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Strong differentiability with respect to product measures
by

O. N. CAPRI and N, A, FAVA (Buenos Aires, Argentina)

Abstract. We study the strong diferentiability of integrals with respect to measures which
are products of Radon measures on the real line, thus generalizing a classical result on the
subject.

1. Introduction and statement of results. All functions considered in this
note are assumed to have compact support: differentiability being a local
problem, this assumption represents no serious restriction here.

QOur point of departure is the strong maximal operator S defined for
each measurable function f on R* by means of the formula

M Sf (x) = sup 1 fl./'(y)l dy,
Iax |1|
I

where vertical bars outside the integral stand for Lebesgue measure and the
supremum is taken over the set of all intervals (cells with faces parallel to the
axes) containing the point x.

For several years after the work of Jessen, Marcinkiewicz and Zygmund
[7] and its generalization by Zygmund [9], the subject of strong differ-
entiability of integrals remained almost forgotten. This may be due to the
fact that the solution attained by those authors looks fairly complete in the
context of Lebesgue measure, in view of the negative results concerning the
basis formed by all rectangles (rotated intervals) in the plane ([6], p. 226).
However, in the beginning of the seventies several proofs appeared ([1], [2]
and [5]) of the so-called strong maximal theorem, which we state in the
following form: there exists a finite constant ¢ such that for all functions
Sfrand all positive numbers A we have the inequality

' I\ 1
@ |18/ > 42}140?# (log"‘ ‘1') dx.

This theorem allowed us to give a concise proof of the now classical theorem
of Jessen, Marcinkiewicz and Zygmund.
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The subject seems to have attracted much attention since that time as
attested by the work of de Guzmdn [6], and what we have presently in mind
is a generalization of the above mentioned theorem.

The expression Radon measure is used in the sequel to mean a positive
Borel measure u on R such that p(K) < co if K is compact; by 3(E) we
denote the diameter of the set E. Provisionally we assume that all intervals 1
are open intervals and that u(I) > O for every non-void I.

Letting I be an interval containing the point x, our purpose in this note
is to prove that the limit

\ 1
¥ i, 5
1

equals f(x) almost everywhere with respect to p, provided that
L=® ... Opy

is the product of n Radon measures 4 on the real line R! and J'is a function
satisfying

@ 11 00g* £y du < oo

In view of the fact that f has compact support, the last condition amounts
to saying that the integral

ANt
f%—l <log+ Lg—') du

is finite for every positive number A.

The existence of the limit (3) has been studied by R. Fefferman [3] in
the case of an absolutely continuous measure satisfying an additional re-
quirement, so that our present theorem represents a generalization of the
classical result in a different direction.

2. The maximal inequality in R'. In this section we consider a Radon
measure i on the real line and for each measurable function f on R', we
consider the maximal operator M defined by

1
%) Mf (1) = su -——mf du,
11 (1) up o [/l dp
I
the supremum being taken over the set of all linear (one dimensional)

inte.r\'Ials I containing the real number . Next we prove that for every
positive number A, we have the inequality
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For this purpose we need the following covering lemma:

Lemma 1. From every finite family s of open intervals in the real line, we
can select a disjoint family (I), j=1, ..., N} such that

wU) <2y ull).

J=1 .
The proof of the lemma is (save for some obvious modification) the
same as the one given in [4], p. 106.
In order to prove (6), take an arbitrary compact set K = {Mf> A}. For
each point te K there exists an interval I containing t such that

1 ,
) ) jlflduﬂ-

Hence, there is a finite family &/ of open intervals covering K, each of
whose members satisfies (7) and, according to Lemma 1, we can select a
disjoint family (I), j == 1, ..., N) of members of .« such that

N N o '. 2 ,
pEKYS2Y pd)<2y Jlfldusw fljldu,
= J,l/ll P

J

and the proof of (6) is complete, since u is a Radon measure.

3. The strong maximal inequality, Let now pu=p,® ... ®pu, be the
product of n Radon measures g on the real line. For each measurable
function f on R", we define the strong maximal operator § by the equation

. 1
S (x) = Sl\j){? ) j|f| du, '
T

the supremum being taken over the set of all intervals I containing the point
X = (%X, ..., X,). Then S is lower semicontinuous and the following theorem
holds:

TuroreM 1 (strong maximal inequality). There exists a finite constant C

depending only on the dimension n such that for every positive number ) we
have the inequality

g e
\ p{Sf>4r}<C j%«l <log*' %«*) du. i
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Proof. We consider the “partial” one dimensional operators M, G

=1, ..\, n) defined for each measurable function /' on R” by the formulae
M; f(x) = su L flf(x X t, X, X))l diy(t)
X) = e 3 e nuy Nfgy by A s ey Xp)l dLLL),
i m}? ) 1 1 i+ 1 I
I

the supremum being taken over the set of all linear intervals 1 containing the
i-th coordinate of the point x. The proof that the functions M, f are
measurable will be given in an appendix at the end of the note, in order not
to interrupt the main line of reasoning here.

Now, from Fubini’s theorem it follows that each of the Ms is a
maximal operator in the sense of the definition given in [2] and also that

@®) <M, ..M f

On the other hand we know [2], Theorem 1, p. 276, that there exists a
finite constant C depending only on # such that

almost everywhere.

©)

- W (1o I
uiM, .. .M, f>4}<C 5 log T du,

and our present theorem follows from (8) and (9).
As a consequence of the preceding, we can state the following theorem.

THEOREM 2. Assuming that f satisfies (4) and letting I be any interval
containing the point x, we have

(10)

i 1 .
,(1})130 il flf W)=/ X du(y) =0
1

almost everywhere with respect to p.
Proof. For each function f, we write

Lf () = limsup — f OV =F (N dio)
an-o () J
Then Lis a sublinear. operator which satisfies
() Lf(x) < Sf(x)+]f (%) and
(b) Lf =0 for continuous f.
From (a) we get the inequality

© ui{Lf> 8l < C J‘I_{I <10g"' 'ﬁ')" 1 0

where C is. another constant depending only on the dimension.
Assuming ﬁxfst that f'is a simple function, by the regularity of u we can

e ©
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assert” the existence of a uniformly bounded sequence (f;) of continuous
functions with uniformly bounded supports, converging to f almost every-
where. Since Lf'< L(f—f)+Lf, = L(f~f), we will have

and the last integral tends to zero as k— oo, so that Lf=0 almost
everywhere when [ is a simple function.

Assuming that f satislies (4), we consider a sequence of simple functions
(f,) converging pointwise to [ and such that |f—f| <|f] (k=1,2,..). Now
from Lebesgue’s dominated convergence theorem, it follows as before that Lf
=0 almost everywhere, and the proof is complete.

4. Final remarks. 1° Our assumption that the support of u is all of R"
can be dispensed with if we agree to leave the limits (3) and (10) undefined
outside the support of yu, that is, within a set of measure zero.

2° Letting J be any (not necessarily open) interval of positive measure,
we consider a decreasing sequence of open intervals (I,) whose intersection
equals J. Then for any integrable f, we will have

J [fldu.

Tk
This shows that the values of the maximal functions we have defined are not
affected by considering the set of all (not just the open) intervals.

3° Theorem 2 holds true for any function f° whose support is not
bounded, provided only that |f|(log™ |f])""! is locally integrable with respect
to u.

1 ‘ = i ”‘1‘““
& ,j \fldp = lim s

Appendix

Assuming for simplicity that n = 2, let 4 be a Radon measure on R'. We
prove that for every non-negative Borel function f on R? the function
xlh

f St yydud),

Xl

My f 6, )= b To p(x—a, x+b)

where the integral extends over the open interval (x—a, x-+b), is also a
Borel measurable function, The argument here represents a substantial
modification of the one given by S. Saks [8], Chapter IV, § 13.

First we note that u(x~a, x-+b) is a lower semicontinuous function of
x. Secondly, if we denote by J the interval (—b, a), then the integral of the
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preceding formula may be written in the form

Gap (X, y) = I X (x—=1) f(t, y)du().

As a function of x, r and y, the integrand in this formula is a non-
negative Borel function on R®. Hence, by Fubini’s theorem it follows that g,,
is a Borel function. Finally we note that '

M, f(x,y) = su wﬁﬁi(fciw)i)ﬁ ,,,,,

s >0 y(x—~r, X+S),

the supremum being taken over the set of all pairs of positive rational
numbers » and s, '
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Radial convolutors on free groups
by
TADEUSZ PYTLIK (Wroclaw)

Abstract. Let ¢ be a free group on finitely many generators and let 1 < p < 2. We show
that any radial function in the Lorentz space /"' (G) defines a bounded convolution operator
on 1(G).

Let G be a free group on k generators, Every element x in G is a word
whose letters are generators or their inverses. We denote by |x| the length of
the word x, ie. the number of letters of the word x in its reduced form.

A complex valued function f on the group G is called radial if it depends
only on the length of a word, that is, if /'(x) = f(y) whenever |x| = |y|. The
subspace of all radial functions in the:Lorentz space 4(G), 1 < p, g <€ 0,
will be denoted by B24(G). Also E(G) = I'P(G).

A bounded operator T on F(G), 1 < p < o0, is called a convolutor if it
commutes with all right translations. Since the characteristic function y, of
the identity element in G belongs to P(G), one may consider T as con-
volution by the function f= T(xo), so that T=A(f), where 1 is the le_ft
regular representation of G on I’(G). We call T a radial convolutor if T(y,) is
a radial function. Let C?(G) denote the Banach algebra of all convolutors on
P(G) and C?(G) the subset of radial convolutors. It was shown in [2] that
CP(G) is a maximal commutative subalgebra in CP(G) and that CI(G)
=CLG) if 1/p+1/q=1.

Here we want to show that

PYG) « CHG) = IP(G) for 1<p<2,

ie. that C2(G) “almost” coincide with (G) (no result of this type is possible
for p=2). We also prove that the necessary and sufficient condition for. a
non-negative radial function to be in C¥#(G) is to be in #'(G). This imp!les
that '(G) is a convolution algebra for p <2 and that the inclusion
CP(G) = E(G) is proper for all p> 1.

Let G,,, m=0, 1, 2, ..., be the set of all words in G of length m and y,,
the characteristic function of G,. Then any radial function f on G has the
form

o

f= Z Oy X+

m=0
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