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Weak type inequalities for the maximal ergodic function
and the maximal ergodic Hilbert transform in weighted spaces

by

E. ATENCIA and F. J. MARTIN-REYES (Malaga, Spain)

Abstract. In this paper we show that the maximal ergodic function associated to an
invertible, measure preserving ergodic transformation on a probability space is of weak type (1,1)
with respect to wdy, where w is a positive integrable function, if and only if w satisfies
Muckenhoupt condition 4,. We also prove the same result for the maximal ergodic Hilbert
transform.

1. Introduction. Let (X, &, ) be a non-atomic probability space and. T an
ergodic, invertible measure preserving point transformation from X onto

itself. We will denote by f* the non-centered maximal ergodic function
m

(1.1) f*(x) = sup (n+m+1)~* Z If(T'x), n,meZ,
and by
h
Hf (x) = sup M, s, teZ,
5120 [s<fh| <t h

the maximal ergodic Hilbert transform.

In [1] and [2] it was shown that the operators f —f* and f — Hf are
bounded on E(wdy), p > 1, if and only if the positive integrable function w
satisfies the condition:

(A;) There exists a constant M such that for ae. x

k-1 k=1
(1.2) KUY w(Thx)- [kt Y (w(Tix)~ eVt g M
i=0 i=
for all positive integers k.
Condition A4, is the natural analogue of Muckenhoupt condition for the
Hardy-Littlewood maximal operator [4].
In this paper our main result is given by the following theorem.
(1.1) Tueorem. Let w be a positive integrable function. Then
(i) The operator f —f* is of weak type (1.1} with respect to wdp if and
only if wed,.
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(ii) The operator f — Hf is of weak type (1.1) with respect to wdu if and
only if wed,.

By 4, we mean the well-known Muckenhoupt condition, ie., we A, if
there exists a constant C such that w*(x) < C-w(x) ae. As usual, in this
paper C will denote an absolute constant, not necessarily the same at each

occurrence.
In the proof of Theorem (1.1) the concept of ergodic rectangle will be

used.
(1.2) DeFiNiTION. Let B be a subset of X with positive measure and k a
positive integer such that .
‘ T'BATB=0Q, i%j, 0<i,j<k-1.
k
The set R =
k. ‘

-1
U T'B will be called an ergodic rectangle of base B and length
=0

i=

We shall also use the following two results, for a proof see [1].

(1.3) ProrosiTiON. Ler k be a positive integer and let A = X be a subset of
positive measure. Then there exists B < A such that B is base of a rectangle of
length k.

(1.4) LEMMA. X can be written as a countable union of bases of rectanyles
of length k.

2. Proof of theorem (1.1) for the maximal ergodic function. We firstly
assume that f —f* is of weak type (1.1) with respect to wdu. Let n, m be
non-negative integers and choose a base B of a rectangle of length n+m+ 1.
Let A = B with positive measure. The set ‘

R= U T4
is clearly a rectangle of length n+m+ 1.

Let f = 3, be the characteristic function of the set A and consider T x,

—n<j<sm xeA Then

(¥ (Tx) 2 (n+m+ 1) i (T x) = (ntmt1)""

i= )
Therefore

R {x: ()*(x) = (n+m+1)" 1
This inclusion and our assumption allow us to write

[ wdp < ) wdp < C(n4+m-+1)

{ x4 wdn
R xR 2ntme ™ 1) X
yl

=C(n+m+1) | wdp.

icm°®
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Thus we have

m

Jrrm+1)™t Y w(T'x)dp< C [ wdp.
4 4

i=—n
Since this holds for every A measurable subset of B with positive measure,
we obtain

m

2.1) (n+m+1)71 Y w(T'x) <Cw(x) ae xeB.

A straightforward application of Lemma (1.4) gives us (2.1) for almost all x in
X which immediately implies that we A4,.
The converse will be a consequence of the following theorem.

(2.2) TueoREM. Let p > 1. Then there exists a constant C,, 0 <C, < 20,
such that

(23) [U*Pwdp<C, [ [fPw*du
X X
Jor all measurable functions f. Furthermore, for 7. > 0
. Cc. .
(24) | wdp <= [1fIw*dp.
oS (x) > A 4 x

. Proof. Since f —f* is a bounded operator from L*(w*dy) to L*(wdy), it
will suffice to show the weak type estimation (2.4) to obtain, using the

i\daicirﬂciewicz interpolation theorem, the strong type inequality (2.3). Then,
et A>0. If

A< [ If 1w dpe (] wip)™,

X X
(24) is clear. Suppose

(2.5) A> [ Iflw*dp~(f wdp)™!
X X g
and call f** the one-sided maximal function defined by
k-1
S () =sup k™ Y |f(T ).
k>0 i=0
Let O, be the set
0, = {x: f**(x) > 4}
and let

Bi={x: x,Tx, ..., T""'x€0,, T"*x, T'x¢0,},
B={x: T'xe0,,i>0, T 'x¢0,},

2 Studia Mathematicn LXXVIIL3
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B ={x: T 'x€0,,i20, Tx¢0,},
| C={x: T'xe0,,ieZ}.

Then 0,= ) RURURUC, where Ry=BUTBU..0T 'B,R
=y TBR=UT
i20 iz0 .

rectangles and R and R’ are rectangles of infinite length. Since u(X) < oo, 1(R)

= u(R)=0. Now let us prove that p(C)=0. Let xeC. There exists

ro = 1 such that

T-iB'. Clearly, {R;}i2, is a collection of disjoint ergodic

ro—1t

o Z £ (T %) > 4,

1 such that
rg—1

' i 2 If (T 0% > 4.

Then -

T xeC. There exists ry >

rotri—1

(ro+r)™ Y,

i=0

If(T'x) > 4.
Continuing this process and fixing M, we can find k > M such that
SRTCEEY
and therefore |
k= k-1

k1 2 F (T W (T > k™1 Y w(T' %)

i=0

(xeC).
If u(C) >0, applying the ergodic individual theorem, we obtain
jlflw*d;t y) j wdp

against (2.5). Thus u(C) = = 0. We shall

consider two sets are equal if they agree up to a set of measure zero. The
following proposition, which is an ergodic analog of the Calderén—~Zygmund
decomposition, will be needed.

(2.6) ProrosiTioN. The following inequalities are valid:

fI <A if x¢0,
<i™! lf If (Thx)| < 24
r=0

0 and consequently u(0,~ U R)
1=1

@7

(2.8) (xeB).

icm

Inequalities. for the maximal ergodic function 235

Proof. Inequality (2.7) is clear. In order to prove (2.8) suppose that for
some x€B; we have

S r<ia
B=0

Ifr=>0
it+r i+r
Z If (T*x)| = Z If(T* X))+ Z [F(T"0) <(i+r+1)4,
where the fact that T'x¢ 0, has been used.
We thus have
(m+1)"t Y |f(Thx)<d if m>i.
h=0

Since xe0,, there exists an s such that

(s+1)7* Z IF(T*)] > A.
h=0

Obviously, 0 < s <.
Now if
s
g=sup {s: (s+1)7* ¥ |f(T*x)| >}
h=0

let us prove that g =i—1. If ¢ <i—1, then T9" L x€0, and this implies that
there exists ¢t = g+1 such that

t

Y (1) > A(t-q)

h=q+1
and clearly

t

S AT > A +1).

h=0

Consequently we have t < i—1 and ¢ > g+1, against g being the maximum.
The right-hand side inequality in (2.8) follows from the fact that if xeB,,
then T~!x¢0, which implies

i-1

Y Ir(r

h=—1

@+t x| <1

and then

i—1
;,E—:o If (Tl <G+DA.
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Dividing the two members of the former inequality by i, we infer the proof of

the proposition.

From (2.8), if xeB; we obtain

i-1 ’ i-1 izl izt »
T ATOws(Txz Y (T 2 W(T"X))>}~h§:0 w(T"x).
j=0 j= =0 =

=0 =

Now, integrating over B; and adding up in i,
A7 [ Iflwrdu > [ wds.
0; 05
Using the fact that
k=1
i f*) >} c{x: supk™ Y IF(T ) > 54} v
k>0 i=0
k-1
ulxisup kY ST %) > 54},
k>0 i=0
we get inequality (24). Theorem (1.1) for f* follows immediately since our
assumption now is that w satisfies A4,.

Note. (a) A similar result to Theorem (2.2), but with f* being the
maximal Hardy-Littlewood function, can be found in [3].

(b) Observe that Theorem (2.2), used in the proof of part (i) of Theorem
(1.1), shows that if w satisfies condition A, then f —f* is bounded on
E(wdy) (1 < p < o). Incidentally, keeping in mind the above-mentioned
result of [1], we also obtain that condition 4, implies 4,, p > 1.

3. Proof of Theorem (1.1) for the maximal ergodic Hilbert transform.
Assume that f — Hf is of weak type (1.1) with respect to wdu. Let n, m be
non-negative integers and choose a base B of a rectangle of length 2n+2m+
+1. Let A =B and u(4) >0.

2m.
The set |J T'A is a rectangle of length 2n+2m+1.

i==2n
Consider TVx, xeA, —n<j<m,j##0. Then it is clear that
xa (T %)
y w2
s <|h| <t
Choosing s =|j|—1,t=j|+1 we have
xa(T" %)

s <|h| <t h

Hy (T'x) 2

=" (n+m+1)7 L

Therefore

Hya0) 2 (ntmt )"

icm
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which implies
R < {x: Hy(x) = (n+m+1)"1}.
Integrating and using our initial assumption, we get

[ wdp <

R' (x:HxA(x)Z(n+m+])_l)

wip < C(n+m+1) | wdp;
A

this inequality can be written as

(m+m+1)"' | Y w(T'xdp<C | wdu.
ai 4

#0

i

Adding up (n+m+1)"" | wdp:
4

m

Y w(T'x)dp <(C+1) [ wdp.
A

i=-~n

f(n+tm+1)7!
A

Since this holds for every A, arbitrary measurable subset of positive measure
of B, we have
m

CmE )T Y w(T' ) < (CHD)w(x)

i=-=n

a.e. xeB.

Using (1.4), we obtain that w satisfies condition A4,.
To prove the converse we need to use again the subset 0, with

A> [1f [ wdp(f wdp)™?
X X
and the decomposition

0, = 4&)1 R,
obtained in Section 2.
As in the classical case (see [5]), we now proceed to decompose the
function feI! (wdy) into a sum:

f(x}=g(x)+b(x),

where g is in I?(wdp) and b is supported on a small set. More precisely, we

define g (x) =f(x) if xe F = X—0,; and if xe0,, then there exists i such that
i1

xeR, = (J TYB;; in that case we set
j=0

i-1
g =i"" Y f(T""x),
j=0

where h is such that 0< h<i—1 and T "xeB;.
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The function b is defined by
b(x) =f (x)—g(x).

Obviously, b(x) =0 if xeF and

xeB,.

3.1) ':V: b(Tix)=0 if
j=0

As in the classical case g is in I? (wdy)
(3.2) TusoreM. The function g is in I*(wdy) and
[ lgl*wdp < CA | |fiwdn.
X X

Proof.
[ g wdp = [ |f1wdp+ [ lgl*wdp < A [1f|wdu+ [ |gI* wdp.
X, F 0; F 0,

In the former inequality (2 7) has been used. By (2.8) |g(x)| < 24 if xe€0,,

therefore

[ lgl?wdp < 4 [ |f| wdp+442 | wdg.
X F 0,

The assumption we 4, and Section 2 tell us that f — f* has weak type (1.1)
with respect to wdu; thus we obtain

jlgllwdu </1I lflwdu+4/1C§ I/l wdp < A(1+4C) f f I wdp.

The following theorem shows us that beI}(wdy) and provides an
integral inequality that will be used later.

(3.3) TueOREM. The function b is in I} (wdy) and
J Iblwdu < C | |f|wdp.
X X

Proof.

[ Iblwdp < [ 1fIwdp+ | lglwd,
X 0, 0o,

o i-1
[lglwdp=3 [ ¥ lg(T/=)|w(T'x)dp

0, i=1 By j=0
i I;Zo i~ Z F(T* )| w(T! x)d
o i-1
‘=Z J Z [Tty ,Zo w (T x)] dye

icm
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i-1

<X U (T

= [ Iflwtdp < CI |flwdp.
0;
Thus we finally have
{1blwdp <(1+C) [ |f|wdp.
X b

We now need to find a constant C, independent of f and A, so that

(34) { wdus—ci { 1f|wdp.
X

{x:Hf(x) >4}
Since Hf < Hg+ Hb, it follows that

(3.5) wdu <

{x:Hg(x) > 2/2}

wdu+ wdu

{x:Hf (x) >4} {x:Hb(x) >1/2}

and it suffices to establish separately for both terms of the right-hand side
inequalities analogous to (3.4).
Estimate for Hg. we 4, implies that we A, and therefore, as it was
shown in [2], f — Hf has strong type (2.2) and consequently weak type (2.2).
Thus
wdp < 2CIA)* [ ol wdp.
{x:Hg(x) > 1/2}

Applymg theorem (3.2), we obtain

(36) wd < 7 17w

{x:Hg(x)>2/2}
Estimate for Hb. Denote by R; the set R, expanded 3 times, ie, R;
=T 'R,UR,UT'R,. Let 0, and F be the sets

0,= U R, F=x-0,.
2
Then

3.7 wdp+ wdp.

{xef':Hb(x) > A/2}

wdy =
{(xeX:Hb(x)>A/2} {x:Hb(x) > 4/2}
The first integral on the right-hand side is bounded by
o0 2i-1

Y I ¥ w(Txdu

i=1 By j=-i

and by Proposition (2.6) this is not bigger than

3 Z J Gy ZiZI W(T’x)-i_Z1 If (T* )] d.
h=0

i=1 B j=—i
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Therefore we have

o

i-1
wdp <3470 Y Y (T %) w*(T %) dp

i=1 B h=0
=371 | f(x)w*(x)dp.
0,

Since w satisfies condition A4,, we finally obtain

{xe0 3:Hb(x) > 4/2}

C .
(3.8 | wdp < — | |f| wd.
ey Hb(x) > A/2) i X
To estimate { wdy we need to work harder.

{xeFHb(x) > 1/2)
The following lemma will be used.
(39) Lemma. If | < p < 00 and w satisfies the Ay condition with constant
C, then there is a constant K, depending only on p and C, such thar for every
interval I in the integers of the form {—i, ..., i}

(3.10) S (#IP  w(T' ) W < K(#D7' Y w(T"x)
T hel
where 41 sianls for the number of elements of I.

Proof. There exists r,1 <r < p, such that wed, with constant D
depending only on p and C. For a proof see [1].
It will be sufficient to show that

a.e.

‘ i
T (1P w(Tr P < K+ Y w(T"x)

h>i h=0

(3.11) ae.

Since w satisfies condition A, with constant D, we have for any positive
integer k

k

k
Z W(ThX)'(Z W(Thx)-l/(r—l))r—l SD(k+1)r.

b=0
If k=i+1, it is clear that

k i

k+1)7771 Y w(Th) (Y w(Thx) Ve=0)yr=1 < pk+1y=r=1, *

h=i+1 h=0
By Hdlder’s inequality applied to

(3.12)

i

S w{Thx)Yrew (T x)= L

h=0
we have
i

("+1)'(hi w(T' )™ < (3 w(Thx)~te=vp-1,
=0

h=0

icm°®
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Using this in (3.12) leads to

k

k+1)7P"1 Y

h=i+1

w(T' )+ 17 (Y w(T'x) ™ < D(k+1y777",
h=0
an inequality that holds for k >i+1. Adding up in k:
(3.13)
o0 k
Y k+prt oy
k=i+1 h=i+1

Now (3.11) is an immediate consequence of the following inequalities:

w(T"x) < D(i+1)"" i (k+1y-r-1 Z w(T"x).
k=0

k=i+1

AN A k

G14) Y w(Tp ih+D)TP< Y kDT Y w(Th),
h=i+1 k=i+1 h=i+1

(3.15) i (k+1 P < (p—r)" i+ )P

k=i+1
(3.16) Note. Since we A4, implies we 4}, (3.10) will hold, for p =2, if
WeA;.
The sufficiency of condition 4, will be a consequence of the following
proposition.
(3.17) ProrosiTiON. If xeF and Hb(x) > a, then

a< 30T (Bl (Toh™ +86% (2.

=1 h=-=x

Proof. There exist s and t such that
b(T"x)
)}

s<|h| <t

H, b(x)= >a

Associated with the orbit of x in O, we consider the set
{keZ: T"xe0,}.

This set can be written as a union of a sequence {I,} of finite and disjoint
intervals in the integers.

We will consider those intervals I, that have a non-empty intersection
with  {s+1, 542, ..., 1=1}, {= (=1, ..., —(s+2), = (s+1)}. We will
denote by K’ the finite set of indices corresponding to these intervals.

Call K" the set of indices corresponding to those intervals of the
sequence {I;} such that contain some integers of the set {+ (s+1), £ (r— 1}
Clearly, K" < K’ and #K" <4
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It is obvious that ’ we have
b(T"x) (3.19)
H,b() <) s
K ls<ii < wdp < } wdu+ f wdl.
el {(xeF :Hb(x) > 2/2} {xeF:8b%(x) > A4} o ® hori =2
This sum is bounded by befs 11 BRI 2> 24}
h Th i
(3.18) ¥ it} + 313 b(T"x) . The part of Theorem (1.1) proved in Section 2 gives us a bound for the
keK'' s<|h{<t h keK' |hely h

first integral of the right-hand side:

We are going to bound the first sum of (3.18). Suppose that s+1e&l,. The (3.20) 4 { 16} wd
treatment of the other cases is similar. Let 1, be of the form ’ Ax H

{m,m+1, ..., ~1}.
un, m m+q-1} The second integral is bounded by
Since xeF, we have m>0 and m > q.

Then we have . i >0 bxr) (T ) B > wdp.
i=1 p h#0

mtg—1 h m+g~1 h +q~1 ~ ~

zq: b(T"x) < 2= b(T"x)| <m-t mi [b(T" x)| < 2b* (x). Since F < —R;, this is not bigger than

g, P R Ao

s 3. — [ bYn. T" }—2 lu.

Therefore the first sum of (3.18) is bounded by 8b*(x) and the second by (3.21) ,21 _“g,. ! ,,;o ) (T2 ™% wd
b(T"x) Note that xe —R; implies T/x¢R,; for je{—i, —(i—1), ...,i—1,i} =J,

)

k

)

hely, h

As a consequence, (3.21) can be written in the form

Consider now an interval of length i, {m, m+1,..., m+i—1}, with m > 0. i [0 WbxrMT* ) h™ 2 wdp
Using the mean value property of b (3.1), we get i=1

-R;  hel;

m+i—1 b(Thx) m+i—1 1 1 " mti-1 4 hd -2 ~h
= [ < ; ko 2 =yiy j b A 2w(T " x)du
h=m h hgm (h m+’“1)h(T X) h hZ‘-‘m l]b(T X),h ' A':I heJ; R;
Note that if m < 0 we would have subtracted m™" to obtain the same bound. 2 j Qi+ Y w(T ") h™*du
Therefore the sum corresponding to all the intervals of length i is bounded i=1 heJ;

by By (3.16) we have that this is bounded by
c

i Y (b)) (T"x) h™2
rro 7 [ b Gl w* (0 dp.
0,

Thus (3.18) is bounded by

Since we 4, we finally get
Z Z I(bxr) (T" ) h™ 2+ 8b* (x).
h#

C
Q = (3.22) I wij < [ [bl wap.
This cfompletes the proof of the proposition. feef: ¥ i D) xR (Tl b= 2 > 214} *
Since i£1 n%o
F: Hb l h -2
e (09> 34} = {xe ; L ) (T" x| ™2 4-8b% (x) > 42}, Now Theorem (1.1) follows from (3.5), (3.6), (3.7), (3.8), (3.19), (3.20) and (3.22).
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On a generalized Carleson inequality

by
D. G. DENG (Peking)

Abstract. In this note we prove a generalized Carleson inequality

|j'2[ F(x, nv(x, Ndxdi| € C [ A,(F)(X}v. (x)dx,
R R

+
where 1/p+1/p=1,1<p< 0,
\ dydt 1 i 1/p
4 = ([ Fo, P22, v, =sup(— I v, dydf) .
I ! xst \M| T
Moreover, v, belongs to the Muckenhoupt class 4, for p’ > L.

1. Introduction. The inequality
M |§§ Fx, v(x, dxdt] < C [ F*(x)dx (%)
RZ R

is known as the Carleson inequality ([4], [5], p. 236), where F*(x) is the
non-tangential maximal function of F(x, 1), ie.,
F*(x)= sup |F(y, ),
ly—x| <t
and v(x, dxdt is a Carleson measure on RZ, ie., v(x, t)> 0 and
1

1 oo

for any interval I on R. The purpose of this note is to give a more general
form of inequality (1). To prove this we need to prove that a new kind of a
maximal function gives rise to weights in A,. This is of independent interest.
Our inequality incorporates various inequalities proved by C. Fefferman and
E. M. Stein and easily extends to R" or, more generally, to the spaces of
homogeneous type.

v(x, )dxdt < C

(*) As usual, throughout this note C will denote a constant not necessarily the same at
each occurrence.
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