, Sequential structures, convergence structures and applications, Abh. Akad. Wiss, DDR Abh. Math. Natur. Tech. 4 (1979), Proc. Internat. Summer School Frankfurt/Oder, 1978, 37-56.
- [3] J. M. Irwin and D. C. Kent, Sequential Cauchy spaces, in: Proc. Special Session Convergence Structures, 1976, University of Nevada, Reno 1976, 60-82.
- [4] -, Sequential Cauchy spaces, Math. Slovaca 29 (1979), 117-130.
- [5] J. Novák, Eine Bemerkung zum Begriff der topologischen Konvergenzgruppen, in: Celebrazione archimedee del secolo XX, Simposio di topologia, 1964, 71-74.
- [6] On convergence spaces and their sequential envelopes, Czechoslovak Math. J. 15 (90) (1965), 74-100.
- [7] On convergence groups, ibid. 20 (95) (1970), 357-374.
- [8] On completions of convergence commutative groups, in: General Topology and its Relations to Modern Analysis and Algebra III, Proc. Third Prague Topological Sympos., 1971, Academia, Praha 1972, 335-340.

Received November 12, 1982 (1830)

STUDIA MATHEMATICA, T. LXXVII. (1984)

On the structure of L_{ω} -solution sets of integral equations in Banach spaces

WŁADYSŁAW ORLICZ and STANISŁAW SZUFLA (Poznań)

Abstract. In this paper we consider the integral equation

(1)
$$x(t) = p(t) + \int_0^t f(t, s, x(s)) ds$$

in a Banach space X. We prove that under suitable assumptions the set of all solutions of (1), belonging to a certain Orlicz space $L_{\omega}(J, X)$, is a compact R_{δ} .

Let X be a separable Banach space. For any compact interval J and for any N-function φ (cf. [4], [6]) we shall denote by $L_{\varphi}(J,X)$ the Orlicz space of all strongly measurable functions $u: J \to X$ for which the number

$$\|u\|_{arphi}=\inf\left\{ r>0:\int\limits_{J}arphi\left(\|u(s)\|/r
ight)ds\leqslant1
ight\}$$

is finite. It is well known that $\langle L_n(J,X), \|\cdot\|_n \rangle$ is a Banach space. Moreover, we shall denote by $E_{\sigma}(J,X)$ the closure in $L_{\sigma}(J,X)$ of the set of all bounded functions. For properties of the spaces $L_{\scriptscriptstyle m}(J,X)$ and $E_{\scriptscriptstyle m}(J,X)$ see [4], pp. 76-106.

In [7] we gave some conditions which guarantee that the integral equation

(1)
$$x(t) = p(t) + \int_{0}^{t} f(t, s, x(s)) ds$$

has at least one solution x belonging to a certain space $L_{\sigma}(J, X)$. In this paper we shall show that under the same assumptions as in [7] the set S of all solutions $x \in L_{\alpha}(J, X)$ of (1) is a compact R_{δ} in the sense of Aronszajn, i.e., S is homeomorphic to the intersection of a decreasing sequence of compact absolute retracts.

Let $L^1(J,X)$ denote the Lebesgue space of Bochner integrable functions $u: J \to X$ provided with the norm $||u||_1 = \int ||u(s)|| ds$, and let β and β_1 be the ball measures of noncompactness in X and $L^1(J, X)$, respectively. Without loss of generality we shall always assume that all functions from $L^1(J,X)$ are extended to R by putting u(t)=0 outside J. For any set V of functions belonging to $L^1(J,X)$ denote by v the function defined by $v(t)=\beta\left(V(t)\right)$ for $t\in J$ (under the convention that $\beta(A)=\infty$ if A is unbounded), where $V(t)=\{u(t)\colon u\in V\}$. The following result has been proved in [7]:

LEMMA 1. Suppose that V is a countable subset of $L^1(J,X)$ and there exists $\mu \in L^1(J,R)$ such that $||u(t)|| \leq \mu(t)$ for all $u \in V$ and $t \in J$. Then the function v is integrable on J and for any measurable subset T of J

(2)
$$\beta\Big(\Big\{\int_T u(t)dt\colon u\in V\Big\}\Big) \leqslant \int_T v(t)dt.$$

If in addition $\limsup_{h \to 0} \sup_{u \in \mathcal{V}} \int \|u(t+h) - u(t)\| dt = 0$, then

(3)
$$\beta_1(V) \leqslant \int_J v(t) dt.$$

Assume that D = [0, d] and M, N are complementary N-functions. We introduce the following conditions concerning f.

C1. $(t, s, x) \to f(t, s, x)$ is a function from $D^2 \times X$ into X which is continuous in x for almost every $t, s \in D$, and strongly measurable in (t, s) for every $x \in X$.

C2. $||f(t,s,x)|| \le K(t,s)(b(s)+H(||x||))$ for $t,s \in D$ and $x \in X$, where $b \in L_N(D,R)$, H is a nonnegative nondecreasing continuous function defined on $[0,\infty)$ and $K(t,s) \ge 0$ for $t,s \in D$.

C3. 1° N satisfies the condition Δ' , i.e., there exist $\lambda, u_0 \ge 0$ such that $N(uv) \le \lambda N(u) N(v)$ for $u, v \ge u_0$.

 $2^{\circ} K \in E_M(D^2, R).$

3° φ is an N-function and there exist $\alpha, \gamma, u_0 \ge 0$ such that

$$N(\alpha H(u)) \leqslant \gamma \varphi(u) \leqslant \gamma M(u)$$
 for $u \geqslant u_0$.

C4. 1° N satisfies the condition Δ_3 , i.e., there exist $\lambda, u_0 \geqslant 0$ such that

$$N(\lambda u) \geqslant u N(u)$$
 for $u \geqslant u_0$

 $2^{\circ} \ K \in L_{M}(D^{2}, R).$

3° There exist $\lambda, u_0 > 0$ such that

$$H(u) \leqslant \lambda M(u)/u$$
 for $u \geqslant u_0$

 $4^{\circ} \varphi$ is an N-function satisfying the condition Δ' and such that

$$\iint\limits_{D^2} \varphi \big(M(K(t,s)) \big) ds \, dt < \infty$$

(the existence of φ follows from 1° and 2°).

C5. 1° φ is an N-function and the function N satisfies the condition Δ_v , i.e., there exist λ , $u_0 \ge 0$ such that $N(2u) \le \lambda N(u)$ for $u \ge u_0$.

2° There exists $\gamma > 0$ such that $H(u) \leqslant \gamma N^{-1}(\varphi(u))$ for $u \geqslant 0$.

 $3^{\circ} K(t,\cdot) \in E_M(D,R)$ for almost every $t \in D$ and the function $t \to ||K(t,\cdot)||_M$ belongs to $E_{\sigma}(D,R)$.

It is well known (cf. [4], Th. 19.1, Th. 19.2, L. 16.3, Th. 17.6) that conditions C1–C3 imply that the operator F defined by

$$F(x)(t) = \int_{0}^{t} f(t, s, x(s)) ds$$

maps the unit ball in $L_{\varphi}(D,X)$ into $E_{\varphi}(D,X)$, and conditions C1, C2, plus C4 or C5, imply that F is a mapping of $E_{\varphi}(D,X)$ into itself.

Now we shall present some inequalities concerning the operator F. We distinguish three cases:

(1) If C3 holds, then by Lemma 19.1 of [4] there exists a constant C such that for any measurable subset T of D and $x \in L_{\varphi}(D, X)$, $\|x\|_{\varphi} \leq 1$, we have

$$||F(x)\chi_T||_{\varphi} \leqslant C||K\chi_{T\times D}||_{M}.$$

Moreover, there exist $\alpha, \gamma, u_0 > 0$ such that

(5)
$$\|H(\|x\|)\|_{N} \leqslant \frac{1}{\alpha} \left(1 + \int_{0}^{d} N(\alpha H(\|x(s)\|)) ds\right)$$

$$\leqslant \frac{1}{\alpha} \left(1 + N(\alpha H(u_{0})) + \gamma \int_{0}^{d} \varphi(\|x(s)\|) ds\right)$$

for any $x \in L_{\omega}(D, X)$ with $||x||_{\varphi} \leq 1$.

(2) If C4 holds, then by Th. 19.2 of [4] there exists a constant C such that for any measurable subset T of D and $x \in L_{\varphi}(D, X)$ we have

(6)
$$||F(x)\chi_T||_{\varphi} \leqslant C||K\chi_{T\times D}||_{\varphi \cap M}(||b||_N + ||H(||x||)||_N).$$

Moreover, as C4, 3° implies that there exist a, η , $u_0 > 0$ such that $N(\alpha H(u)) \le \eta u$ for $u \ge u_0$, we see that for any $x \in L_{\varphi}(D, X)$ and $t \in D$

(7)
$$||H(||x\chi_{[0,t]}||)||_{N} \leq \frac{1}{\alpha} \left(1 + \int_{0}^{t} N(\alpha H(||x(s)||)) ds\right)$$

$$\leq \frac{1}{\alpha} \left(1 + N(\alpha H(u_{0})) + \eta \int_{0}^{t} ||x(s)|| ds\right).$$

(3) Under condition C5 for any $x \in E_{\varphi}(D, X)$ we have

(8)
$$||H(||x\chi_{[0,t]}||)||_{N} \leq \gamma ||N^{-1}(\varphi(||x\chi_{[0,t]}||))||_{N} \leq \gamma + \gamma \int_{0}^{t} \varphi(||x(s)||) ds.$$

Moreover, using C2 and applying the Hölder inequality, we obtain

(9) $||F(x)(t)|| \le k(t) (||b||_N + ||H(||x\chi_{[0,t]}||)||_N)$ for almost every $t \in D$, and consequently

(10)
$$||F(x)\chi_T||_{\varphi} \leqslant ||h\chi_T||_{\varphi} (||b||_N + ||H(||x||)||_N)$$

for any measurable subset T of D and $x \in E_{\varphi}(D, X)$, where $k(t) = 2||K(t, \cdot)\chi_{[0,t]}||_{M}$. Furthermore, by the Hölder inequality, from C2 it follows that for any $t \in D$ such that $K(t, \cdot) \in E_{M}(D, R)$

$$\int\limits_{P}\|f\big(t,s\,,x(s)\big)\|ds\leqslant 2\,\|K\,(t\,,\cdot)\,\chi_{P}\|_{M}\big(\|b\|_{N}\,+\,\|H\,(\|x\|)\big\|_{N}\big)$$

for any measurable subset P of [0,t] and $x \in E_n(D,X)$.

Denote by $B_{\varphi}^{r}(D, X)$ the closed ball in $E_{\varphi}(D, X)$ with center 0 and radius r. Our fundamental results are given by the following theorems:

THEOREM 1. Assume that conditions C1, C2 and C3 hold. Assume in addition that

(12)
$$\lim_{h \to 0} \sup_{x \in B^1_w(D,X)} \int\limits_0^d \|F(x)(t+h) - F(x)(t)\| \, dt \, = \, 0$$

and

$$\beta(f(t,s,Z)) \leqslant h(t,s,\beta(Z))$$

for almost every $t, s \in D$ and for every bounded subset Z of X, where $(t, s, u) \rightarrow h(t, s, u)$ is a nonnegative function defined for $0 \le s \le t \le d, u \ge 0$, satisfying the following conditions:

- (i) for any nonnegative $u \in L^1(D, R)$ there exists the integral $\int_0^t h(t, s, u(s)) ds$ for almost every $t \in D$;
- (ii) for any $a, \ 0 < a \leqslant d, \ u = 0$ a.e. is the only nonnegative integrable function on [0, a] which satisfies $u(t) \leqslant \int\limits_0^t h\left(t, s, u(s)\right) ds$ almost everywhere on [0, a].

Then for any $p \in E_{\varphi}(D, X)$ there exists an interval J = [0, a] such that the set S of all solutions of (1) belonging to $B^1_{\varphi}(J, X)$ is a compact R_{δ} .

THEOREM 2. Assume that conditions C1, C2, C4 and (13) hold. If for any $r>\mathbf{0}$

(14)
$$\lim_{h\to 0} \sup_{x\in B_a^r(D,X)} \int_0^d \|F(x)(t+h) - F(x)(t)\| dt = 0,$$

then for any $p \in E_{\varphi}(D, X)$ the set S of all solutions of (1) belonging to $E_{\varphi}(D, X)$ is a compact R_{δ} .

THEOREM 3. Assume that conditions C1, C2, C5 and (14) hold. If the function f satisfies (13) with a function h satisfying the conditions

(i)' for any nonnegative $u \in E_{\sigma}(D, R)$ there exists the integral

$$\int_{0}^{t} h(t, s, u(s)) ds \quad \text{for almost every } t \in D;$$

(ii)' for any a, $0 < a \le d$, u = 0 a.e. is the only nonnegative function on [0, a] which belongs to $E_x([0, a], R)$ and satisfies

$$u(t) \leqslant \int_{0}^{t} h(t, s, u(s)) ds$$
 almost everywhere on $[0, a]$,

then for any $p \in E_{\varphi}(D, X)$ there exists an interval J = [0, a] such that the set S of all solutions of (1) belonging to $E_{\varphi}(J, X)$ is a compact R_{δ} .

Proof. Fix a function $p \in E_{\varphi}(D, X)$. We choose a number $a, 0 < a \leqslant d$, in such a way that

 $C \| K \chi_{[0,a] \times D} \|_{M} + \| p \chi_{[0,a]} \|_{\varphi} < 1 \text{ under condition C3};$

a = d under condition C4;

 $a < \min(d, \omega_+)$, where $[0, \omega_+)$ is the maximal interval of existence of the maximal continuous solution z of the integral equation

(15)
$$z(t) = \frac{1}{2} \int_{s}^{t} \varphi \left(2 \|p(s)\| + 2k(s) \left(\|b\|_{N} + \gamma + \gamma z(s) \right) \right) ds,$$

under condition C5.

Let J = [0, a]. For simplicity we introduce the following denotations:

$$L^1=L^1(J,X), \quad L_{arphi}=L_{arphi}(J,X), \quad E_{arphi}=E_{arphi}(J,X), \quad B_{arphi}^r=B_{arphi}^r(J,X)$$
 and

$$Q_{arphi} = egin{cases} B_{arphi}^1 & ext{if} & ext{C3 holds}, \ E_{arphi} & ext{if} & ext{C4 or C5 holds}. \end{cases}$$

First we shall show that F is a continuous mapping of Q_{φ} into E_{φ} . Let $x_n, x_0 \in Q_{\varphi}$ and $\lim_{n \to \infty} \|x_n - x_0\|_{\varphi} = 0$. Suppose that $\|F(x_n) - F(x_0)\|_{\varphi}$ does not converge to 0 as $n \to \infty$. Then there are $\varepsilon > 0$ and a subsequence (x_{n_j}) such that

(16)
$$||F(x_{n_j}) - F(x_0)||_{\varphi} > \varepsilon \quad \text{for} \quad j = 1, 2, \dots$$

and $\lim_{s\to\infty} x_{n_j}(t) = x_0(t)$ for almost every $t\in J$. As $x_n\to x_0$ in Q_φ , the sequences $\left(\int\limits_0^a \varphi(\|x_n(s)\|)\,ds\right)$ and $\left(\int\limits_0^a \|x_n(s)\|\,ds\right)$ are bounded. By (11), (5), (7) and (8), from this we deduce that for almost every $t\in J$ the sequence $\left(\left\|f(t,s,x_n(s))\right\|\right)$ is equi-integrable on [0,t]. Since for almost every $t\in J$

$$\lim_{t\to\infty} f\big(t,\,s\,,\,x_{n_j}(s)\big) \,= f\big(t,\,s\,,\,x_0(s)\big) \quad \text{ for almost every } s\in[\,0\,,\,t\,],$$

the Vitali convergence theorem proves that

$$\lim_{t\to\infty} F(x_{n_j})(t) = F(x_0)(t) \quad \text{ for almost every } t \in J.$$

On the other hand, from inequalities (4), (6) and (7) or (10) and (8) (according as C3, C4 or C5 holds) it follows that the sequence $(F(x_{nj}))$ has equiabsolutely continuous norms in L_{φ} . This implies that $\lim_{j\to\infty} \|F(x_{nj}) - F(x_0)\|_{\varphi}$

= 0, in contradiction with (16).

Choose a positive number r in such a way that

- (1) r = 1 if C3 holds;
- (2) under condition C4,

$$r=1+\|p\|_{\varphi}+C\|K\|_{\varphi \odot M}\Big(\|b\|_{N}+\frac{1}{\alpha}\left(1+N\left(\alpha H\left(u_{0}\right)\right)+\right.$$

$$+\eta \left(m_{\varphi}+\int\limits_{0}^{a}q\left(s
ight)ds
ight)\!\exp\left(rac{\eta}{a}\int\limits_{0}^{a}k\left(s
ight)ds
ight)\!
ight)\!,$$

where

$$m_{\varphi} = \sup\{\|u\|_1 \colon u \in B_{\varphi}^1\}, \ k(t) = 2\|K(t, \cdot)\chi_{[0,t]}\|_{\mathcal{M}}$$

and

$$q(t) = ||p(t)|| + \left(||b||_N + \frac{1}{a} + \frac{1}{a}N(\alpha H(u_0))\right)k(t);$$

(3) if C5 holds, then $r = 2 + \sup_{t \in J} z(t)$, where z is the maximal solution of (15).

Let

$$U = egin{cases} B_{arphi}^r & ext{if} & ext{C3 or C4 holds,} \ \left\{ x \in E_{arphi} \colon \int\limits_{0}^{a} arphi \left(\|x(s)\|
ight) ds \leqslant r - 1
ight\} & ext{if} & ext{C5 holds.} \end{cases}$$

It is clear that $U \subset B_{\varphi}^{r}$.

Let us remark that

$$\sup\{||H(||x||)||_N\colon x\in U\}<\infty.$$

It follows immediately from (5), (7) or (8), according as C3, C4 or C5 holds. Hence, by (4), (6) or (10), the set $\{F(x)\colon x\in U\}$ has equi-absolutely continuous norms in L_x .

Note also that

(18)
$$\lim_{h \to 0} \sup_{x \in U} ||F(x)(\cdot + h) - F(x)||_{\varphi} = 0.$$

Indeed, if we suppose the contrary, then there exist $\varepsilon>0$ and sequences $(x_n),\ (h_h)$ such that $\lim_{n\to\infty}h_n=0,\ x_n\in U$ and

(19)
$$||F(x_n)(\cdot + h_n) - F(x_n)||_{\varphi} > \varepsilon \quad \text{for} \quad n = 1, 2, \dots$$

By (12) or (14) we have

$$\lim_{n\to\infty} ||F(x_n)(\cdot + h_n) - F(x_n)||_1 = 0.$$

As the functions $t \to ||F(x_n)(t+h_n)-F(x_n)(t)||, n=1,2,...$, have equiabsolutely continuous norms in L_x , this implies that

$$\lim_{n\to\infty} ||F(x_n)(\cdot + h_n) - F(x_n)||_{\varphi} = 0,$$

which contradicts (19).

For any positive integer n we define a mapping G_n by

$$G_n(x)(t) = p(t) + F(x)(r_n(t))$$
 for $x \in U$ and $t \in J$,

where

$$r_n(t) = \begin{cases} 0 & \text{for } 0 \leqslant t \leqslant a_n, \\ t - a_n & \text{for } a_n \leqslant t \leqslant a \end{cases}$$

and $a_n = a/n$.

From the continuity of F it follows that G_n is a continuous mapping of U into E_o .

Fix n. It can easily be verified that for any $x, y \in U$ the following implication holds

$$(20) x - G_n(x) = y - G_n(y) \Rightarrow x = y.$$

Suppose that $x_i, x_0 \in U$ and

(21)
$$\lim_{j\to\infty} ||x_j - G_n(x_j) - x_0 + G_n(x_0)||_{\varphi} = 0.$$

Since $G_n(x_j)(t)=G_n(x_0)(t)=p(t)$ for $0\leqslant t\leqslant a_n$, (21) implies that $\lim\|(x_j-x_0)\chi_{[0,a_n]}\|_{\varphi}=0$. Further,

$$\begin{aligned} x_j(t) &= x_j(t) - G_n(x_j)(t) + p(t) + F(x_j)(t - a_n) \\ &= x_j(t) - G_n(x_j)(t) + p(t) + F(x_j \chi_{[0, a_n]})(t - a_n) \end{aligned}$$

for $a_n \leqslant t \leqslant 2a_n$ and $j=0,1,2,\ldots$ By (21) and the continuity of F, this proves that $\lim_{j\to\infty} \|(x_j-x_0)\chi_{[a_n,2a_n]}\|_{\varphi}=0$. By repeating this argument we obtain $\lim_{j\to\infty} \|(x_j-x_0)\chi_{[0,ia_n]}\|_{\varphi}=0$ for $i=1,\ldots,n$, so that $\lim_{j\to\infty} \|x_j-x_0\|_{\varphi}=0$.

From this and (20) we deduce that the mapping $I - G_n$: $U \to E_{\varphi}$ is a homeomorphism into (*I*—the identity mapping).

Now we shall show that there exist a positive number ϱ and a positive integer n_0 such that

(22)
$$B_{\omega}^{\varrho} \subset (I - G_n)(U) \quad \text{for all } n \geqslant n_0.$$

(1) Assume C3 and put $\varrho=1-C\|K\chi_{[0,a]\times D}\|_M-\|p\chi_{[0,a]}\|\varphi$. For given n and $y\in B^a_\varphi$ we define a sequence of functions $x_i,\ i=1,\ldots,n,$ by the formulas

$$x_{1}(t) = y(t) + p(t) \quad \text{for} \quad 0 \leqslant t \leqslant a_{n},$$

$$\tilde{x}_{i}(t) = \begin{cases} x_{i}(t) & \text{for} \quad 0 \leqslant t \leqslant ia_{n}, \\ 0 & \text{for} \quad ia_{n} < t \leqslant a, \end{cases}$$

$$x_{i+1}(t) = y(t) + p(t) + F(\tilde{x}_{i})(r_{n}(t)) \quad \text{for} \quad ia_{n} \leqslant t \leqslant (i+1)a_{n}.$$

We observe that

$$egin{aligned} x_i(t) &= y(t) + p(t) + F(ilde{x}_i) \left(r_n(t)\right) & ext{for} & 0 \leqslant t \leqslant ia_n, \ x_{i+1} | [0,ia_n] &= x_i & ext{and} & x_i \in E_{\sigma}([0,ia_n],X). \end{aligned}$$

Obviously, $\|\tilde{x}_1\|_{\varphi} \leqslant \|y\|_{\varphi} + \|p\|_{\varphi} \leqslant 1$. Moreover, if $\|\tilde{x}_i\|_{\varphi} \leqslant 1$ for some $i \leqslant n-1$, then from (23) and (4) it follows that

$$\|\tilde{x}_{i+1}\|_{\omega} \leq \|y\|_{\omega} + \|p\|_{\omega} + C \|K\chi_{[0,\alpha]\times D}\|_{M} \leq 1.$$

This shows that $x_n \in B_{\varphi}^1$. Since $x_n - G_n(x_n) = y$, we conclude that $B_{\varphi}^{\varrho} \subset (I - G_n)(B_n^1)$.

(2) Assume C4. For given n and $y \in B^1_{\varphi}$ let x_n be the function defined by (23). Then

(24)
$$x_n(t) = y(t) + p(t) + F(x_n)(r_n(t))$$
 for $t \in J$.

By the Hölder inequality, from C2 and (24) it follows that

$$||x_n(t)|| \le ||y(t)|| + ||p(t)|| + k_n(t) (||b||_N + ||H(||x_n\chi_{t_0,t_1}||)||_N),$$

where $k_n(t) = k(r_n(t))$ and $k(t) = 2||K(t, \cdot)\chi_{[0,t]}||_{\mathcal{M}}$. Hence, by (7),

$$||x_n(t)|| \leqslant ||y(t)|| + q_n(t) + \frac{\eta}{\alpha} k_n(t) \int\limits_{-t}^{t} ||x_n(s)|| \, ds \, ,$$

where $q_n(t) = \|p(t)\| + \left(\|b\|_N + \frac{1}{\alpha} + \frac{1}{\alpha}N(\alpha H(u_0))\right)k_n(t)$. As $p \in E_{\varphi}(D, X)$ and $K \in E_M(D^2, R)$, the functions p and k are integrable on J. Putting $w(t) = \int_0^t \|x_n(s)\| ds$ and integrating (25) between 0 and t we get

$$w(t) \leqslant \int_{0}^{a} \|y(s)\| ds + \int_{0}^{a} g_{n}(s) ds + \frac{\eta}{a} \int_{0}^{t} k_{n}(s) w(s) ds \quad \text{for} \quad t \in J,$$

which implies

$$w(t) \leqslant \left(\int\limits_0^a \|y(s)\| ds + \int\limits_0^a q_n(s) ds\right) \exp\left(\frac{\eta}{a} \int\limits_0^t k_n(s) ds\right) \quad ext{ for } \quad t \in J.$$

Since $\int\limits_0^a k_n(s)\,ds \leqslant \int\limits_0^a k(s)\,ds$ and $\int\limits_0^a \|y(s)\|\,ds \leqslant m_\varphi\|y\|_\varphi \leqslant m_\varphi,$ this shows

$$\int\limits_{0}^{a}\|x_{n}(s)\|\,ds\leqslant \Big(m_{\varphi}+\int\limits_{0}^{a}q\left(s\right)ds\Big)\exp\Big(\frac{\eta}{a}\int\limits_{0}^{a}k\left(s\right)ds\Big).$$

Consequently, by (6), (7) and (24), we obtain

$$\begin{split} \|x_n\|_{\varphi} &\leqslant \|y\|_{\varphi} + \|p\|_{\varphi} + \|F(x_n)\|_{\varphi} \leqslant 1 + \|p\|_{\varphi} + \\ &\quad + C\|K\|_{\varphi \odot M} \left(\|b\|_N + \frac{1}{a} \left(1 + N\left(aH(u_0)\right) + \eta \int\limits_0^a \|x_n(s)\| \, ds\right)\right) \\ &\leqslant 1 + \|p\|_{\varphi} + C\|K\|_{\varphi \odot M} \left(\|b\|_N + \frac{1}{a} \left(1 + N\left(aH(u_0)\right) + \frac{1}{a} \left(1 + N\left(aH(u_0)\right$$

Thus $B^1_{\varpi} \subset (I - G_n)(B^r_{\varpi})$, i.e., (22) holds with $\varrho = 1$.

(3) Assume C5. We choose a positive number c such that $c\leqslant 1/2$ and the maximal continuous solution z_c of the equation

$$z(t) = c + \frac{1}{2} \int_{0}^{t} \varphi \left(2 \| p(s) \| + 2k(s) \left(\|b\|_{N} + \gamma + \gamma z(s) \right) \right) ds$$

is defined on J and $z_c(t) \leq 1+z(t)$ for $t \in J$, where z is the maximal solution of (15). As $p \in E_{\varphi}$, we may choose a positive integer n_0 such that $l = \sup_{n \geq n_0} \|p-p(\cdot -a_n)\|_{\varphi} < c$. Let $\varrho = c-l$. For given $n \geq n_0$ and $y \in B_{\varphi}^{\varrho}$ let x_n be the function defined by (23). Then, by (9), (8) and (24), we have

$$\|x_n(t)\|\leqslant \|y\left(t\right)\|+\|p\left(t\right)\| \quad \text{ for } \quad 0\leqslant t\leqslant a_n$$

and

$$\left\|x_n(t)\right\| \leqslant \left\|y\left(t\right)\right\| + \left\|p\left(t\right)\right\| + k\left(t - a_n\right) \left(\|b\|_N + \gamma + \gamma \int\limits_0^{t - a_n} \phi\left(\left\|x_n(s)\right\|\right) ds\right)$$

for almost every $t \in [a_n, a]$, which implies

$$\begin{split} \varphi\left(\left\|x_n(t)\right\|\right) &\leqslant \tfrac{1}{2}\varphi\left(2\left\|y\left(t\right)\right\| + 2\left\|p\left(t\right) - p\left(t - a_n\right)\right\|\right) + \\ &+ \tfrac{1}{2}\varphi\left(2\left\|p\left(t - a_n\right)\right\| + 2k\left(t - a_n\right)\left(\left\|b\right\|_N + \gamma + \gamma\int\limits_0^{t - a_n} \varphi\left(\left\|x_n(s)\right\|\right) ds\right)\right). \end{split}$$

icm[©]

Put $w(t) = \int_0^t \varphi(\|x_n(s)\|) ds$. As $k \in E_{\varphi}(D, R)$ and $p \in E_{\varphi}$, we may integrate the last inequality between 0 and $t \in [a_n, a]$ which yields

$$\begin{split} w\left(t\right) &\leqslant \tfrac{1}{2} \int\limits_{0}^{t} \varphi\left(2\|y\left(s\right)\| + 2\|p\left(s\right) - p\left(s - a_{n}\right)\|\right) ds + \\ &+ \tfrac{1}{2} \int\limits_{a_{n}}^{t} \varphi\left(2\|p\left(s - a_{n}\right)\| + 2k\left(s - a_{n}\right)\left(\|b\|_{N} + \gamma + \gamma w\left(s - a_{n}\right)\right)\right) ds \end{split}$$

(under the convention that p(s) = 0 if s < 0).

Hence

$$\begin{split} w\left(t\right) &\leqslant \tfrac{1}{2} \int\limits_0^t \varphi\left(2\|y\left(s\right)\| + 2\|p\left(s\right) - p\left(s - a_n\right)\|\right) ds + \\ &+ \tfrac{1}{2} \int\limits_0^t \varphi\left(2\|p\left(s\right)\| + 2k\left(s\right) \left(\|b\|_N + \gamma + \gamma w\left(s\right)\right)\right) ds \quad \text{ for } \quad t \in J\,. \end{split}$$

Since $||y||_{\varphi} + ||p - p(\cdot - a_n)||_{\varphi} \le c \le \frac{1}{2}$, we have

$$\frac{1}{2}\int\limits_{0}^{t}\varphi\left(2\|y\left(s\right)\|+2\|p\left(s\right)-p\left(s-a_{n}\right)\|\right)ds\leqslant\|y\|_{\varphi}+\|p-p\left(\cdot-a_{n}\right)\|_{\varphi}\leqslant c\,,$$

and consequently

$$w\left(t\right)\leqslant c+\tfrac{1}{2}\int\limits_{0}^{t}\varphi\left(2\|p\left(s\right)\|+2k\left(s\right)\left(\|b\|_{N}+\gamma+\gamma w\left(s\right)\right)\right)ds \quad \text{ for } \quad t\in J.$$

Applying now Theorem 2 of [1] we get $w(t) \leq z_c(t)$ for $t \in J$, so that

$$\int\limits_{0}^{a}\varphi\left(\|x_{n}(s)\|\right)ds\leqslant 1+\sup_{t\in J}z(t)=r-1.$$

This ends the proof of (22).

Consider now the mapping G defined by

$$G(x) = p + F(x)$$
 for $x \in U$.

As $G_n(x)(t) - G(x)(t) = F(x)(r_n(t)) - F(x)(t)$, from (18) it follows that

(26)
$$\lim_{n\to\infty} \|G_n(x) - G(x)\|_{\varphi} = 0 \quad \text{uniformly in } x \in U.$$

We shall show that I - G is a proper mapping, that is,

(27) $(I-G)^{-1}(Y)$ is compact for any compact subset Y of \mathbb{Z}_{φ} .

Let Y be a given compact subset of E_{φ} , and let (u_n) be an infinite sequence in $(I-G)^{-1}(Y)$. Since $u_n-p-F(u_n)\in Y$ for $n=1,2,\ldots$, we can find a subsequence (u_n) and $y\in Y$ such that

(28)
$$\lim_{i \to \infty} \|u_{n_j} - p - F(u_{n_j}) - y\|_{\varphi} = 0$$

and

(29)
$$\lim_{t\to\infty} \left(u_{n_j}(t) - p(t) - F(u_{n_j}(t))\right) = y(t) \quad \text{for almost every } t \in J.$$

Let $V=\{u_{n_j}\colon j=1,2,\ldots\}$ and W=F(V). It is clear from (28) and (29) that

(30)
$$\beta_1(V) = \beta_1(W)$$
 and $\beta(V(t)) = \beta(W(t))$ for almost every $t \in J$,

where β and β_1 are the measures of noncompactness in X and L^1 , respectively. Moreover, from (11) and (17) it follows that

(31)
$$||F(x)(t)|| \leq Ak(t)$$
 for $x \in U$ and $t \in J$,

where $k(t) = 2\|K(t, \cdot)\chi_{[0,t]}\|_{\mathcal{M}}$ and $A = \|b\|_N + \sup\{\|H(\|x\|)\|_N \colon x \in U\}$. As the function k is integrable and $V \subset U$, by Lemma 1 from (18) and (31) we deduce that the function $t \to v(t) = \beta(W(t))$ is integrable on J. Obviously, $v(t) \leq Ak(t)$ for $t \in J$. Note that under condition C5 the function $k \in E_x(J, R)$ and therefore $v \in E_x(J, R)$.

Fix $t \in J$ for which (13) holds and $K(t, \cdot) \in E_M(J, R)$. Then, by (11) and (17), we have

$$(32) \qquad \qquad \int\limits_{\mathcal{D}} \left\| f(t,s,x(s)) \right\| ds \leqslant 2A \left\| K\left(t,\cdot\right) \chi_{P} \right\|_{M}$$

for any measurable subset P of [0, t] and $x \in U$.

Furthermore, by the Iegorov theorem and (29), for every $\varepsilon>0$ there exists a closed subset J_{ϵ} of J such that $\operatorname{mes}(J\smallsetminus J_{\epsilon})<\varepsilon$ and

$$\lim_{j\to\infty} \left(u_{n_j}(s) - p(s) - F(u_{n_j})(s)\right) = y(s) \quad \text{ uniformly on } J_{\varepsilon}.$$

Hence, in view of the Luzin theorem, from (31) and (32) we infer that for a given $\varepsilon > 0$ there exist a closed subset T of [0, t] and a positive number δ such that

(33)
$$||u_{n_j}(s)|| \leq \delta$$
 for $s \in T$ and $j = 1, 2, ...$

and

(34)
$$\int\limits_{P} \left\| f(t,s,u_{n_{j}}(s)) \right\| ds \leqslant \varepsilon \quad \text{ for } \quad j=1,2,\ldots,$$

icm[©]

where $P = [0, t] \setminus T$. As $||f(t, s, u_{n_j}(s))|| \le K(t, s) (b(s) + H(||u_{n_j}(s)||))$, from (33) it follows that

$$||f(t, s, u_{n_i}(s))|| \le \eta(s)$$
 for $s \in T$ and $j = 1, 2, ...,$

where $\eta(s) = K(t, s)(b(s) + H(\delta))$. It is clear that under the assumptions of Theorem 1, 2 or 3 the function η is integrable on T.

Let
$$Z = \{f(t, \cdot, u_{n_j}(\cdot)) : j = 1, 2, ...\}$$
 and

$$\int_{m} Z(s) ds = \left\{ \int_{m} f(t, s, u_{n_{j}}(s)) ds \colon j = 1, 2, \ldots \right\}.$$

By (2) we have

(35)
$$\beta \left(\int_{T} Z(s) \, ds \right) \leqslant \int_{T} \beta \left(Z(s) \right) ds.$$

Moreover, (34) implies that

(36)
$$\beta \left(\int_{\mathcal{P}} Z(s) \, ds \right) \leqslant \varepsilon.$$

Since $F(V)(t) = \int\limits_T Z(s) ds + \int\limits_P Z(s) ds$, from (35) and (36) we obtain

$$\beta\left(F(V)(t)\right) \leqslant \int\limits_{T} \beta(Z(s)) ds + \varepsilon.$$

On the other hand, by (13),

$$\beta\left(Z(s)\right)\leqslant h\left(t,s,\beta\left(V(s)\right)\right)\quad\text{for almost every }s\in[0\,,\,t].$$
 Hence, by (30),

$$v\left(t
ight)\leqslant\int\limits_{T}h\left(t,s,v\left(s
ight)
ight)ds+arepsilon\leqslant\int\limits_{0}^{t}h\left(t,s,v\left(s
ight)
ight)ds+arepsilon.$$

As & is arbitrary, this shows that

$$v(t) \leqslant \int_{0}^{t} h(t, s, v(s)) ds$$
.

Since the last inequality holds for almost every $t \in J$ and $v \in L^1(J, R)$ or $v \in E_{\varphi}(J, R)$ (according as C3, C4 or C5 holds), we deduce that v(t) = 0 for almost every $t \in J$. Applying now Lemma 1 and using (30), we get

$$\beta_1(V) = \beta_1(W) \leqslant \int_0^a v(t) dt = 0.$$

Thus the set V is relatively compact in L^1 , so that we can find a subsequence $(u_{n_{j_i}})$ of (u_{n_j}) which is convergent in L^1 . On the other hand, the sequence $(F(u_{n_i}))$ has equi-absolutely continuous norms in L_{φ} , and con-

sequently, by (28), the sequence (u_{n_j}) has equi-absolutely continuous norms in L_{φ} . Hence the sequence $(u_{n_{j_l}})$ is convergent in L_{φ} . As U is a complete metric subspace of L_{φ} , this proves (27).

Owing to (22), (26) and (27) it is clear that the mapping $G \colon U \to E_{\varphi}$ satisfies all assumptions of Theorem 7 of [2], which proves that the set $(I-G)^{-1}(0)$ is a compact R_{δ} . Moreover, similarly as for x_n in the proof of (22), it can be shown that if $x \in S$, then $x \in U$. Hence $S = (I-G)^{-1}(0)$ and consequently S is a compact R_{δ} .

References

- [1] [N.V. Azbieliev, Z.B. Caliuk] Н. В. Азбелев, З.Б. Цалюк, Об интегральных неравенствах, Мат. сб. 56 (1962), 325-342.
- [2] F.E. Browder, C.P. Gupta, Topological degree and nonlinear mappings of analytic type in Banach space, J. Math. Anal. Appl. 26 (1969), 390-402.
- [3] K. Goebel, Grubość zbiorów w przestrzeniach metrycznych i jej zastosowania w teorii punktów stałych, Thesis, Lublin 1970.
- [4] [М. А. Krasnoselskii, Ya. B. Rutickii] М. А. Красносельский, Я. Б. Рутицкий, Выпуклые функции и пространства Орлича, Москва 1958.
- [5] K. Kuratowski, Topologie, Warszawa 1958.
- [6] W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull.Acad. Polon. Sci. Sér. A (1932), 207-220.
- [7] W. Orlicz, S. Szufla, On some classes of nonlinear Volterra integral equations in Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 30 (1982), 239-250.
- [8] [B. N. Sadovskii] Б. Н. Садовский, Пребельно компактные и уплотняющие операторы, Успехи Мат. Наук 27 (1972), 81-146.