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The generalization of Cellina’s Fixed Point Theorem
by
ANDRZEJ FRYSZKOWSKIT (Warszawa)*

Abstract. Let L (7, Z) be the Banach space of integrable functions from a compact space T
into a Banach space Z. A set K e I1(T, Z) is called decomposable if, for every u, veK and
measurable A4 e T, w0y +0-xp 4 €K, In this note we prove that each compact mapping from a
closed and decomposable subset K < (T, Z) into itself has a fixed point.

§1. Introduction. In paper [2] Cellina proved that the set K, of all
functions integrable on a closed interval [a, b] whose values belong to a
fixed closed subset P of a Euclidean space R™ has a fixed point property; this
means that each compact mapping from Kp into itself has a fixed point. The
set Kp can be nonconvex; thus the result of Cellina is interesting when
confronted with Schauder’s Fixed Point Theorem, where the assumption of
convexity is essential (see [3], [8]).

In this note we generalize the above result to an arbitrary closed and
decomposable subset K of the space of integrable functions. The decom-
posability of a set K means that for each u, veK and A measurable u-y, +
+0" Yaua €K, where y stands for the characteristic function of A.

Obviously, the set Kp in the theorem of Cellina is decomposable.

This generalization is quite easy to obtain if we apply a certain theorem
on continuous selections proved by the author in [5]. The theorem is an
abstract version of Antosiewicz and Cellina’s Selection Theorem [1] and can
also be applied to the problem of the existence of solutions for the
functional-differential inclusion x(t)&F (¢, x(-)) (see [6]). The required facts
about the selections are given in §3. We formulate the main results in §2 and
prove it in §4.

§2. The main result. Let T' be a compact topological space with a o-field
M of measurable subsets of T given by a nonnegative, regular Borel measure
dr and let Z be a separable Banach space with norm |+|. By I(T, Z) we
denote the Banach space of functions u: T—Z, integrable in the Bochner
sense, with norm |lu] = | |u(n)|dt.
P
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We call a set K = L'(T, Z) decomposable if u-y,+v-yr €K for every
u,veK and AeM. The family of all nonempty closed and decomposable
subsets of I}(T, Z) we denote by d(L}).

From this moment let K be a fixed set from d(L'). The main result is the
following:

THEOREM. Let @: K —+K be a compact mapping. Then ¢ has a fixed
point.

COROLLARY. Let Q be an abstract space with a o-field X and let ¢: Q xK
—+ K be a function measurable in the first variable and compact in the second,
Then there exists a Z-measurable function s: Q— K such that, for each

‘wel, ¢(w, s(w)=s(w) holds. This function s is a Z-measurable selection of

the map P from Q into closed subsets of K given by P(w) = {sek: ow, )
= s} which is Z-measurable (see [4], [7]).

§3. Selection Theorem. Let S and X be topological spaces. Denote by
cl(X) the family of all nonempty and closed subsets of X and let P: §
- cl(X) be the multivalued map. The function p: § — X is a selection of P if
for each seS, we have p(s)eP(s). ’

The map P: S —cl(X) is called lower semicontinuous (Ls.c.), if the set
PTU = {se§: P(ssnU # @} is open for each open U'c X.

The following selection theorem was proved in [5]:

'SELECTION THEOREM. Assume that S is a compact topological space and
the map L: S —»d(L) is ls.c. Then L admits a continuous selection,

We apply this theorem to the maps L, defined on the set

6] S = clco ¢ (K),

for each & > 0 by the formulas
(@ L) =cl{ueK: [u(t)—s() <essinflu(t)—s@)+¢
- uek
almost everywhere in T},

where essinf stands for the essential infimum and ¢ and K are as in the
Theorem.

_ The fact that the sets L,(s) are nonempty follows from the observa-
tion that for each seS there exists an element u,e K such that |u,(r)—s(2)|
=esz;(nflu(t)—-s(t)| ae. in T (see [5], Prop. 2.1). The lower semicontinuity

and thft‘decomp(.)sability of L, given by (2) can easily be deduced from
Propqs1t10n 23 in [5] if we observe that the map ¥ defined by ¥ (s)
= esussknf [u(t)—s(2)| is a Lipschitz function in I!-norm. For this purpose fix s,

and 52 f;'om S and let u; e K be such an element that fug (£} =81 (&) = ¥ (s) (1)
a.c. m .
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* Then the Lipschitz condition follows from the inequalities

Y (s (B = (s)(8) < |y () =55 (O = [uy () =5, @) < Isy )52
ae. in T.

§4. Proof of the Theorem. Let S be defined by (1). Obviously S is a
convex and compact subset of I (T, Z). Consider the map L, given by (2)
and let [,;: S — K be a continuous selection of L,. From the definition of L, it'
follows that for every se¢(K) the inequality

@) 1l () =51l < & |lxall

holds. i
Consider the continuous maps @ol: S — ¢(K). The Schauder Fixed

Point Theorem implies that for each & > 0 there exist points s, such that

@ @[L(s)] =5,

Those points belongs to ¢ (K) and from (3) it follows that for each & > 0 we
have

©) 1L (se)— sl <& llxrll-

Obviously the net {s,} is totally bounded and we may assume that it

converges. Let s, = lims,. Then also lim J,(s,) = s, because of (5). Taking the
' =0 2= 0

limits in (4) we notice that s, is the fixed point of ¢, which completes the

proof. ' i
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