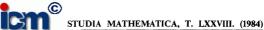
J. Niechwiei

230

- [6] N. Dunford, J. T. Schwartz, Linear operators, Part III, Spectral operators, Interscience, New York 1971.
- [7] P. Masani, M. Rosenberg, When is an operator the integral of a given spectral measure, J. Funct. Anal. 21 (1976), 88-121.
- [8] A. R. Sourour, Unbounded operators generated by a given spectral measure, ibidem 29 (1978), 16-22.

INSTYTUT MATEMATYKI, UNIWERSYTET JAGIELLONSKI, KRAKÓW, POLAND

Received Januar	y 27	1982	(1732))
-----------------	------	------	--------	---



Weak type inequalities for the maximal ergodic function and the maximal ergodic Hilbert transform in weighted spaces

by

E. ATENCIA and F. J. MARTIN-REYES (Malaga, Spain)

Abstract. In this paper we show that the maximal ergodic function associated to an invertible, measure preserving ergodic transformation on a probability space is of weak type (1,1) with respect to $wd\mu$, where w is a positive integrable function, if and only if w satisfies Muckenhoupt condition A_1 . We also prove the same result for the maximal ergodic Hilbert transform.

1. Introduction. Let (X, \mathfrak{F}, μ) be a non-atomic probability space and T an ergodic, invertible measure preserving point transformation from X onto itself. We will denote by f^* the non-centered maximal ergodic function

(1.1)
$$f^*(x) = \sup_{n,m \ge 0} (n+m+1)^{-1} \sum_{i=-n}^m |f(T^i x)|, \quad n, m \in \mathbb{Z},$$

and by

$$Hf(x) = \sup_{s,t \geq 0} \left| \sum_{s < |h| < t} \frac{f(T^h x)}{h} \right|, \quad s, t \in \mathbb{Z},$$

the maximal ergodic Hilbert transform.

In [1] and [2] it was shown that the operators $f \to f^*$ and $f \to Hf$ are bounded on $E(wd\mu)$, p > 1, if and only if the positive integrable function w satisfies the condition:

 (A'_p) There exists a constant M such that for a.e. x

(1.2)
$$k^{-1} \sum_{i=0}^{k-1} w(T^i x) \cdot \left[k^{-1} \sum_{i=0}^{k-1} \left(w(T^i x) \right)^{-1/(p-1)} \right]^{p-1} \le M$$

for all positive integers k.

Condition A'_p is the natural analogue of Muckenhoupt condition for the Hardy-Littlewood maximal operator [4].

In this paper our main result is given by the following theorem.

- (1.1) THEOREM. Let w be a positive integrable function. Then
- (i) The operator $f \to f^*$ is of weak type (1.1) with respect to $wd\mu$ if and only if $w \in A_1$.

Inequalities for the maximal ergodic function

233

(ii) The operator $f \to Hf$ is of weak type (1.1) with respect to $wd\mu$ if and only if $w \in A_1$.

By A_1 we mean the well-known Muckenhoupt condition, i.e., $w \in A_1$ if there exists a constant C such that $w^*(x) \leq C \cdot w(x)$ a.e. As usual, in this paper C will denote an absolute constant, not necessarily the same at each occurrence.

In the proof of Theorem (1.1) the concept of ergodic rectangle will be used.

(1.2) DEFINITION. Let B be a subset of X with positive measure and k a positive integer such that

$$T^i B \cap T^j B = \emptyset, \quad i \neq j, \ 0 \leq i, j \leq k-1.$$

The set $R = \bigcup_{i=0}^{k-1} T^i B$ will be called an *ergodic rectangle* of base B and length k.

We shall also use the following two results, for a proof see [1].

- (1.3) PROPOSITION. Let k be a positive integer and let $A \subset X$ be a subset of positive measure. Then there exists $B \subset A$ such that B is base of a rectangle of length k.
- (1.4) LEMMA. X can be written as a countable union of bases of rectangles of length k.
- 2. Proof of theorem (1.1) for the maximal ergodic function. We firstly assume that $f \to f^*$ is of weak type (1.1) with respect to $wd\mu$. Let n, m be non-negative integers and choose a base B of a rectangle of length n+m+1. Let $A \subset B$ with positive measure. The set

$$R = \bigcup_{i=-n}^{m} T^{i} A$$

is clearly a rectangle of length n+m+1.

Let $f = \chi_A$ be the characteristic function of the set A and consider $T^j x$, $-n \le j \le m$, $x \in A$. Then

$$(\chi_A)^* (T^j x) \ge (n+m+1)^{-1} \sum_{i=-n-j}^{m-j} \chi_A (T^i (T^j x)) = (n+m+1)^{-1}.$$

Therefore

$$R \subset \{x: (\chi_A)^*(x) \ge (n+m+1)^{-1}\}.$$

This inclusion and our assumption allow us to write

$$\begin{split} \int\limits_R w d\mu &\leqslant \int\limits_{\{x: (\chi_A)^0(x) \geqslant (n+m+1)^{-1}\}} w d\mu \leqslant C(n+m+1) \int\limits_X \chi_A \, w d\mu \\ &= C(n+m+1) \int\limits_X w d\mu. \end{split}$$

Thus we have

$$\int_A (n+m+1)^{-1} \sum_{i=-n}^m w(T^i x) d\mu \leqslant C \int_A w d\mu.$$

Since this holds for every A measurable subset of B with positive measure, we obtain

(2.1)
$$(n+m+1)^{-1} \sum_{i=-n}^{m} w(T^{i}x) \leq Cw(x) \quad \text{a.e. } x \in B.$$

A straightforward application of Lemma (1.4) gives us (2.1) for almost all x in X which immediately implies that $w \in A_1$.

The converse will be a consequence of the following theorem.

(2.2) Theorem. Let p>1. Then there exists a constant C_p , $0< C_p<\infty$, such that

(2.3)
$$\int_{V} (f^*)^p w d\mu \leqslant C_p \int_{V} |f|^p w^* d\mu$$

for all measurable functions f. Furthermore, for $\lambda > 0$

(2.4)
$$\int_{|x|:f''(x) > \lambda_1} w d\mu \leqslant \frac{C}{\lambda} \int_X |f| w^* d\mu.$$

Proof. Since $f \to f^*$ is a bounded operator from $L^{\infty}(w^*d\mu)$ to $L^{\infty}(wd\mu)$, it will suffice to show the weak type estimation (2.4) to obtain, using the Marcinkiewicz interpolation theorem, the strong type inequality (2.3). Then, let $\lambda > 0$. If

$$\lambda \leqslant \int_{X} |f| w^* d\mu \cdot (\int_{X} w d\mu)^{-1},$$

(2.4) is clear. Suppose

(2.5)
$$\lambda > \int_{\mathcal{V}} |f| \, w^* \, d\mu \cdot \left(\int_{\mathcal{V}} w \, d\mu \right)^{-1}$$

and call f^{**} the one-sided maximal function defined by

$$f^{**}(x) = \sup_{k>0} k^{-1} \sum_{i=0}^{k-1} |f(T^i x)|.$$

Let O_1 be the set

$$O_{\lambda} = \{x: f^{**}(x) > \lambda\}$$

and let

$$B_{i} = \{x: \ x, \ Tx, \ \dots, \ T^{i-1}x \in O_{\lambda}, \ T^{-1}x, \ T^{i}x \notin O_{\lambda}\},$$

$$B = \{x: \ T^{i}x \in O_{\lambda}, \ i \geqslant 0, \ T^{-1}x \notin O_{\lambda}\},$$

$$B' = \{x: \ T^{-i} x \in O_{\lambda}, \ i \geqslant 0, \ Tx \notin O_{\lambda} \},$$

$$C = \{x: \ T^{i} x \in O_{\lambda}, \ i \in \mathbb{Z} \}.$$

Then $O_{\lambda} = \bigcup_{i \geq 0}^{\infty} R_i \cup R \cup R' \cup C$, where $R_i = B_i \cup TB_i \cup ... \cup T^{i-1} B_i$, $R = \bigcup_{i \geq 0} T^i B$, $R' = \bigcup_{i \geq 0} T^{-i} B'$. Clearly, $\{R_i\}_{i=1}^{\infty}$ is a collection of disjoint ergodic rectangles and R and R' are rectangles of infinite length. Since $\mu(X) < \infty$, $\mu(R) = \mu(R') = 0$. Now let us prove that $\mu(C) = 0$. Let $x \in C$. There exists $r_0 \geq 1$ such that

$$r_0^{-1} \sum_{i=0}^{r_0-1} |f(T^i x)| > \lambda,$$

 $T^{r_0} x \in C$. There exists $r_1 \ge 1$ such that

$$|r_1^{-1}\sum_{i=0}^{r_1-1}|f(T^{i+r_0}x)|>\lambda.$$

Then .

$$(r_0+r_1)^{-1}\sum_{i=0}^{r_0+r_1-1}|f(T^ix)|>\lambda.$$

Continuing this process and fixing M, we can find k > M such that

$$k^{-1}\sum_{i=0}^{k-1}|f(T^ix)|>\lambda$$

and therefore

$$k^{-1} \sum_{i=0}^{k-1} |f(T^i x)| w^*(T^i x) > \lambda k^{-1} \sum_{i=0}^{k-1} w(T^i x) \quad (x \in C).$$

If $\mu(C) > 0$, applying the ergodic individual theorem, we obtain

$$\int\limits_X |f| \, w^* \, d\mu \geqslant \lambda \int\limits_X w d\mu$$

against (2.5). Thus $\mu(C) = 0$ and consequently $\mu(O_{\lambda} - \bigcup_{i=1}^{\infty} R_i) = 0$. We shall consider two sets are equal if they agree up to a set of measure zero. The following proposition, which is an ergodic analog of the Calderón-Zygmund decomposition, will be needed.

(2.6) Proposition. The following inequalities are valid:

$$(2.7) |f(x)| \leq \lambda if x \notin O_{\lambda},$$

(2.8)
$$\lambda < i^{-1} \sum_{h=0}^{i-1} |f(T^h x)| \leq 2\lambda (x \in B_i).$$

Proof. Inequality (2.7) is clear. In order to prove (2.8) suppose that for some $x \in B_i$ we have

$$\sum_{h=0}^{i-1} |f(T^h x)| \le i\lambda.$$

If $r \ge 0$

$$\sum_{h=0}^{i+r} |f(T^h x)| = \sum_{h=0}^{i-1} |f(T^h x)| + \sum_{h=i}^{i+r} |f(T^h x)| \le (i+r+1)\lambda,$$

where the fact that $T^i x \notin O_1$ has been used.

We thus have

$$(m+1)^{-1} \sum_{h=0}^{m} |f(T^h x)| \leq \lambda \quad \text{if} \quad m \geq i.$$

Since $x \in O_{\lambda}$, there exists an s such that

$$(s+1)^{-1} \sum_{h=0}^{s} |f(T^h x)| > \lambda.$$

Obviously, $0 \le s < i$.

Now if

$$q = \sup \left\{ s \colon (s+1)^{-1} \sum_{h=0}^{s} |f(T^{h}x)| > \lambda \right\}$$

let us prove that q = i - 1. If q < i - 1, then $T^{q+1} x \in O_{\lambda}$ and this implies that there exists $t \ge q + 1$ such that

$$\sum_{h=q+1}^{t} |f(T^{h}x)| > \lambda(t-q)$$

and clearly

$$\sum_{h=0}^{t} |f(T^h x)| > \lambda(t+1).$$

Consequently we have $t \le i-1$ and $t \ge q+1$, against q being the maximum. The right-hand side inequality in (2.8) follows from the fact that if $x \in B_i$, then $T^{-1}x \notin O_\lambda$ which implies

$$(i+1)^{-1} \sum_{h=-1}^{l-1} |f(T^h x)| \le \lambda$$

and then

$$\sum_{h=0}^{i-1} |f(T^h x)| \leq (i+1)\lambda.$$

Dividing the two members of the former inequality by i, we infer the proof of i, the proposition.

From (2.8), if $x \in B_i$ we obtain

$$\sum_{j=0}^{i-1} |f(T^{j}x)| \stackrel{\cdot}{w^{*}}(T^{j}x) \ge \sum_{j=0}^{i-1} |f(T^{j}x)| \cdot \left(i^{-1} \sum_{h=0}^{i-1} w(T^{h}x)\right) > \lambda \sum_{h=0}^{i-1} w(T^{h}x).$$

Now, integrating over B_i and adding up in i,

$$\lambda^{-1} \int_{O_{\lambda}} |f| w^* d\mu \geqslant \int_{O_{\lambda}} w d\mu.$$

Using the fact that

$$\{x: f^*(x) > \lambda\} \subset \{x: \sup_{k>0} k^{-1} \sum_{i=0}^{k-1} |f(T^i x)| > \frac{1}{2}\lambda\} \cup \\ \cup \{x: \sup_{k>0} k^{-1} \sum_{i=0}^{k-1} |f(T^{-i} x)| > \frac{1}{2}\lambda\},$$

we get inequality (2.4). Theorem (1.1) for f^* follows immediately since our assumption now is that w satisfies A_1 .

Note. (a) A similar result to Theorem (2.2), but with f^* being the maximal Hardy-Littlewood function, can be found in [3].

- (b) Observe that Theorem (2.2), used in the proof of part (i) of Theorem (1.1), shows that if w satisfies condition A_1 , then $f \to f^*$ is bounded on $\mathbb{E}(wd\mu)$ ($1). Incidentally, keeping in mind the above-mentioned result of [1], we also obtain that condition <math>A_1$ implies A_p , p > 1.
- 3. Proof of Theorem (1.1) for the maximal ergodic Hilbert transform. Assume that $f \to H_f$ is of weak type (1.1) with respect to $wd\mu$. Let n, m be non-negative integers and choose a base B of a rectangle of length 2n+2m+1. Let $A \subset B$ and $\mu(A) > 0$.

The set $\bigcup_{i=-2n}^{2m} T^i A$ is a rectangle of length 2n+2m+1.

Consider $T^j x$, $x \in A$, $-n \le j \le m$, $j \ne 0$. Then it is clear that

$$H\chi_A(T^jx) \geqslant \left|\sum_{s < |h| < t} \frac{\chi_A(T^{h+j}x)}{h}\right|.$$

Choosing s = |j| - 1, t = |j| + 1 we have

$$\left| \sum_{|s| |h| < t} \frac{\chi_{\mathcal{A}}(T^{h+j} x)}{h} \right| = |j|^{-1} \cdot (n+m+1)^{-1}.$$

Therefore

$$H\chi_A(y) \geqslant (n+m+1)^{-1}$$
 if $y \in R' = \bigcup_{\substack{i=-n \ i \neq 0}}^m T^i A$

which implies

$$R' \subset \{x: H\chi_A(x) \ge (n+m+1)^{-1}\}.$$

Integrating and using our initial assumption, we get

$$\int\limits_{R'} w d\mu \leqslant \int\limits_{\{x: H\chi_A(x) \geqslant (n+m+1)^{-1}\}} w d\mu \leqslant C(n+m+1) \int\limits_A w d\mu;$$

this inequality can be written as

$$(n+m+1)^{-1} \int_{\substack{A \ i=-n \ i\neq 0}}^{m} w(T^{i}x) d\mu \leqslant C \int_{A} w d\mu.$$

Adding up $(n+m+1)^{-1} \int_A w d\mu$:

$$\int_{A} (n+m+1)^{-1} \sum_{i=-n}^{m} w(T^{i} x) d\mu < (C+1) \int_{A} w d\mu.$$

Since this holds for every A, arbitrary measurable subset of positive measure of B, we have

$$(n+m+1)^{-1} \sum_{i=-n}^{m} w(T^{i} x) \le (C+1)w(x)$$
 a.e. $x \in B$.

Using (1.4), we obtain that w satisfies condition A_1 .

To prove the converse we need to use again the subset O_{λ} with

$$\lambda > \int_{V} |f| w d\mu \left(\int_{V} w d\mu \right)^{-1}$$

and the decomposition

$$O_{\lambda} = \bigcup_{i=1}^{\infty} R_i$$

obtained in Section 2.

As in the classical case (see [5]), we now proceed to decompose the function $f \in L^1(wd\mu)$ into a sum:

$$f(x) = g(x) + b(x),$$

where g is in $L^2(wd\mu)$ and b is supported on a small set. More precisely, we define g(x) = f(x) if $x \in F = X - O_{\lambda}$ and if $x \in O_{\lambda}$, then there exists i such that $x \in R_i = \bigcup_{i=0}^{i-1} T^i B_i$; in that case we set

$$g(x) = i^{-1} \sum_{j=0}^{i-1} f(T^{j-h}x),$$

where h is such that $0 \le h \le i-1$ and $T^{-h}x \in B_i$.

The function b is defined by

$$b(x) = f(x) - g(x).$$

Obviously, b(x) = 0 if $x \in F$ and

(3.1)
$$\sum_{j=0}^{i-1} b(T^j x) = 0 \quad \text{if} \quad x \in B_i.$$

As in the classical case g is in $L^2(wd\mu)$

(3.2) Theorem. The function g is in $L^2(wd\mu)$ and

$$\int\limits_X |g|^2 w d\mu \leqslant C\lambda \int\limits_X |f| w d\mu.$$

Proof.

$$\int\limits_{X} |g|^2 w d\mu = \int\limits_{F} |f|^2 w d\mu + \int\limits_{O_{\lambda}} |g|^2 w d\mu \leqslant \lambda \int\limits_{F} |f| w d\mu + \int\limits_{O_{\lambda}} |g|^2 w d\mu.$$

In the former inequality (2.7) has been used. By (2.8) $|g(x)| \le 2\lambda$ if $x \in O_{\lambda}$, therefore

$$\int\limits_X |g|^2 w d\mu \leqslant \lambda \int\limits_F |f| w d\mu + 4\lambda^2 \int\limits_{O_\lambda} w d\mu.$$

The assumption $w \in A_1$ and Section 2 tell us that $f \to f^*$ has weak type (1.1) with respect to $wd\mu$; thus we obtain

$$\int\limits_X |g|^2\,wd\mu \leq \lambda\int\limits_F |f|\,wd\mu + 4\lambda C\int\limits_X |f|\,wd\mu \leq \lambda(1+4C)\int\limits_X |f|\,wd\mu.$$

The following theorem shows us that $b \in L^1(wd\mu)$ and provides an integral inequality that will be used later.

(3.3) THEOREM. The function b is in $L^1(wd\mu)$ and

$$\int_{\mathbb{R}} |b| \, w d\mu \leqslant C \int_{\mathbb{R}} |f| \, w d\mu.$$

Proof.

$$\int_{X} |b| w d\mu \leq \int_{O_{\lambda}} |f| w d\mu + \int_{O_{\lambda}} |g| w d\mu,$$

$$\int_{O_{\lambda}} |g| w d\mu = \sum_{i=1}^{\infty} \int_{B_{i}} \sum_{j=0}^{i-1} |g(T^{j} x)| w(T^{j} x) d\mu$$

$$= \sum_{i=1}^{\infty} \int_{B_{i}} \sum_{j=0}^{i-1} |i^{-1} \sum_{h=0}^{i-1} f(T^{h} x)| w(T^{j} x) d\mu$$

$$\leq \sum_{i=1}^{\infty} \int_{B_{i}} \sum_{h=0}^{i-1} \left[|f(T^{h} x)| \cdot i^{-1} \sum_{j=0}^{i-1} w(T^{j} x) \right] d\mu$$

$$\leq \sum_{i=1}^{\infty} \int_{B_i} \sum_{h=0}^{i-1} |f(T^h x)| \cdot w^*(T^h x) d\mu$$
$$= \int_{\Omega_i} |f| w^* d\mu \leq C \int_X |f| w d\mu.$$

Thus we finally have

$$\int_{X} |b| w d\mu \leq (1+C) \int_{X} |f| w d\mu.$$

We now need to find a constant C, independent of f and λ , so that

(3.4)
$$\int_{(x:Hf(x)>\lambda)} wd\mu \leqslant \frac{C}{\lambda} \int_{X} |f| wd\mu.$$

Since $Hf \leq Hg + Hb$, it follows that

$$(3.5) \qquad \int\limits_{\{x:Hf(x)>\lambda\}} wd\mu \leqslant \int\limits_{\{x:Hg(x)>\lambda/2\}} wd\mu + \int\limits_{\{x:Hb(x)>\lambda/2\}} wd\mu$$

and it suffices to establish separately for both terms of the right-hand side inequalities analogous to (3.4).

Estimate for Hg. $w \in A_1$ implies that $w \in A_2'$ and therefore, as it was shown in [2], $f \to Hf$ has strong type (2.2) and consequently weak type (2.2). Thus

$$\int_{\{x:Hg(x)>\lambda/2\}} wd\mu \leqslant (2C/\lambda)^2 \int_X |g|^2 wd\mu.$$

Applying theorem (3.2), we obtain

(3.6)
$$\int_{\{x: Ha(x) > \lambda/2\}} w d\mu \leqslant \frac{C}{\lambda} \int_{X} |f| w d\mu.$$

Estimate for Hb. Denote by \tilde{R}_i the set R_i expanded 3 times, i.e., $\tilde{R}_i = T^{-i}R_i \cup R_i \cup T^iR_i$. Let \tilde{O}_i and \tilde{F} be the sets

$$\tilde{O}_{\lambda} = \bigcup_{i=1}^{\infty} \tilde{R}_{i}, \quad \tilde{F} = X - \tilde{O}_{\lambda}.$$

Then

(3.7)
$$\int_{(x\in X:Hb(x)>\lambda/2)} wd\mu = \int_{(x:Hb(x)>\lambda/2)} wd\mu + \int_{(x\in F:Hb(x)>\lambda/2)} wd\mu.$$

The first integral on the right-hand side is bounded by

$$\sum_{i=1}^{\infty} \int_{B_i} \sum_{j=-i}^{2i-1} w(T^j x) d\mu$$

and by Proposition (2.6) this is not bigger than

$$3\lambda^{-1}\sum_{i=1}^{\infty}\int_{B_i}(3i)^{-1}\sum_{j=-i}^{2i-1}w(T^jx)\cdot\sum_{h=0}^{i-1}|f(T^hx)|d\mu.$$

Therefore we have

$$\int_{\{x \in \tilde{O}_{\lambda}: Hb(x) > \lambda/2\}} w d\mu \leq 3\lambda^{-1} \sum_{i=1}^{\infty} \int_{B_{i}} \sum_{h=0}^{i-1} |f(T^{h}x)| \, w^{*}(T^{h}x) \, d\mu$$

$$= 3\lambda^{-1} \int_{O_{\lambda}} |f(x)| \, w^{*}(x) \, d\mu.$$

Since w satisfies condition A_1 , we finally obtain

(3.8)
$$\int_{\{x \in \widetilde{O}_{\lambda}: Hb(x) > \lambda/2\}} w d\mu \leqslant \frac{C}{\lambda} \int_{X} |f| w d\mu.$$

 $wd\mu$ we need to work harder. To estimate $\{x \in \vec{F} : H\vec{b}(x) > \lambda/2\}$

The following lemma will be used.

(3.9) Lemma. If $1 and w satisfies the <math>A'_n$ condition with constant C, then there is a constant K, depending only on p and C, such that for every interval I in the integers of the form $\{-i, ..., i\}$

(3.10)
$$\sum_{h \neq I} (\#I)^{p-1} w(T^h x) |h|^{-p} \leq K (\#I)^{-1} \sum_{h \in I} w(T^h x) \quad a.e.$$

where #I stands for the number of elements of I.

Proof. There exists r, 1 < r < p, such that $w \in A'_r$ with constant D depending only on p and C. For a proof see [1].

It will be sufficient to show that

(3.11)
$$\sum_{h>i} (i+1)^{p-1} w(T^h x) |h|^{-p} \le K(i+1)^{-1} \sum_{h=0}^{i} w(T^h x) \quad \text{a.e.}$$

Since w satisfies condition A'_r with constant D, we have for any positive integer k

$$\sum_{h=0}^{k} w(T^{h}x) \cdot \left(\sum_{h=0}^{k} w(T^{h}x)^{-1/(r-1)}\right)^{r-1} \leq D(k+1)^{r}.$$

If $k \ge i+1$, it is clear that

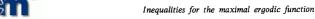
$$(3.12) (k+1)^{-p-1} \sum_{h=i+1}^{k} w(T^h x) \cdot \left(\sum_{h=0}^{i} w(T^h x)^{-1/(r-1)}\right)^{r-1} \leq D(k+1)^{r-p-1}.$$

By Hölder's inequality applied to

$$\sum_{h=0}^{i} w(T^{h}x)^{1/r} \cdot w(T^{h}x)^{-1/r}$$

we have

$$(i+1)^r \left(\sum_{h=0}^i w(T^h x)\right)^{-1} \leqslant \left(\sum_{h=0}^i w(T^h x)^{-1/(r-1)}\right)^{r-1}.$$



Using this in (3.12) leads to

$$(k+1)^{-p-1}\sum_{h=i+1}^{k} w(T^{h}x)(i+1)^{r}(\sum_{h=0}^{i} w(T^{h}x))^{-1} \leq D(k+1)^{r-p-1},$$

an inequality that holds for $k \ge i+1$. Adding up in k:

(3.13)

$$\sum_{k=i+1}^{\infty} (k+1)^{-p-1} \sum_{h=i+1}^{k} w(T^h x) \leq D(i+1)^{-r} \sum_{k=i+1}^{\infty} (k+1)^{r-p-1} \sum_{h=0}^{i} w(T^h x).$$

Now (3.11) is an immediate consequence of the following inequalities:

$$(3.14) \quad \sum_{h=i+1}^{\infty} w(T^h x) p^{-1} (h+1)^{-p} \leq \sum_{k=i+1}^{\infty} (k+1)^{-p-1} \sum_{h=i+1}^{k} w(T^h x),$$

(3.15)
$$\sum_{k=i+1}^{\infty} (k+1)^{r-p-1} \leq (p-r)^{-1} (i+1)^{-p+r}.$$

(3.16) Note. Since $w \in A_1$ implies $w \in A_2$, (3.10) will hold, for p = 2, if $w \in A_1$.

The sufficiency of condition A_1 will be a consequence of the following proposition.

(3.17) Proposition. If $x \in \tilde{F}$ and Hb(x) > a, then

$$a < \sum_{i=1}^{\infty} i \sum_{h=-\infty}^{+\infty} (|b| \chi_{R_i}) (T^h x) h^{-2} + 8b^*(x).$$

Proof. There exist s and t such that

$$H_{s,t} b(x) = \left| \sum_{s < |h| < t} \frac{b(T^h x)}{h} \right| > a.$$

Associated with the orbit of x in O_1 , we consider the set

$$\{k \in \mathbb{Z}: T^k x \in O_1\}.$$

This set can be written as a union of a sequence $\{I_k\}$ of finite and disjoint intervals in the integers.

We will consider those intervals I_k that have a non-empty intersection with $\{s+1, s+2, ..., t-1\}, \{-(t-1), ..., -(s+2), -(s+1)\}.$ We will denote by K' the finite set of indices corresponding to these intervals.

Call K" the set of indices corresponding to those intervals of the sequence $\{I_k\}$ such that contain some integers of the set $\{\pm (s+1), \pm (t-1)\}$. Clearly, $K'' \subset K'$ and $\# K'' \leq 4$.

It is obvious that

$$H_{s,t} b(x) \leqslant \sum_{k} \left| \sum_{\substack{s < |h| < t \ h \in I_k}} \frac{b(T^h x)}{h} \right|.$$

This sum is bounded by

(3.18)
$$\sum_{\substack{k \in K'' \\ k \in I_k}} \left| \sum_{\substack{s < |h| < t \\ h \in I_k}} \frac{b(T^h x)}{h} \right| + \sum_{k \in K'} \left| \sum_{h \in I_k} \frac{b(T^h x)}{h} \right|.$$

We are going to bound the first sum of (3.18). Suppose that $s+1 \in I_k$. The treatment of the other cases is similar. Let I_k be of the form

$$\{m, m+1, \ldots, m+q-1\}.$$

Since $x \in \tilde{F}$, we have m > 0 and m > q.

Then we have

$$\left| \sum_{\substack{h=m\\s < h < t}}^{m+q-1} \frac{b(T^h x)}{h} \right| \leq \sum_{h=m}^{m+q-1} \frac{|b(T^h x)|}{h} \leq m^{-1} \sum_{h=0}^{m+q-1} |b(T^h x)| < 2b^*(x).$$

Therefore the first sum of (3.18) is bounded by $8b^*(x)$ and the second by

$$\sum_{k} \left| \sum_{h \in I_{k}} \frac{b(T^{h} x)}{h} \right|.$$

Consider now an interval of length i, $\{m, m+1, ..., m+i-1\}$, with m > 0. Using the mean value property of b (3.1), we get

$$\left| \sum_{h=m}^{m+i-1} \frac{b(T^h x)}{h} \right| = \left| \sum_{h=m}^{m+i-1} \left(\frac{1}{h} - \frac{1}{m+i-1} \right) b(T^h x) \right| \leqslant \sum_{h=m}^{m+i-1} i |b(T^h x)| h^{-2}.$$

Note that if m < 0 we would have subtracted m^{-1} to obtain the same bound. Therefore the sum corresponding to all the intervals of length i is bounded by

$$i \sum_{h \neq 0} |(b\chi_{R_i})(T^h x)| h^{-2}.$$

Thus (3.18) is bounded by

$$\sum_{i=1}^{\infty} i \sum_{h\neq 0} |(b\chi_{R_i})(T^h x)| h^{-2} + 8b^*(x).$$

This completes the proof of the proposition.

Since

$$\{x \in \tilde{F}: \ Hb(x) > \frac{1}{2}\lambda\} \subset \{x \in \tilde{F}: \ \sum_{i=1}^{\infty} i \sum_{h \neq 0} |(b\chi_{R_i})(T^h x)| \ h^{-2} + 8b^*(x) > \frac{1}{2}\lambda\},$$

we have

(3.19)

$$\int\limits_{\{x\in \tilde{F}: Hb(x)>\lambda/2\}} wd\mu \leqslant \int\limits_{\{x\in \tilde{F}: 8b''(x)>\lambda/4\}} wd\mu + \int\limits_{\{x\in \tilde{F}: \frac{\infty}{i}: \frac{1}{i}\sum\limits_{h\subseteq 0} |(b\chi_{R_i})(T^hx)| h^{-2}>\lambda/4\}} wd\mu$$

The part of Theorem (1.1) proved in Section 2 gives us a bound for the first integral of the right-hand side:

(3.20)
$$\frac{C}{\lambda} \int_{\mathbf{x}} |b| w d\mu.$$

The second integral is bounded by

$$\frac{4}{\lambda}\sum_{i=1}^{\infty}\int\limits_{F}i\sum_{h\neq 0}|(b\chi_{R_{i}})(T^{h}x)|h^{-2}wd\mu.$$

Since $\tilde{F} \subset -\tilde{R}_i$, this is not bigger than

(3.21)
$$\frac{4}{\lambda} \sum_{i=1}^{\infty} \int_{-R_i} i \sum_{h \neq 0} |(b\chi_{R_i})(T^h x)| h^{-2} w d\mu.$$

Note that $x \in -\tilde{R}_i$ implies $T^j x \notin R_i$ for $j \in \{-i, -(i-1), ..., i-1, i\} = J_i$. As a consequence, (3.21) can be written in the form

$$\begin{split} \frac{4}{\lambda} \sum_{i=1}^{\infty} \int_{-\widetilde{R}_{i}} i \sum_{h \notin J_{i}} |(b\chi_{R_{i}})(T^{h}x)| \ h^{-2} w d\mu \\ & \leq \frac{4}{\lambda} \sum_{i=1}^{\infty} i \sum_{h \notin J_{i}} \int_{R_{i}} |b(x)| \ h^{-2} w (T^{-h}x) d\mu \\ & \leq \frac{2}{\lambda} \sum_{i=1}^{\infty} \int_{R_{i}} (2i+1) |b(x)| \sum_{h \notin J_{i}} w (T^{-h}x) h^{-2} d\mu. \end{split}$$

By (3.16) we have that this is bounded by

$$\frac{C}{\lambda} \int_{O_{\lambda}} |b(x)| \, w^*(x) \, d\mu.$$

Since $w \in A_1$, we finally get

(3.22)
$$\int wd\mu \leq \frac{C}{\lambda} \int_{X} |b| wd\mu.$$

$$\{x \in F: \sum_{i=1}^{\infty} i \sum_{h \neq 0} |(b\chi_{R_i})^{(T^h x)}| h^{-2} > \lambda/4 \}$$

Now Theorem (1.1) follows from (3.5), (3.6), (3.7), (3.8), (3.19), (3.20) and (3.22).

244

References

- [1] E. Atencia and A. de la Torre, A dominated ergodic estimate for L_p spaces with weights, Studia Math. 74 (1982), 35-47.
- [2] E. Atencia and F. J. Martin-Reyes, The maximal ergodic Hilbert transform with weights, Pacific J. Math. 108 (2) (1983), 257-263.
- [3] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 1 (1971), 107-
- [4] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- [5] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press. 1970.

DEPARTAMENTO DE ANALISIS MATEMATICO, FACULTAD DE CIENCIAS, UNIVERSIDAD DE MALAGA, SPAIN

Received May 4, 1982 (1756)

STUDIA MATHEMATICA, T. LXXVIII. (1984)

On a generalized Carleson inequality

by

D. G. DENG (Peking)

Abstract. In this note we prove a generalized Carleson inequality

$$\left| \iint\limits_{\mathbb{R}^2} F(x,t) v(x,t) dx dt \right| \leqslant C \iint\limits_{\mathbb{R}} A_p(F)(x) v_{\circ p'}(x) dx,$$

where 1/p + 1/p' = 1, $1 \le p \le \infty$,

$$A_{p}(F)(x) = \left(\iint_{I(x)} |F(y, t)|^{p} \frac{dy \, dt}{t} \right)^{1/p}, \quad v_{*p'}(x) = \sup_{x \in I} \left(\frac{1}{|I|} \iint_{\overline{I}} |v(y, t)|^{p'} \, dy \, dt \right)^{1/p'}.$$

Moreover, $v_{*n'}$ belongs to the Muckenhoupt class A_1 for p' > 1.

1. Introduction. The inequality

(1)
$$\left| \iint\limits_{\mathbb{R}^2} F(x, t) v(x, t) dx dt \right| \leqslant C \iint\limits_{\mathbb{R}} F^*(x) dx \ (*)$$

is known as the Carleson inequality ([4], [5], p. 236), where $F^*(x)$ is the non-tangential maximal function of F(x, t), i.e.,

$$F^*(x) = \sup_{|y-x| \le t} |F(y, t)|,$$

and v(x, t) dx dt is a Carleson measure on \mathbb{R}^2_+ , i.e., $v(x, t) \ge 0$ and

$$\frac{1}{|I|} \int_{I \times [0,|I|]} v(x, t) dx dt \leq C$$

for any interval I on R. The purpose of this note is to give a more general form of inequality (1). To prove this we need to prove that a new kind of a maximal function gives rise to weights in A_1 . This is of independent interest. Our inequality incorporates various inequalities proved by C. Fefferman and E. M. Stein and easily extends to R^n or, more generally, to the spaces of homogeneous type.

^(*) As usual, throughout this note C will denote a constant not necessarily the same at each occurrence.