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Absteact. The uso of an elementary property of Dini derivates and a simple lemma
of Zygmund rosults in a “real variable” proof of the existence of the Riemann integral
of a hounded funébion that goos through even when the classical hypothesis of a.e.
continuity is weakened tio the mere existence a.e. of a limit from either side.

§1. The real variable approach to integrability questions. One appealing
way to establish the existence of the Riemann integral of a continuous
function f on a finite interval [, d] is by introducing the function

Fa) mf_f(%)ol.u—— fj(u)du (agm‘g b).

Direct estimation of the difference quotients reveals that the derivative
of I exists throughout (@, b) and vanishes identically there. Since F is
continuous on the closed interval, the mean-value theorem of differential
caloulus implies that I' must be constant. Hence

) b .
0 = F(a) =P = [ flwydu— [ fu)du,
o o .
and the integrability of f follows,

An attractive feature of this proof is that it shows how a basic theorem
of the inlegral caleulus can be proved by using techniques of the differential
onleulus. Another desirable agpect of the proof is thatb it aveids any need
to invoke thoe uniform continuity of the function f, since only the local
behavior of f comoes into play. ‘ ‘

This last feature. caught the attention of Hans Rademacher and
led him to examine the possibility of proving along these lines the more
general existence theorem of Lebesgue, where f is only assumed to be
bounded and continuous a.e., by using more refined real variable tools.
¥or this purpose, in his paper [5], he employed the Dini derivates of ¥,
together with & mean-value theorem for them that had been developed
by G C. and W. H. Young. He found, however, that his method would
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not yield directly the existence of the integral under Lebesgue’s condition,
and he was obliged to interpose an equivalent, but more complicated
form of the integrability condition, due to du Bois—Ryemond. Having
established the existence theorem under this hypothesig, he then deduced
the Lebesgue result, just as Lebesgue had done, by use of the Heine-
Borel theorem.

Of course, Rademacher recognized that this last step was “essentially
equivalent” to the use of the uniform continuity of f, which he had aimed
to avoid. His paper thus left open the question as to wheother, by some
variant of his method, it might be possible to arrive at a “real variable”
proof of Lebesgue’s theorem which makes no appeal to the Eeine-Borel
theorem.

The goal of the present paper is to give just such a proof. While we
continue to employ Dini derivates, we abandon the mean-value theorem
and uge in its place a result of Zygmund which has become basic in the
study of differential inequalities. Pursuing this approach, we have been
led to an unexpected discovery: the technique can be made to yield an
existence theorem more general than Lebesgue’s! By consgidering tho
relationship that must hold between two opposite Dini derivates, we
have found that the Riemann integral will continue to exist for functions
which are bounded and merely possess a.e. a limif from one side or the
other: the side need not always be the same and may vary from point
to point.

In this form, our theorem not only includes L.ebesgue’s, but also
the little known existence theorems of Dini [1], p. 246 et seq., and Pagch
[4], who weakened du Bois—Reymond’s condition by employing the
notion of one-sided oscillation of a function at & point (however, the side
does not vary with the point). It also includes an analogous weakening
-of Lebesgue’s condition, published in [2], where, agsdin, limits are always
taken on the same side.

Once our theorem has been established, we can, of course, conclude
that the conditions that we have imposed upon f must make it continunons
a.e., since that is mecessary for integrability. The same conclusion could
have been drawn, independently of any integrability considerations,
from a remarkable theorem of W. H. Young [9] (that can be found also
in Saks [6], (ii), p. 261) which implies that there are at most eountably
many points where a real function can have a limit from one side or the
other, without being continuous at the point. This means that the truth
of out theorem could have been inferred from Lebesgue’s. It is odd that
this possibility does not seem to have been noted previously.

 §2. Details of the methed. We begin by recalling two preliminary
propositions, both of which are entirely elementary. To fix the notation,
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wo shall denote the lower left Dini derivate by D_ and the upper right
ono hy Dt.
Tho first result is known as “Zygmund’s Lemma” (v. [7]).
ProrositionN 1. Let I be a continuous, real-valued function on the

fimite interval [a, b, a/nt{ suppose that the image under T of the sel where

D_F(x) =0 holds has no interior points. Then F is monotonic, non-in-
creasing on [a, D]

A simple proof of this lemma can be found in [7], p. 10.

The second result iy & classical theorem of G. O. Young [8]. As the
reader will geo from, the short proof given in Saks [6], p. 261, this prop-
opition is clementary and ought not be to confounded with the other,
decper results of this type that are associated, in the case of continuous
(fn etions, with the name of Denjoy. :

ProvosrrioN 2. The set of points @ where o real-valued function I has
D_F(w) > DI (w) is at most countable.

We now turn to our main result.

Treiornm. Let f be a bounded, real-valued function on the finite interval
[a, b which has, at almost every point, a limat from one side or the other.
Then f de: Riemann integrable on [a,b]. :

Proof. Take any 4 > 0 and set, for each o in [a, b],

y(w) = [ fu)du— J fu)an—-33(0—a).

Note that, because of the boundedness of f, F; is Lipschitzian in a.
Suppose that f(--0) exists at . Then, for all 4 in some interval
@, ®-}-h), b >0, there holds |f(w-0)—f(u)| < i. Hence
ath @+h

Iy(w--b) —I () ;:f f(u)du—J F(u) du—34hk

a [
& [f(@++0)--A1h —[fl@40) —A]h —34h == —2h.
Sinoe this also holds for any smaller velue of b >0, we get that DI, (n)
& A< 0. Th then follows from Prop. 2 that D_T(x) <0 at all but
countably many of the points where f(o--0) exists.

A similar estimate, with b < 0, ghows divectly that D_TF(x) <0
at all points where f(w~0) exists.

Accordingly, the set where D_I;z 0 holds is & null set, and con-
sequently, o s its fmago under F;, since I, is Lipschitzian, Zygmun'd’s
Lemma thus applios to F, and yields that F; is monotonic non-inereasing
on [a,b]. In particular, I",(0) < ¥i(a) =0, 80 that

2 b
[ f(w)du— [ flw)au < 32(b—a).
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Since A>0 is arbitrary, it follows that
2 b
[ flwydu< [ flu)du.

But the opposite inequality is trivial, hence f is integrable on [a, b].
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Abstract. 'Wo obtain equiconvorgence results for polynomials interpolating at
a subsed of the roots of unity and best approximating f in the lysense on the
complementary sot.

1. Yotroduction. Let 4, (L < p < co) denote the class of functions
e

f(2) analytic in |2| < o but notin |2] < g. If f(2) = 3 a2, thenlet p,,_, (2; f)
§=0

denote the Lagrange polynomial which interpolates f in the m roots of

M= ],
unity. If 8, (23 ) = 3, a#’, then a beautiful theorem of Walsh [5] states
that =0

(1.1) U Py (25 f) =Bma (25} = 0 for o] < g%,

the convergence being uniform and geometric in |#| < v < ¢* Moreover
the regult iy hest possible in the sense that for every 2 with |¢| = o?, there
is an fed, for which (1.1) fails.

Recently extonsions of this theorem have been made in various
directions. We refer the reader to a survey article by R. 8. Varga [4]
for further references. Mere we generalize a result of Rivlin [3] which
extends Walsh’s theorem in the ly-senge, It m == ng o and if p,, . (¢; f) € =,
minimizes

=1,
(1.2) 21&(0»’“#)4@’“)1% o =1
v 0 .
over all polynomials P, € m, then Rivlin [3] showed thab
(1.3) lim (P (%3 f)—=Sale; I} =0 for  le| <@,
H=h0O :

the convergence being uniform and geometric in ¢l < v < ¢**2. Moreover,
the result is best possible in the same sense as described above.
Tn Section 2, we obtain equiconvergence regults for pplynommls
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