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lemma a positive y, such that
3.()* < 2, ()

for y > y,. By the relation in the remark for x < y{
P, (X" 2 P,(x). .

Applying Proposition 2 to @ := &, and y := @, we see that £(Dg ) does not
have property (DNy-1). But, due to Proposition 1, the space (D) has this
property and so the spaces are not isomorphic. Setting K,:= Dy for
t€[a, b] the corollary is proved.

! we get
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The canonical seminorm on Weak I*
by
MICHAEL CWIKEL* (Haifa) and CHARLES FEFFERMAN (Princeton)

Abstract. For each feWéak L' let g, (f) = sup ap({x] |/ (x)] >a}) and let g(f) be the
a>0

seminorm,

q(f) = inf i a (f))-

eyttt Sy =1
It is known that ¢ is equivalent to the seminorm I defined by
I(f)= lim {sup (log b/@)™" [  |f(a}du}.
" bla>n ixlas (| <5}
It is shown here that in fact g(f)=I(f) and also that the normed quotient space of WeakI!
generated by g is not complete.

0. Introduction. This note is a sequel to [1]. We shall assume familiarity
with the terminology and notation of that paper in which it was shown that,
for a non-atomic underlying measure space, the canonical seminorm g on the
space of measurable functions WeakL is equivalent to a more “concretely”
defined seminorm I. We shall show here that the seminorms g and I are in
fact equal, using a refinement of the argument in [1]. We also exhibit
another two seminorms which are equivalent to g and show that W, the
quotient space of WeakI! modulo the functions f satisfying q(f) =0, is not
complete, as incorrectly claimed in [1]. )

We gratefully acknowledge correspondence with Nigel Kalton who
expressed doubts about the claim in [1].

1. Equality of q and I. In order to establish that g(f) =1I(f) for all
feWeakI} it suffices to show that q(f) < I(f) for each function of the form

o
f=3 Pl Xr,» Where 4> 1, and I, are disjoint measurable sets of finite

kg.—
measure (cf. [1], pp. 151-152). In [1] the sets I, were taken as intervals on
the real line. However, for our purposes here it is a little simpler to consider
them as (disjoint) circles. More specifically we assume that the underlying
measure space (X, X, u) contains each I, and each Lebesgue measurable

* Research supported by the Technion V. P. R. Fund.


GUEST


276 M. Cwikel and Ch. Felferman

subset of I, as elements of Z and that u restricted to any I, coincides with
Lebesgue measure (generated by arc length) on Iy. It is of course a routine
matter to extend our results from this particular case to the case of any non-
atomic measure space.

Fix an integer N. Divide each circle I, into N arcs of equal length by N

equally spaced points t,;, j=1,2,..., N. Define

= il
(1) = o
60= L T ) HIN

where |I,] = u(l,) is the circumference of I, and, for any two points s, 1 of I,

d.(s, 1) is the length of the shorter arc in I, joining s and 1.
We now claim that

N
) 710 < (2N fogN/2=1)" 3 6100

for all reX.
To prove (1) suppose that tel, for some. k. If, for example, ¢ lies in the
arc (of length |I,}/N) from t to t;, then

I
di(t, 1)) < LNEI- min(j, N+1-j)

and

N N2 gk N
g;0>2
jgl ! m§=:1 m+1

> 2Nf () [log([N/2]+1)—1],

where [N/2] is the integer part of N/2. By symmetry the same estimate holds
for ¢ between f,; and t, ;. for any j, ie. for all ¢ in any I. This establishes
(1), which in turn shows that .
N o
a(f) < (2N(og(V/2)-1))"" 3. 41(g) = s (g2)/2(log (N/2)~ 1)
=1

since all of the functions g, have the same distribution function. For « > 0
the set E, (@) = I, n {t] g, (t) > a} coincides with I, if o < 2*(I/N+1/2)"" and
is empty if o 2 AYN.If 2412+ 1/N)" ' o <IN, then pu(E, (@) = 2|1/ (A~
—1/N). It follows that

ap({rl g:(1) >a})<a )y PAR )3 (1 Ao
: a<ak(z+ym—1 M2+ 1N " L ga<akN
<op({tl £()>a(l/2+1/N)})+2 f@ydu(e).

NS £ Sa(1/2+ 1/N))

icm
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We conclude that
41091 < 2g,(f/)+2  sup
bia=Ni2+1 gla<f(r)<h}

Dividing both sides of this inequality by 2(log (N/2)—1) and letting N
tend to infinity we obtain that ¢(f) < I(f).

Fndu).

2. An auxiliary estimate. Below we shall need an estimate for g(f) for f
of the above form f= Y A Xr, in the special case where, for a fixed

k )
integer N, [I] =(2/2+N)}¥ and 4 =((2+N)/2). Using the notation and
decomposition above we again have q(f) < ¢, (g1)/2(log(N/2)—1). A routine
calculation shows that ¢ (g,)=2 (in fact g¥(@)=2/t) so q(f)
< 1/(log(N/2)—1).

3. Further equivalent seminorms. Let

(1-1/p)*»

i1l

K(f)=lim { sup
hil a>0
1<p<h

(f min (o, {f|y’du)up}

and

t

L(f) = lim {sup (1+logan™* { min(x, f*(s))ds}.
N-ow arzN 0

For each feWeakI! it is not difficult to verify that K(f) and L(f) are

seminorms dominated by g, (f) and thus by ¢g(f). Using arguments similar

to those of [1], p. 152, we can also show that.q(f) < eK(f) and in fact g(f)

= L(f).

4. The space W. As in [1] we let W denote the quotient space of Weak L
modulo the subspace of functions f satisfying g(f) =0. This is a normed
space (normed by gq) whose dual coincides with the dual of WeakI!. We
shall show here that W is not complete, thus correcting a false assertion in
{1

LimMa. Ler a, b, ¢, d be positive constants such that b <1 and ¢ < d. Let
V(1) be a function assuming the constant value dj/ab* on the interval
[ab**!, ab¥) for each k=0, £1, £2, ...

If U@1) = max(V(n—c/t, 0), then q(U) > 0.

Proof. U(t) > (d—./cd)/ab* on the interval [/c/d ab¥, ab¥) for each
integer k. It follows that for each « > 0 the set {f| U(r) >} has measure
exceeding D/x for some constant D > 0. Therefore g(U) = D. [

For each integer N we define a function Vy as in the preceding lemma
by taking a = d = (2-++ N)/N and b = 2/(2+ N),ie. Vy = ((2+ N)/2)* on the inter-
val I, = [((2+N)/N)(2/(2+ N)}*, (2+NY/N)(2/2+ N)f¥]. Since [I] = (2/2+N)}*
the calculation of Section'2 shows that ¢(Vy) < 1/(log(N/2)~1). Now let
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(my)R-, be an increasing sequence of integers such that log(my/2)—1 = N3,
Let Yy(r) = NV, (1) so that ¢(¥y) < 1/N? The sequence ($,),%, defined by

®,= Y Yy is thus a Cauchy sequence with respect to the seminorm g.
N=1
If Wis complete, then there exists a function ¢ in Weak ' such that
q(®~,) 0. For each t >0, ¢,(t) = ¥ (t) < (D,—D)*(t/2) + D*(2/2). (See
eg. [2]), p- 253)

. Consequently  max(®,()—d*(1/2), 0) < (P,—P)*(t/2) and  since
@*(1/2) < ¢/t for some constant ¢ we deduce that q(max(YN(r)—c/r, 0)) =0
for all N. However, for N sufficiently large, N(2+my)/my > ¢ and, by the
preceding lemma, q(max( Yy (t)—cft, 0)) > 0. This contradiction shows that W
cannot be complete.
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A further generalization of Ky Fan’s minimax
inequality and its applications

by
MAU-HSIANG SHIH* and KOK-KEONG TAN**

Abstract. The celebrated 1972 Ky Fan's minimax inequality is slightly generalized simul-
taneously to non-compact convex settings and to a pair of functions. This extension includes
Brézis-Nirenberg-Stampacchia’s minimax inequality. Applying the generalized minimax inequal-
ity, Dugundji~Granas® variational inequality in reflexive Banach spaces, which is an extension of
Hartman-Stampacchia variational inequality, is generalized simultaneously to set-valued maps
and to non-compact convex sets in topological vector spaces. The generalized variational
inequality in the single-valued case is in turn used to obtain fixed point theorems for pseudo-
contractive and non-expansive - maps on a non-weakly compact subset of a Hilbert space,
generalizing the well-known Browder’s fixed point theorem.
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Key words and phrases, KKM-map, minimax inequality, variational inequality, pseud ractive map, pansive map,
operator, Hausdor(l logical vector space, fixed point, set-valued maps.

1. Introduction. We begin with the celebrated 1972 Ky Fan's minimax
inequality [11].

[Ky FANS MINIMAX INEQUALITY]. Let X be a non-empty compact convex
set in a Hausdorff topological vector space. Let ¢ be a real-valued function
defined on X xX such that:

(a) For each fixed xeX, @(x, y)is a lower semicontinuous function of y
on X. )

(b) For each fixed ye X, @(x, y) is a quasi-concave function of x on X.
Then the minimax inequality

min sup ¢(x, y) <sup @(x, x)
yeX xeX xeX

holds.
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