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where i = (tg; 1y +ves fg)y # = (i1 -+, ). This finighes the proof of
the lemma. :

From Theorem 2 and the lemma we obtain

COROLLARY. If k >>¢q/2, then & (RY < L*(R9).

Our congiderations lead to the following

THEOREM 3. If k > g/2, then formula (3) is true for f belonging to 5, (R9).
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Abstract. Thoe spaces .@;ga (a > 0) of distributions are congidered as a generaliz-
ation’ of the space Q‘;{ introduced by Z. Sadlok and Z. Tye. Some equivalent deserip-
tions ofthe clmsafﬂ_l,/u and of the convergence in 9;% are given in terms of distributional
and tempered derivatives. In particular, the spaces E'Z;,a turn out to be subspaces of
the space ;, introduced by G Sampson and 7. Zielezny, such that X’ ; ig an inductive
limit of ,@fw (p==1,2,...). A8 a consequence, & characterization of the convergence
in 2% is oblained.

1. In connection with the theory of Hermite expansions of distribu-
tiong (see [171), %. Sadlok and Z. Tyc introduced the class 9., of distribu-
tions such that 1° @, o &', 2° the Hermite coefficients a,, = (f, hy),
where h, are the Hermite functions, are uniquely defined for all dis-
tributions f e 2, (see [6]).

Distributions of the class 2, were introduced in [6] as tempered
derivatives of some order (for the definition see [1], p. 175) of functions
Dbelonging 6 somo elass 7. It is rather strange that the number 4 appears
in the definition of the class &, given in [6]. This is connected with the
choise, made in [1] and [6], of constants in the definitions of the Hermite
functions and tempered devivatives. However, the choice of constants
is meaningless for the theory of Hermite expansions.

In this paper, we consider the general case, introducing the classes
&, of functions and fﬂ;;a of distributions for arbitrary « > 0. For a = I
these classes coincide with & and Dy, vespectively, _ .

We give several characterizations of distributions belonging to 2.z,
in torms of distributional derivatives (Section 3/.). ) .

Moreover, we introduce the convergence in D, In sOME egulvalent
ways, by using distributional and tempered derivatives (Section 4).

Tt should be noted that the space D, is of type K {M,}" in the sense
of [2] and the convergence in %a coincides with the weak and strong
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convergences in K { M} for appropriately chosen functions M, (Section 5).
On the other hand, spaces _@;{,a coincide with some subspaces 7, ,

of the space o, introduced in [7], i.e., there iy an isomorphism between

9., and A, , preserving the convergences in 9, and &, . Sinco A7 is

an inductive limit of the spaces " ;,a we obtain in particular characteriz-

ations of the convergence in 7.

2. Functions and distributions considered in the sequel are assumed.
to be defined in the Buclidean space R? and complex-valued. Notation
will be a8 in [1]. Moreover, we adopt

By(w) = exp(flol’)

for f e R' and z e R%. As in [1], we define the kth tempered derivatives
of a distribution. f:
Dif = B_(BNHP, @f = BJH_ )P,

and the kth tempered integral of a locally integrable function F':
@&
SEF (@) = B_q(@) [ E,(t)F(t)dd"
0

for every ke P? and = e R% where the above integral is meant in the
sense of the kth iterated integral (see [1], p. 69).
It can easily be verified that

R af =§,

(@) Dy =D, sy = asey,

(3)  Dilaf+bg) = aDif+oDky,  dilaf+bg) = adly-+bdly,
W D= 3 () one0 dun = 3 () @nd-r,
() D) =) +24@),  af(a) =) ~281(),
(6)  SE(aF+bG) = aST -+bS"E,

(M ISk <|[s4r,

(8)  [FI<I6] implies |85 <|S¥i@H|,

9) DESER — 1

for arbitrary distributions f, g, locally integrable functions F, @, complex
numbers a, b and k, m eP? (¢f. [1], pp. 176-177).
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By induction, the following formulag can be derived from (5) and
(6) for an arbitrary distribution f and ke P%:

(10) (@) = 3 a0 Dif(x),
(X}

(11) Dif(@) = Y byatf? (@),
(¥}

(12) aif(a) = 3] oo a),
[¥)

whero tho sums in (10)-(12) extend over all indices 4,j € P such that
4,73 0and i-+j < & and the constants ay, by, ¢, ave uniquely determined.
Morcover, we have.

(1) - 3 (—1p(F) Dk )

[
for arbitrary distvibutions f, g and &k eP%

Tt should be noted that the above definitions of the tempered de-
rivatives D% and dF and the tempered integral 8% coincide for a = } with
that given in [1] and formulas (1)~(9) correspond to the respective ones
in [1] (pp. 176-~177). :

Now, denote by &, the set of all measurable functions F' in R? such
that

I_pT e THRY

for some positive number § < « (of course, such functions ¥ are locally
integrable), and denote by 9, the set of all distributions f such that

(14) f =D

for some I' e o7, and & e %

In the case a == }, we have &, = & and D = Dy, where & and
Dy are defined in [4].

Tt ig obvious that 7, is a lUnear space. The linearity of .@;,u is less ob-
vious and follows from the inequality

(15) [ pnsm@ries= [ B @F@r,

where I is u function of one variable such that FH_, € I* (B') for some
0< p< a In fact, it 7' e o/, then S7F e o7, for every m e P% by (15)
and induction (cf. [1], p. 184). Thus it f = DLF, g = D}G for I, G e &/,
and T, 1Pt then af-+bg = DMa8™"F +b8™'G) € By, Where m =
wmax(k, 1), in view of (3), (2), (9).
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Inequality. (15) for « = } is stronger than that given in Lemma 1
in [6]. We are going to sketeh the proof of (15). As in the proof in [1],
pp. 182-183, one can show that

00 oo 0 0
1312 1 2, S1G2 1 i GZ
(16) DfISaG‘ié—*zﬁ-oflGl, _il“lgrﬁ_i”

for G e I*(RY). Since E_;(x) < B_;(¢) for [{ < [#l, wo have
oo

0
1
(a7) [ m_psiri< [ (sUB_FIi< f e,
0 0
and, analogously:

(18) f !EnﬂSII’ f B_,FP,

provided FE_, e I’(R"). Inequalities (17) and (18) imply (15).
3. Distributions of the class &, can be characterized by means of
distributional derivatives of functions belonging to some clagses. Namely
TEROREM 1. The following conditions are equivalent:

) f e.@;,u (the function F in (14) can be assumed to be measurable
07 CONTINUOUS);

(ii) there exist m eP?% a positive number B < a and a measurable
(continuous) function G such that

(19) f=Gm o RE

and B_,G € I" (R for some (each) r =1 ‘

(iii) there ewist m eP? a positive number B < a and @« measurable
(continuous) function G such that (19) holds and H_pG is bounded.

Proof. Suppose that (i) bolds, i.c., f = DXF, where & e P? and I" is
a (measurable) function such that B_,I e I (R“) for gome positive number
B < a. The function F = SLF, where 1 = (1,...,1) € P% is continuous
and f = DEF, by (2) and (9).

In view of (11) and the Leibniz formula, we have

flo)y = > ay(of(@))?,
0, J=he+1

where a; are constants. Let

(20 G) = 3 oy thare,

0<m<lc+1 0
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0Of course, the function G is continuous and
(21) G = f.
By the Schwarz inequality, we get
% @
W8 (@) < 0 Ba(@)| [ 1FPB g™ | [ By [
0 0

< Al 1y (o)

and, consequontly,

(22) - ‘f "I (1) (lt"”"‘f]/AE__H (@) | ri=t43l2)
< ABE_, (),
where 1/2 == (1/2,...,1/2), 3/2 = (3/2,...,3/2) e PY,
(23) A ..___=( fllﬂlz-wwzﬁ)”z
i

and the positive numboers B, y, ¢ do not depend on o e R?oron 4, j < k-1
and y, & satisly the inequalities f-+ez<y < a.
By (20) and (22), we obtain

(24) H_,(0)|6G(w)| < ACH_,(») (»eR%

for gome constant O >0, i.e., B_ @G eL'(RY, r=1. But, by (21), this
means that (ii) is satisfied for a continuous function G and each r > 1.

Suppose that (i) holds, i.e.,, ™ = f for some m € P% and a measur-
able function ¢ such that Z_,6 e I'(R% for a positive f<a and
some # 3= 1. Clenrly, ¢ is a locally integrable function.

Lot & be such & powitive number that f--e < a and let

o
G) = [aWd (veRY.

]

Of vourse, & is continuous and

(25) G+ o f  on  R7.

Moroovoer

(26) gup ]Td,[,,_,(w)(;(r;v)'l < sup' j B_po(t) IG(‘t)ltm
) @ 0

<[ oo <

B o~ {11ty Arailn  He R
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where s = r/(r—1). Relations (25) and (26) mean that (iif) holds for a con-
tinuous function G.
Finally, suppose that condition (iii) is satisfied for gome measurable
G, which is, as a matter of fact, locally integrable. In view of (10) and
(13), we can represent f in the form
f="2 D6,

0, j<m

where @,;(%) = #’G(x) and by are constants. Pubting

(27 F= D byHy,

o<t iwm
where H;; = S™~'G;, we see that F is continuous and
(28) DHF ={,

owing to (3), (2) and (9).
We have, for arbitrary s ¥ > 0 such that f-te <y <t a,

(29) (@) < By_o(a) | [ Buup() [P0 a1
. 0

< sup|E_g ()G (B)] " - By (0)BE,_ (%)
i
where B is a positive constant which does not depend on 4,j<im or
on « € k9 Hence

(30) B_F e I*(RY,

which, together with (28), means that (14) holds for a continuous function I
The proof is thus finished.

COROLLARY 1. If fe @, , then Dif e @, , dif e Dy, [* e D,y and
of € D,y for each e P2 and each smooth function p such that H_g9 is
a bounded fumction for every ¢ >0 and i e PL In particular, f € 9;,“ implies
Pfe @;,,a for every polynomial P.

Proof. Suppose that fe @;,a. In the case of the distributions ¥
and f®), the statement of Corollary 1 is evident by the definition of the
clags 9, and Theorem 1.

If f is of the form (19) and F_,G is bounded for some positive f <
and ¢ is a function defined in the corollary, then

of = ) (=171
o<issm
and the function F_,[¢¥¢] is bounded for any y such that f<y < a

By Theorem 1 and the linearity of 2, , Wwe have ¢f € 9, . In particular,
Pfed,, for an arbitrary polynomial P.
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Finally, we get d.f € 9., by applying formula (12) and the properties
of the space @, just proved.

4. We say that f,,—0in @;,aif one of the equivalent conditions given
in the theorem below iy satisfied.
TurornM 2. Let f, e 22;,“ for m e N. The following conditions are equiv-
alent:
(i) there are & e ’Y, o positive number B < a and measurable (con-
tinwous) functions I, such that

(31) ])Z:Fn mfn on R?
and H_,I, - 0 in L*(RY;
(i) there are m e P% a positive p < a and measurable (continuous)
functions G, such that
(32) G =f, on R

and B_yG, — 0 in L' (K% for some (each) r=1;

(iii) there are m e PY, a positive p < o and comtinuous functions G,
such that (32) holds and H_nG, =X 0 in BY

(iv) there are m e PY, a positive f< o and measurable functions G,
such that (32) holds, the functions H_,&, are commonly bounded (almost
everywhere in RY and @, -0 almost everywhere in R

Proof. Suppose that (i) holds in the weaker form, i.e., for measurable
functions F,. As in the proof of the implication (i) = (ii) in Theorem 1
(of. (20)~(24)), we can deduce that there exist continmous functions 4,
such that (32) holds for some m € P? and

63) Bl <0( [T B0 (ocRY
74

for arbitrary p, e > 0 such that p-& <y < a and for some constant ¢ > 0.
Since B_p¥, -+ 0 in L*(B%), inequality (33) implies that ®_,&, ~0 in
I7(RY for each 73=1, and so (ii) holds in the stronger form.

The proof of the implication (i) = (ii) is completely analogous
to that appliod in Theovem 1 and the implication (iil) = (iv) ig obvious;
thus it remains o show that (iv) implies (i).

Suppose that condition (iv) is-Lulfilled. As in the proof of the impli-
cation (iii) = (i) in Theorem 1 (cf. (27)~(28)), one can derive from (iv)
that
(34) fn = Dgz.l.llﬂn!

where I, are continuous funetion given by the formula

(35) F,= D byHp,

03, f<m
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in which b; are constants and

Hy(o) = S0+ [2%G,(0)] (v e BY).

Moreover,

(36)  |H(@)] < Byala)| [ Balt) W1y 10D () 87~ | < BB,_.(@),

where the numbers y, & (y, & > 0; f-+& < y < a) do not depend on « e BY;

i,j<m or n e, and B >0 is a common upper bound of the functions

H_4(1)1G,,(4)| (for almost all ¢ e RY).
By (36) and the Iebesgue theorem,
N —» O

(37) @) -0 as

almost uniformly in R? for all 4, j < m. Because of (36) and (37), we can
again apply the Lebesgue theorem. Consequently,

[\E B, >0 a5 n-—> oo
RZ

for all 4,j < m, and thus

(38) B_F,~0 in I*R%,

aceording to (35).

Relations (34) and (38) yield condition (i) for continuous functions
. and this completes the proof.

In a similar way to that applied in the proof of Corollary 1, the
following result can be obtained:

COROLLARY 2. If f, =0 in 9, , then DEf, —0, dif, >0, fP~0
and ¢f, - 0 in @Mu for each k e P? and each smooth Sfunction ¢ such that
E_.0% is a bounded function for every >0 and i €P% In partioular,
fo =0 in B, implies Pf, -0 in 2 for an arbitrary polynomial P.

5. Let M,(w) = expla(l—1/p)@|*] for # e R%. It is clear that tho
functions M, are continuous on R? and

1< M) < (peXN, weRY.

Moreover, the sequence {I,} fulfils conditions (M), (W), (), formulated
in [2], pp. 87 and 111, and condition (N') from [4]. It appears that the
dual of the space K{M,}, introduced in [2], p. 86, coincides with @;ﬂ.
More precisely:
TemorEM 3. Distributions of D, coincide with eloments of IC{M,}
and the convergence in @x 8 eqmmlem to the weak (strong) conwvergence
in E{M,} with M, = H,,_y,, for p e N,

F

M, (8) < oo

icm

On some spaces of distributions 497

Theorem 3 is a consequence of Theorems 1 and 2 and of characteriz-
ations of elements of K{M,}' and of the convergence in K {IM,}, given
in [4] (ef. [2], p. 113 and [5]).

It follows from Theorem 1 that the space 2, is a subspace of the
space 7, of all distributions f of the form f = (E )™, where m e P9,
p eN and I' is a measurable (continuous) bounded function. The space
A, and, more generally, the space 2, with p >1 were introduced
in [7].

It can be shown (ef. Theorems 1 and 3) that elements of @-’% are
linear continucus functionaly on the space 7, , of all smooth functions
guch that

Prplep) = sup (Bg() | (@)]) < 0

for any positive f < « and & e P? endowed with the pseudonorms Pr.ps

and the convergences in @:#a and in o, , are equivalent. It is worth noting
that o, is an inductive limit of the spaces 3, (p =1,2,...).

Ag a congequence, we obtain the following characterization of the
convergence in #g:

TuroneM 4. Let f, € 4y for n e N. The following conditions wre equiv-
alent:

(1) f. — 0 weakly (strongly) in o,

(ii) there ewist m e P?% p e N and continuous functions @, such that
(32) holds and H_,G, — 0 in L'(R?) for some (each) r, 1 <r << oo;

(iil) there ewist m ePY, p e N and measurable functions G, such that
(32) holds, the functions B_,G, are commonly bounded (almost everywhere
in RY and @, — 0 almost everywhere in R

Remark. Note that similar characterizations to those given in The-
orem. 4 can be formulated for the convergence in 7, for an arbitrary
s>=1 (seo [3] and [7]), in view of Corollary in [4].
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Abstract, Tho characterization of elements of the dual of the space K{M,}
given by I. M. Gelfand and G. I. Shilov, and also the characterization of the conver-
gence in K {Mp}’ given by L. Kitchens and C. Swartz aresimplified under an additional
condition on the sequence {IM,}. In particular, a simple description of the convergence
in various spaccs of distributions is obtained.

1. The space K {M,}, introduced in [2] by means of a non-decreasing
sequence of extended real-valued functions A, embraces various spaces
of test functions congidered in the theory of distributions. On the other
hand, the space K {M,}' (the dual of K{M,}) embraces various types
of gpaces of distributions of finite order.

In [2] (p. 113) we find a representation of elements of K {M,}' under
conditions (M), (N), (P), imposed on the sequence {I,}. This representa-
tion can be written in the form of a finite sum of derivatives (in a general-
ized sense) of functions which become bounded after dividing by a fune-
tion of the sequence {IM,}. In terms of such representations, the con-
vergence in K {M,} is characterized in [5] under the same conditions
on {M,}.

However, in all known particular cases of the space IC{M,}', e.g.,
in the spaces @, & (see [T1), #p (see [61), H, (see [8]), Dy, (see [4]),
clements can bo desoribed in a simpler way by using one derivative of
finite order. Similarly, the convergence in &' (see [1], p. 169), in @_’m
and in 47 (seo [4]) can be expressed by means of single distributional
derivatives. Therefore the natural question arises when elemoents of K { M}’
and the convergence in JC{M,}' can be characterized in that simplified
way. '

In this note we give an additional condition, constituting a modi-
fication of (N) (denoted by (N’)), which guarantees such characteriza-
tions. Note that the system of conditions (M), (NV), (N'), (P) is a little
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