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On the fixed point index of non-compact mappings
by
S. WERENSKI (Radom)

Abstract. We construct the topological index for a special class of mappings, called
admissible with respect to a filtration. The construction is an extension of the method given by
Browder and Petryshyn [1] for approximative proper mappings (A-proper mappings), but the
family of linear projections is not considered. Moreover, the class of admissible mappings
contains compact mappings and is not contained in the class of A-proper mappings.

We also prove some other results including an analogue of the classical Schauder lixed
point theorem (see Theorems 9, 10).

Introduction. In 1968 F. E. Browder and W. V. Petryshyn published the
theory of degree for mappings called A-proper mappings. Namely, let X, Y be
Banach spaces and (X,), (¥,) be sequences of linear subspaces of X, Y
respectively, such that dimX,=n, X, < X,.,, UX, is dense in X, and
analogously for (Y,). Moreover, linear projections Q,: Y— Y, are considered.
A mapping f: X » G — Yis called A-proper if Q,,J.f(x,,j) —a, X, €X, implies
that there exists a subsequence of (x,,j) converging to an element of X.

In the present paper linear projections are not considered. The index is
defined for “admissible” mappings, ie. satisfying the condition

lim sup d(f(x), X,)=0,

n=+ o0 xeGnX,
where d denotes the distance of the point f(x) from the subspace X,, and
J: X oG — X. The class of admissible mappings contains compact mappings
and is not contained in the class of A-proper mappings. '

Also the fixed point theorem for admissible mappings is proved.

1. DerFiNiTION. Let X be a Banach space and (X,) be a sequence of its
oriented subspaces such that

(a) dim X, = n for all natural n,
(b) Xn < Xn+15
) UX,=X.

neN
The sequence (X,) is called a filtration of X.
ProrosiTioN. A Banach space with filtration (X,) is a separable space.

ExampLE. The space P of sequences (x;) such that le,‘l" < oo with the
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dorm ||(x)ll = (¥ [x")*” has the filtration (X,), where X, is the subspace
generated by ey, e,, ..., e, ¢ =(dy), o is the Kronecker’s symbol.

2. DerFiNtTioN. Let X be a Banach space with a filtration (X,), G < X.
A continuous mapping f: G — X is called admissible with respect to filtration
(X,), or shortly A-mapping, if ‘
1) lim supd(f(x), X,) =0,

n—o xeG,
where G, = GnX, and the distance d(a, B) = infl]w—b”.

i 3. LeMMA. Let X, (X,) be as above, G CX and let 2 G - X be con-
tlnuous Then f is an A-mapping if and only if
@ AV A Vi G=X,  supllf 0)~f ()l <e,
e>0 ng n2ng [y xeGyy
where f, are continuous functions.
Proof The implication (2)=-(1) is easy to prove. Let f be an 4-
mapping. Set an ¢ > 0. It follows from (1) that for n > n, we have

@3) supd(f(x), X,) <e
xeGy

Let n> ny be fixed and let V=

radius ¢ and centre p.
By the paracompactness of X for the cover (B pex, Of V there exists a

{ B,, where B, = B(p, &) are balls with

peXy

'locally finite ‘partition of wnity (¢,)es inscribed mto this cover.

i Pick a p(s)e X, for every seS such that ¢
@ Julx) = Z @ (f()pls)  for

1{(0, 1]) By and define
xeG,.

The mapping f,: G, X, is well-defined and continuous, since the sum is
locally finite and from (3) we have f (x)e Vfor xeG, (hence the superposition

is correct).
' To complete the proof it is enough to show
; If-fixll<e for xeG,.
Let xeG,. We have '

I/ C)=fa0)ll < Z(ﬂs(f(x))llj(x) Pl

and if ¢ (f(x))> 0, then f(x)eB s> hence [|f (x)—p(s)ll <& and so
ILf ()£, () < Z o (f () =e.

4. DeFINITION. (a) Let X be a Banach space with a filtration (X,), and C
an open bounded subset of X. Assume that
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(5) fi G>X is an A-mapping, a(f)=
where 3G = G\G denotes the boundary of G.

The set of all mappings satisfying condition (5) we denote by 4(G, X) or
shortly 4.

(b) Let fed(G, X). Fixane, 0 <¢ <§a(f) and let (f,) be a sequence of
finite-dimensional continuous mappings f,: G, — X, satisfying

VoA supllf(0—£( <e.

"o n=ng xXeGy

inf [lx—f(x)|l > O,
x€0G

We define the index of f on G to be the set of finite or infinite numbers
m such that m = lim indhs( Jus Guy)» Where ( fu) is a subsequence of (f,) and

ind, ¢ denotes the Leray—Schauder finite-dimensional fixed point index (see
(5], [6D. .
Index ind; g ( f"x’ G,) is well-defined since f,(x) # x for xedG, (if f,(x)

=x for xedG, < 0G, then ||f(x)—x| = ||f(x)—-f,,(x)ll <e<ia(f).
We denote the index by Ind(f, G).

S. LEMMA. The index Ind(f, G) is independent of the choice of sequence
(/) and & (0 <& <}a(f).

Proof. Let 0 <e <%a(f), 0<&<ia(f) and let (), (f,) satisfy the
condmons

/\ Supilf(X)—f,.(X)ll <e,

n,x"

é\ﬂigép I1f () —Falll <.
Let ny
nzn,
! H,(x, 1) = tf (x)+(1—1) £, (),

It is easy to see that the homotopy lacks fixed points on 9G, and from
the homotopy property of the Leray-Schauder index we have

ind s(f, Gy) = indL,S(j;s G,).

6. DeriNiTION. A mapping H: G x [0, 1]~ X is said to be an admissible
homotopy between f and g, f, ged (G, X), if it satisfies the conditions:

= max (N,N). Construct the segment homotopy between f» and f, for

(x, DeG,x[0, 1].

(H1) lim sup d(H(x, 1, X,)=0,
! n—w (x,1)eG, x[0,1]
(H2) ay = inf  ||H(x, t)—x|| >0
(x,1)e0G x[0,1}
and H(x, 0) =f(x), H(x, 1) =g(x). We use the notation H: f~g

7. Lemma. If 2 G — X is compact (G — an open bounded subset of X),
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ie. the set f(G) is relatively compact, f(x) # x for x€dG, then fe A(G, X) and

Ind(f, G) = {ind 5(f, G)}.

Proof. The mapping f belong to 4(G, X) since a(f) > 0 (see [6]) and
by Lemma 3 is admissible. The assertion about the index follows from the
equality

ind 5(f,, G,) =ind s(f, G) for f, as above.

8. ProrerTIES. Let fe (G, X) (G open bounded subset of X).
(a) If f(x) = x0eG for xe@, then Ind(f, G) = {1}.

(b) If the set (I—f)(G) is closed (I(x)=x), Ind(f, G) # {0}, then there
exists an xeG such that f(x) = x.
©If G= G‘uGZ G'NG* =

i=1,2, then
Ind(f, G)

with equality holding if either Ind(f, G') or Ind(f, G?) is a singleton (finite)
integer.
We define here +o00—ow0 =2’

O, fe d(G', X), G' open bounded sets for

c Ind(f, G)+Ind(f, G (the algebraic sum)

=ZU{+0ow, —w}.

(d) If f,g€4(G, X) and H: f=~ g, then Ind(f, G) =Ind(y, G
Proof. (a) follows from Lemma 7 and the compactness of a fixed

mapping.
(b) Let x—f(x) # 0 for every xeG. We have & = mfllx——f(x)“ > 0 since

0¢(I~f)(G) and (I—-1)(G) is closed The mapping f,, satlsfymg |1 () =1 ()|
<¢/2, lacks fixed points on G,. Thus we have ind 5(f,, G,) =0 and so
Ind(f, G) = {0}.

() Let melnd(f, G),

+ind(f,, G2)].
We choose appropriate subsequences convergent to a finite or infinite
limit. Then we have

m = lim ind; s (f,, Gy) = lim lind(f,. G
k= o0 ko0

melnd(f, G')+Ind(f, G¥.

The second part is easy to prove.
(d) From (H1) we may construct, as in the proof of Lemma 3, mappings

H,: G,x[0, 1]~ X, such that for fixed ¢ > 0 (0 < ¢ <+4ay) and n > ny we
have

(6) |H (x, f)~H,(x, )l <& for every (x, )eG,x [0, 1].

By (H2) and (6) we obtain

(7) * Hy(x, 1) # x  for every (x, t)edG, x [0, 1],
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and so, by the homotopy property, 1ndLs( (s

1), G,) is independent of ¢.
Hence the theorem follows.

9. THEOREM. Let (X, (X,)) be a Banach space with a filtration, and G # @
an open bounded subset of X, 0eG. Moreover, let f: G — X be an admissible
mapping satisfying the conditions:

(A A I-)(@G)  closed,

te[0,1)

A) A

(x.0efG X (0.1)

(I =f)(G) closed, f(8G) bounded,

Then there exists an xeG such that f(x) = x.

Remark. Condition (A2) holds if G is convex and f(9G) = G.

Proof of the theorem. If there exists a fixed point on G, then the
theorem is true. Suppose f lacks fixed points on 8G. We have a(f) > O since
(I-f)(9G) is closed, and so fed(G, X).

The homotopy H(x, t) = tf (x), (x, )€ G x [0, 1], satisfies (H1). We shall
prove (H2). Assume that (H2) is false. Then there exists a sequence of points
(xn; t)€0G x[0, 1] and p such that

(8 />\ ”xn_tnf(xn)” = Hx,,—H(x,,, tn)” < 1/7!. o

Hence for t, —to€[0, 1] we have
g = to.f Ol < It =l 1Lf Gl + X1, f eyl 2 0

since f(8G) is bounded. Therefore Oe(I—t, f)(0G), because (I—t, )(3G) is
closed and x,, —to f(x,) =2 0.

And this contradicts (A2) for t,€(0,1) or 0eG for t, =0 or f(x) % x on
0G for ty =1. The proof of (H2) is completed.

We. have. the admissible homotopy H: f=~g, where g(x)=0 on G.
Hence by Properties 8 (a), (b), (d) f has a fixed point on G.

10. CoroLLARY. If an admissible mapping f: G — X satisfies (A2) and
(A3) A f—tl is proper, f(0G) is bounded, then f has a fixed point.
21
(The mapping g is called proper iff for every compact set K the set
g~ '(K) is compact.)

Proof. I—tf are proper for t=[0, 1] since f—tI are proper; hence they
are clased. Therefore, by Theorem 9, f/ has a fixed point.
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Connected subgroups of muclear spaces
by
W. BANASZCZYK (Léd%) and J. GRABOWSKI (Warszawa)

Abstract. It is proved that closed and connected subgroups of nuclear spaces are real
linear subspaces.

1. It is well known that a closed subgroup of a' Lie group is a Lie
subgroup. In the simplest linear case this amounts to the elementary fact that
every closed and connected subgroup of R” is its linear subspace. However,
considering infinite-dimensional topological linear spaces we encounter essen-
tial differences. For example, the subset of all integer-valued functions in
L?(0,1) is a closed and connected subgroup of I?(0,1) but it fails to
contain any line.

Our aim in this note is to show that in the case of nuclear spaces the
situation is analogous to the finite-dimensional case, namely:

Tueorem 1. Closed and connected subgroups of nuclear spaces are real
linear subspaces.

This theorem substanties a conjecture of W. Wojtynski and provides one
more example that nuclear spaces are closer- to finite-dimensional spaces than
normed spaces are.

After proving the theorem we have found that it can be derived also
from the results of the first named author concerning unitary representations
of groups which are quotiens of nuclear spaces by its closed subgroups.

We are indebted to many persons for stimulating discussions, especially
to T. Dobrowolski, S. Kwapief,, W. Wojtyriski and T. Wolniewicz.

2. All linear spaces we shall deal in the sequel are assumed to be real.
We shall obtain Theorem 1 as a consequence of the following

THEOREM 2. Let G be a subgroup of a real nuclear space X such that for
each neighbourhood U of zero in X span (GnU) is dense in X. Then G is
dense in X.

In fact, assuming that Theorem 2 holds true let G be a closed connected
subgroup of a nuclear space X, let X; =cl(spanG) and let U be a neigh-
bourhood of 0 in X.

The set GNU generates G, hence span(GnU) is dense in X, . Then, by
Theorem 2, G is dense in X;, whence G =clG = X|,.
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