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Mapping properties of maximal operators
by
NORBERTO A. FAVA (Buenos Aires)

Abstract. The concept of a maximal operator is formed by abstraction of the fundamental
properties of both the Hardy-Littlewood and the ergodic maximal operator. We study maximal
operators in connection with a family of spaces of measurable functions which is naturally
associated with such operators.

1. Introduction. As a motivation, let us consider the Hardy-Littlewood
maximal operator M defined for each measurable function f on R” by means
of the formula

1
ey Mf (x) = SUP J If Ol dy,
B(x,r)

where B(x,r) denotes the ball of radius r centered at x and vertical bars
“qutside the integral stand for Lebesgue measure.

Assuming that f has support in the unmit ball B={xeR™|x <1},
a well-known theorem of Hardy and Littlewood [2] which dates back to
1930, asserts that if f belongs to L(log*L), then MfeL'(B).

In more recent times E. M. Stein [4] proved that the converse of the
above-mentioned theorem is also true.

The present note, which is a postscript to our paper [1], contains
a generalization of those two theorems and, what is perhaps more relevant, it
describes the way in which maximal operators map a certain class of spaces
of measurable functions which is naturally associated with such operators.
These properties were overlooked at the time when [1] was written.

Moreover, we have eliminated an unnecessary restriction concerning
positivity from the definition of a maximal operator as originally given in
[13.

2. Classes R,. Let (X, &, ) be a o-finite measure space. For each o > 0,
we shall denote by R, the class of all functions f measurable on X such that
the integral

@ [ 2 (10e2Y

1£1> 4
is finite for every positive number A. These classes were introduced in [11 in
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connection with the ergodic theorem and the strong differentiability of
integrals. In particular, R, consists of all functions f such that f i 1s integrable
over the set where |f] > A for each positive A.

When o is positive, the integral (2) may be extended over the whole space X
without changing its value provided that in the integrand we write log* instead
of log.

IgDenoting, as usual, by L(log™* L)* the class of all functions f such that
(2) is finite for some positive 4, we see that R, = L(log* L)* and that both
classes coincide if and only if u(X) < co.

We refer to [1] for the easy proof of the following facts:

(i) each class R, is a linear subspace of L(log™L)*;
(ii) among these classes, we have the relations
©) RycR, if

(iii) if for the sake of brevity we write simply L in place of L?(u), then
L' @ Rg < L*+L*, so that R, coincides with L' when u(X) is finite;

(iv) if 1 <p <o, then I? c R, for each o > 0.

When a > 1, the class L(log™ L)* becomes a Banach space by defining
the norm of f as the infimum of all positive numbers A such that integral (2)

is less than or equal to one. In this circumstance it can be shown that R, is a
closed subspace of the Banach space L(log* L)*.

o< pB;

3. Maximal operators. An operator T mapping R, into the class of all
measurable functions on X will be called a maximal operator if it satisfies the
following properties:

(A) ITf1< TIf1;

B)0< f<g implies Tf<Tyg;

(C) T is sublinear, that is, |T(f+g)| < |Tf|+|Tg| and [T(Af)| = Al|Tf;

D) 1T Nl <N llos

(E) Tis of weak type 1-1; in other words, there exists a constant C
depending only on T, such that

p{Ts> A}

" for every positive number A.
All order or equality relations among functions in conditions (A), (B)
and (C) are to be understood as holding almost everywhere with respect to u.
Condition (A) implies that T is a positive operator.
A maximal operator T satisfies Wiener's inequality:

C !
SI”f“x

“ C{TfI> 1) < J‘Ifldu (t>0)

2|7 >t
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which is of the utmost importance for the study of such operators and whose
proof is also given in [1], p. 276.

From Marcinkiewicz’s interpolation theorem or else directly from
Wiener’s inequality and Lemma 1 below. it follows that every maximal
operator maps L? into L? for each p > 1.

The Hardy-Littlewood maximal operator (1), the ergodic maximal
operator defined in [1], p. 272, and the “partial” maximal operators

M; (i=1,..., n) defined for each function f in L'(R") by means of the
formulae
| b
1
%) M;f(x)= sup Ej’*J"f(xuma Ximts b Xpngyenns Xp)|dE
a<x;<b a

are the most important examples of maximal operators. The proof that the
M;s defined by (5) actually are maximal operators only requires the use of
Fubmls theorem.

In the sequel we shall repeatedly use the following basic lemma, whose
elementary proof is given in [3].

LemMa 1. Let ¢ be a non decreasing function on the real interval 0 <t
< oo, such that @(0)=0 and ¢ is absolutely continuous on every finite
subinterval of the given half line. Then for any non negative measurable
Sunction f on (X, o, p), we have the formula

© {00 fdu= :jju{f> i o/ () dr.

Our first aim in this note is to prove that, in general, we have the
following theorem.

TueoreM 1. If T is a maximal operator, then for every a >

R,y into R,.
Proof. Assuming that feR,,;, we must prove that the integral

T [+ T
X

i$ finite for every Ppositive number A (we give the proof assuming that o is
positive, the remaining case being quite similar and, in fact, simpler).
Considering the function

® o0 = (1oe"5)

and using formula (6) of Lemma 1, we may write (7) in the form

0, T maps

©) Iu{lel > t} /(1) dr.
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On the other hand, by virtue of Wiener’s inequality (4), we can dominate
(9) by

“%9 Jfldu}p’(t)dt
0 2f[ >t
‘ 2| ,
=2CJdu|f[ J 5’1?(9611
X

o1
=2C Jdulfij{lt<logl> lt(logi) }d:
a+1 o
[ e

X

where 4, = C(x+1)"!

Since R,+; = R,, our assumption about f implies that the last two
integrals are finite for every positive A and consequently, so is (7) as we
wanted to prove.

From Theorem 1 we see at once that if T;,..., T, are maximal oper-
ators, then the product T; Ty, ... T; is well defined on R, .. Moreover, if f
belongs to R, then the function T, T;_, ... T,f is in Ry; in particular, it is
integrable over every set of finite measure.

The last assertions explain by themselves why we have chosen R, as the
natural domain of general maximal operators while the spaces R,, k an
integer, are the natural domains of products of such operators. At this point
we wish™to remark that the main result in [1] is a weak type estimate
concerning precisely the product T, T,_; ... T; of k maximal operators.
Namely, therein it is proved that for every function f in R,_, and every
positive number A, we have the inequality

Jlf( .Ifl)" !

where C is a constant depending on k and the constants of weak type
corresponding to the operators involved.

In the light of Theorem 1, the proof of (10) becomes simpler by
removing the unnecessary step of verifying that the operation T, T,_, ... T, f
is well defined for any function f in R,.,.

(10) p{T .. T f] > 43} <
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Finally, we remark that (10) can be used to obtain an alternative proof
of a theorem of Zygmund [5] concerning the differentiability of integrals
with respect to families of intervals having a certain number of sides with
equal size.

4. Stein’s inequality. In the case of the Hardy-Littlewood operator (1),
E.M. Stein has proved in [4] that Wiener’s inequality (4) may be reversed in
a certain sense. More precisely, he proved that for every measurable function
S on R” and every t > 0, we have the inequality

2-n -1

(11) {Mf >t} >

f [fldx,
1>t

where ¢ is a positive constant depending only on the dimension n.
On the basis of Stein’s inequality (11) we prove the following theorem.

Tueorem 2. If for some o3>0 we have MfeR,, then necessarily
f eRm+1

Proof. If MfeR, and 1 is a positive number, we have

M Mfy
o > J%(log* —%) dx.
Rn
By means of function (8), we may write the last integral in the form

(12) I! Mf>tlo'(

On the other hand, by virtue of (11), the integral (12) is not less than

@ <~y

“2_";_1 J|f|dx]<p(r)dz>2 “jdxlflf (log )dt
0

NS an

ey fm( rlfl)““ .

So that feR,.; as we wanted to prove.

Hence, MfeR, if and only if feR,,;. Moreover, from the preceding
theorems, we derive the following corollary:

CoroLLARY. Let f be a function on R" with support in the unit ball B and
let o« be a non negative number. Then Mf (log* Mf)* is integrable on B if and
only if f is in L(log*L)**1. '
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Proof. We prove first that if Mf (log™ Mf)* is integrable on B, then it is
also integrable on 2B (ball with center at the origin and radius two).

Considering the region G = {xeR": 1 <|x| <2}, it is enough to prove
that the function under consideration is integrable on G. Now, the transform-
ation x — y given by y = x/|x|* (inversion with respect to the unit sphere |x|
=1) maps G bijectively onto the region Go={x: 1/2 <|x| <1} and
a simple geometrical conmsideration shows that for each xeG we have
Mf(x) < Mf(»).

Taking into account that the Jacobian determinant dx/dy is bounded on
Gy, our assertion follows from the formula for changing variables.

By repeated application of the preceding argument, we see that the
function Mf (log™* Mf)* is locally integrable. Moreover, since Mf (x) tends to
zero as |x| tends to infinity, the set {Mf > A} is bounded and the integral

Mf( o MfY
f T(logT) dx
Mf >

is finite for each positive number -A. Hence Mf eR, and from Theorem 2 it
follows that feR,,. In particular, f belongs to L(log™L)**'. The proof of
the converse is straightforward.
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Two problems in prediction theory*
by
TAKAHIKO NAKAZI (Sapporo)
Abstract. We give an expression in terms of w of the quantities
Ty (W) = i?f1x|1+f|2wd6/2n (n=0,1,2,...),
where f ranges over the trigonometric polynomials with fréquences in the set {—n, —n+1, ...,

——l,vl,'2, ... }. This solves the first prediction problem due to G. Szegt for n = 0 and the second
prediction problem due to A. Kolmogorov for n= co. In case n = 1, the expression is

25 25
T (w) = exp [ logwdd/2n(1+] [ e logw do/an|?).
0 [

1. Introduction. For n=0,1,2,... let S, be the manifold of tri-
gonometric polynomials whose frequences are in the set f—n, —n+1, ...,
—1,1,2, ... }. Let d0 be Lebesgue measure on [0, 2m), and let we L' (d6/2n)
and w > 0. The main result in this paper is a formula giving the distance

" 7, (W) from 1 to S, in IZ(wd/2n), that is,

T, W) = inf {{ |1+ wdo/2m; £ €S,}.
Szegs (cf. [3], p. 44) showed that '
To (W) = exp j" logwd6/2mn
and Kolmogorov (cf. [3], p. 208) showed that

T (W) = (j:w'1 do/2m)*.

Let P, be the manifold of trigonometric polynomials whose frequences
are in the set {n+1, n+2,...} and n> 0. The author and K. Takahashi
[7] got a formula giving the distance o,(w, 2)V? from 1 to P, in
L*(wd0/2m). In this paper we prove ,(w)=p,(w" %, 2! in case
w™le L!(d6/2n). Then a formula giving t,(w) follows from the expression of
0,(w™',2). Moreover, we generalize the expression of g,(w, 2)'? to

—
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