212

M. E. Gomez

References

- [1] N. A. Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), 271-288.
- [2] -, E. A. Gatto and C. Gutiérrez, On the strong maximal function and Zygmund's class L(log+L)ⁿ, ibidem 69 (1980), 155-158.
- [3] M. E. Gomez, Note on the strong maximal operator, ibidem 76 (1983), 225-248.
- [4] M. de Guzmán, Differentiation of integrals in R", Springer Verlag, vol. 481.

Received September 10, 1982

(1799)

STUDIA MATHEMATICA, T. LXXVIII (1984)

The generalization of Cellina's Fixed Point Theorem

by

ANDRZEJ FRYSZKOWSKI (Warszawa)*

Abstract. Let $L^1(T,Z)$ be the Banach space of integrable functions from a compact space T into a Banach space Z. A set $K \subset L^1(T,Z)$ is called decomposable if, for every $u,v \in K$ and measurable $A \subset T$, $u \cdot \chi_A + v \cdot \chi_{T \setminus A} \in K$. In this note we prove that each compact mapping from a closed and decomposable subset $K \subset L^1(T,Z)$ into itself has a fixed point.

§1. Introduction. In paper [2] Cellina proved that the set K_P of all functions integrable on a closed interval [a, b] whose values belong to a fixed closed subset P of a Euclidean space R^m has a fixed point property; this means that each compact mapping from K_P into itself has a fixed point. The set K_P can be nonconvex; thus the result of Cellina is interesting when confronted with Schauder's Fixed Point Theorem, where the assumption of convexity is essential (see [3], [8]).

In this note we generalize the above result to an arbitrary closed and decomposable subset K of the space of integrable functions. The decomposability of a set K means that for each $u, v \in K$ and A measurable $u \cdot \chi_A + v \cdot \chi_{(a,b) \setminus A} \in K$, where χ_A stands for the characteristic function of A.

Obviously, the set K_P in the theorem of Cellina is decomposable.

This generalization is quite easy to obtain if we apply a certain theorem on continuous selections proved by the author in [5]. The theorem is an abstract version of Antosiewicz and Cellina's Selection Theorem [1] and can also be applied to the problem of the existence of solutions for the functional-differential inclusion $\dot{x}(t) \in F(t, x(\cdot))$ (see [6]). The required facts about the selections are given in §3. We formulate the main results in §2 and prove it in §4.

§ 2. The main result. Let T be a compact topological space with a σ -field \mathfrak{M} of measurable subsets of T given by a nonnegative, regular Borel measure dt and let Z be a separable Banach space with norm $|\cdot|$. By $L^1(T, Z)$ we denote the Banach space of functions $u: T \to Z$, integrable in the Bochner sense, with norm $||u|| = \int |u(t)| dt$.

^{*} Current address: Institute of Mathematics, Technical University of Warsaw, 00-661 Warsaw, Pl. Jedności Rob. 1, Poland.

We call a set $K \subset L^1(T, Z)$ decomposable if $u \cdot \chi_A + v \cdot \chi_{T \setminus A} \in K$ for every $u, v \in K$ and $A \in \mathfrak{M}$. The family of all nonempty closed and decomposable subsets of $L^1(T, Z)$ we denote by $d(L^1)$.

From this moment let K be a fixed set from $d(L^1)$. The main result is the following:

Theorem. Let $\varphi \colon K \to K$ be a compact mapping. Then φ has a fixed point.

COROLLARY. Let Ω be an abstract space with a σ -field Σ and let $\varphi \colon \Omega \times K \to K$ be a function measurable in the first variable and compact in the second. Then there exists a Σ -measurable function $s \colon \Omega \to K$ such that, for each $\omega \in \Omega$, $\varphi(\omega, s(\omega)) = s(\omega)$ holds. This function s is a Σ -measurable selection of the map P from Ω into closed subsets of K given by $P(\omega) = \{s \in K \colon \varphi(\omega, s) = s\}$ which is Σ -measurable (see [4], [7]).

§3. Selection Theorem. Let S and X be topological spaces. Denote by cl(X) the family of all nonempty and closed subsets of X and let $P: S \to cl(X)$ be the multivalued map. The function $p: S \to X$ is a selection of P if, for each $s \in S$, we have $p(s) \in P(s)$.

The map $P: S \to cl(X)$ is called *lower semicontinuous* (l.s.c.), if the set $P^-U = \{s \in S: P(s) \cap U \neq \emptyset\}$ is open for each open $U \subset X$.

The following selection theorem was proved in [5]:

SELECTION THEOREM. Assume that S is a compact topological space and the map L: $S \to d(L^1)$ is l.s.c. Then L admits a continuous selection.

We apply this theorem to the maps L_{ϵ} defined on the set

$$(1) S = \operatorname{clco} \varphi(K),$$

for each $\varepsilon > 0$ by the formulas

(2)
$$L_{\varepsilon}(s) = \operatorname{cl}\left\{u \in K : |u(t) - s(t)| < \operatorname{ess inf}_{u \in K} |u(t) - s(t)| + \varepsilon\right\}$$

almost everywhere in T,

where essinf stands for the essential infimum and ϕ and K are as in the Theorem.

The fact that the sets $L_{\varepsilon}(s)$ are nonempty follows from the observation that for each $s \in S$ there exists an element $u_s \in K$ such that $|u_s(t) - s(t)| = ess \inf_{u \in K} |u(t) - s(t)|$ a.e. in T (see [5], Prop. 2.1). The lower semicontinuity and the decomposability of L_{ε} given by (2) can easily be deduced from Proposition 2.3 in [5] if we observe that the map ψ defined by $\psi(s) = ess \inf_{u \in K} |u(t) - s(t)|$ is a Lipschitz function in L^1 -norm. For this purpose fix s_1 and s_2 from S and let $u_1 \in K$ be such an element that $|u_1(t) - s_1(t)| = \psi(s_1)(t)$ a.e. in T.

Then the Lipschitz condition follows from the inequalities

$$\psi(s_2)(t) - \psi(s_1)(t) \le |u_1(t) - s_2(t)| - |u_1(t) - s_1(t)| \le |s_1(t) - s_2(t)|$$

a.e. in T.

§4. Proof of the Theorem. Let S be defined by (1). Obviously S is a convex and compact subset of $L^1(T, Z)$. Consider the map L_{ϵ} given by (2) and let $l_{\epsilon}: S \to K$ be a continuous selection of L_{ϵ} . From the definition of L_{ϵ} it follows that for every $s \in \varphi(K)$ the inequality

$$||l_{\varepsilon}(s) - s|| \le \varepsilon \cdot ||\chi_T||$$

holds.

Consider the continuous maps $\varphi \circ l_{\epsilon} \colon S \to \varphi(K)$. The Schauder Fixed Point Theorem implies that for each $\epsilon > 0$ there exist points s_{ϵ} such that

$$\varphi\left[l_{\varepsilon}(s_{\varepsilon})\right] = s_{\varepsilon}.$$

Those points belongs to $\varphi(K)$ and from (3) it follows that for each $\varepsilon > 0$ we have

(5)
$$||l_{\varepsilon}(s_{\varepsilon}) - s_{\varepsilon}|| \leq \varepsilon \cdot ||\chi_{T}||.$$

Obviously the net $\{s_e\}$ is totally bounded and we may assume that it converges. Let $s_0 = \lim_{\epsilon \to 0} s_{\epsilon}$. Then also $\lim_{\epsilon \to 0} l_{\epsilon}(s_{\epsilon}) = s_0$ because of (5). Taking the limits in (4) we notice that s_0 is the fixed point of φ , which completes the proof.

References

- H. A. Antosiewicz and A. Cellina, Continuous selections and differential relations,
 J. Diff. Eq. 19 (1975), 386-398.
- [2] A. Cellina, A fixed point theorem for subsets of L^1 , to appear.
- [3] J. Dugundji and A. Granas, Fixed point theory, vol. 1, PWN, Warsaw 1982.
- [4] H. W. Engl, A general stochastic fixed point theorem for continuous random operators...,
 J. Math. Anal. Appl. 66 (1978), 220-231.
- [5] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, to appear in Studia Math. 78.
- [6] -, Existence of solutions of functional-differential inclusion in the nonconvex case, to appear in Ann. Polon. Math. 45. 2.
- [7] A. Nowak, A note on random fixed point theorems, Prace Naukowe Uniw. Ślaskiego No 420, Prace Mat. t. 11, Katowice 1981, 33-35.
- [8] D. R. Smart, Fixed points theorems, University Press, Cambridge 1980.

Received September 30, 1982 Revised version October 22, 1982 (1804)