M. Tidten

274

lemma a positive y_1 such that

$$\tilde{\Phi}_{\tau}(y^p)^{\lambda} \leqslant \Phi_{\sigma}(y)$$

for $y > y_1$. By the relation in the remark for $x < y_1^{-1}$ we get

$$\Phi_{\tau}(x^p)^{\lambda} \geqslant \Phi_{\sigma}(x).$$

Applying Proposition 2 to $\Phi := \Phi_{\tau}$ and $\psi := \Phi_{\sigma}$, we see that $\mathscr{E}(D_{\Phi_{\sigma}})$ does not have property $(\mathbf{D}\mathbf{N}_{\Phi_{\tau}^{-1}})$. But, due to Proposition 1, the space $\mathscr{E}(D_{\Phi_{\tau}})$ has this property and so the spaces are not isomorphic. Setting $K_{\tau} := D_{\Phi_{\tau}}$ for $\tau \in [a, b]$ the corollary is proved.

References

- [1] H. Apiola, Characterization of subspaces and quotients of nuclear $L_f(\alpha, \infty)$ -spaces, Preprint 1980.
- [2] B. Mityagin, Geometry of nuclear spaces II, Linear topological invariants, Sem. Analyse Fonct. (1978/79). Exposé No. 2.
- [3] -. Non-Schwartzian power series spaces, Math. Z. 182 (1983), 303-310.
- [4] M. Tidten, Fortsetzungen von C[∞]-Funktionen, welche auf einer abgeschlossenen Menge in Rⁿ definiert sind, Manuscr. Math. 27 (1979), 291-312.
- [5] -, Kriterien für die Existenz von Ausdehnungsoperatoren zu & (K) für kompakte Teilmengen K von R, Arch. Math. 40 (1983), 73-81.
- [6] D. Vogt, Tensorprodukte von (F)- mit (DF)-Räumen und ein Fortsetzungssatz, Preprint 1978.
- [7] -, Ein Isomorphiesatz für Potenzreihenräume, Arch. Math. 38 (1982), 540-548.
- [8] -, and M. J. Wagner, Charakterisierung der Quotientenraume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240.
- [9] V. Zaharyuta, Generalized Mityagin's invariants and a continuum of pairwise non-isomorphic spaces of holomorphic functions, Funkt. Analiz i ego pril. (Russ.) 11 (3) (1977), 24-30.

Received July 2, 1982 (1778)

STUDIA MATHEMATICA, T. LXXVIII. (1984)

The canonical seminorm on Weak L1

by

MICHAEL CWIKEL* (Haifa) and CHARLES FEFFERMAN (Princeton)

Abstract. For each $f \in \text{Weak } L^1$ let $q_1(f) = \sup_{\alpha > 0} \alpha \mu(\{x | |f(x)| > \alpha\})$ and let q(f) be the seminorm,

$$q(f) = \inf_{f = f_1 + f_2 + \dots + f_n} \sum_{j=1}^n q_1(f_j).$$

It is known that q is equivalent to the seminorm I defined by

$$I(f) = \lim_{n \to \infty} \left\{ \sup_{b|a>n} (\log b/a)^{-1} \int_{|x|a \le |f(x)| \le b} |f(x)| d\mu \right\}.$$

It is shown here that in fact q(f) = I(f) and also that the normed quotient space of Weak L^{t} generated by q is not complete.

0. Introduction. This note is a sequel to [1]. We shall assume familiarity with the terminology and notation of that paper in which it was shown that, for a non-atomic underlying measure space, the canonical seminorm q on the space of measurable functions Weak L^1 is equivalent to a more "concretely" defined seminorm I. We shall show here that the seminorms q and I are in fact equal, using a refinement of the argument in [1]. We also exhibit another two seminorms which are equivalent to q and show that W, the quotient space of Weak L^1 modulo the functions f satisfying q(f) = 0, is not complete, as incorrectly claimed in [1].

We gratefully acknowledge correspondence with Nigel Kalton who expressed doubts about the claim in [1].

1. Equality of q and I. In order to establish that q(f) = I(f) for all $f \in \operatorname{Weak} L^1$ it suffices to show that $q(f) \leq I(f)$ for each function of the form $f = \sum_{k=-\infty}^{\infty} \lambda^k \chi_{I_k}$, where $\lambda > 1$, and I_k are disjoint measurable sets of finite measure (cf. [1], pp. 151–152). In [1] the sets I_k were taken as intervals on the real line. However, for our purposes here it is a little simpler to consider them as (disjoint) circles. More specifically we assume that the underlying measure space (X, Σ, μ) contains each I_k and each Lebesgue measurable

^{*} Research supported by the Technion V. P. R. Fund.

subset of I_k as elements of Σ and that μ restricted to any I_k coincides with Lebesgue measure (generated by arc length) on I_k . It is of course a routine matter to extend our results from this particular case to the case of any non-atomic measure space.

Fix an integer N. Divide each circle I_k into N arcs of equal length by N equally spaced points t_{kj} , j = 1, 2, ..., N. Define

$$g_j(t) = \sum_{k=-\infty}^{\infty} \frac{\lambda^k |I_k|}{d_k(t, t_{kj}) + |I_k|/N} \chi_{I_k}(t),$$

where $|I_k| = \mu(I_k)$ is the circumference of I_k and, for any two points s, t of I_k , $d_k(s, t)$ is the length of the shorter arc in I_k joining s and t.

We now claim that

(1)
$$f(t) \le \left(2N\left(\log(N/2) - 1\right)\right)^{-1} \sum_{j=1}^{N} y_j(t)$$

for all $t \in X$.

To prove (1) suppose that $t \in I_k$ for some k. If, for example, t lies in the arc (of length $|I_k|/N$) from t_{kN} to t_{k1} , then

$$d_k(t, t_{kj}) \leqslant \frac{|I_k|}{N} \min(j, N+1-j)$$

and

$$\sum_{i=1}^{N} g_j(t) \ge 2 \sum_{m=1}^{\lfloor N/2 \rfloor} \frac{\lambda^k N}{m+1} \ge 2N f(t) [\log(\lfloor N/2 \rfloor + 1) - 1],$$

where [N/2] is the integer part of N/2. By symmetry the same estimate holds for t between t_{kj} and $t_{k,j+1}$ for any j, i.e. for all t in any I_k . This establishes (1), which in turn shows that

$$q(f) \le (2N(\log(N/2)-1))^{-1} \sum_{j=1}^{N} q_1(g_j) = q_1(g_1)/2(\log(N/2)-1)$$

since all of the functions g_f have the same distribution function. For $\alpha > 0$ the set $E_k(\alpha) = I_k \cap \{t \mid g_1(t) > \alpha\}$ coincides with I_k if $\alpha < \lambda^k (1/N + 1/2)^{-1}$ and is empty if $\alpha \ge \lambda^k N$. If $\lambda^k (1/2 + 1/N)^{-1} \le \alpha < \lambda^k N$, then $\mu(E_k(\alpha)) = 2|I_k|(\lambda^k/\alpha - 1/N)$. It follows that

$$\begin{split} \alpha\mu\big(\big\{t|\ g_1(t)>\alpha\big\}\big) &\leqslant \alpha\sum_{\alpha<\lambda^k(1/2+1/N)^{-1}}|I_k| + \alpha\sum_{\lambda^k(1/2+1/N)^{-1}\leqslant\alpha<\lambda^kN}2\,|I_k|\,\lambda^k/\alpha\\ &\leqslant \alpha\mu\big(\big\{t|\ f(t)>\alpha(1/2+1/N)\big\}\big) + 2\int\limits_{\{t|\alpha/N\leqslant f(t)\leqslant\alpha(1/2+1/N)\}}f(t)\,d\mu(t). \end{split}$$

We conclude that

$$q_1(g_1) \le 2q_1(f) + 2 \sup_{b/a = N/2 + 1} \int_{|t|a \le f(t) \le b|} f(t) d\mu(t).$$

Dividing both sides of this inequality by $2(\log (N/2)-1)$ and letting N tend to infinity we obtain that $q(f) \le I(f)$.

2. An auxiliary estimate. Below we shall need an estimate for q(f) for f of the above form $f = \sum_{k=-\infty}^{\infty} \lambda^k \chi_{I_k}$ in the special case where, for a fixed integer N, $|I_k| = (2/(2+N))^k$ and $\lambda = ((2+N)/2)$. Using the notation and decomposition above we again have $q(f) \le q_1(g_1)/2(\log(N/2)-1)$. A routine calculation shows that $q_1(g_1) = 2$ (in fact $g_1^*(t) = 2/t$) so $q(f) \le 1/(\log(N/2)-1)$.

3. Further equivalent seminorms. Let

$$K(f) = \lim_{h \downarrow 1} \left\{ \sup_{\substack{\alpha > 0 \\ 1 \le p \le h}} \frac{(1 - 1/p)^{1/p}}{\alpha^{1 - 1/p}} \left(\int \min(\alpha, |f|)^p \, d\mu \right)^{1/p} \right\}$$

and

$$L(f) = \lim_{N \to \infty} \left\{ \sup_{\alpha t \geqslant N} (1 + \log \alpha t)^{-1} \int_{0}^{t} \min \left(\alpha, f^*(s) \right) ds \right\}.$$

For each $f \in \text{Weak } L^1$ it is not difficult to verify that K(f) and L(f) are seminorms dominated by $q_1(f)$ and thus by q(f). Using arguments similar to those of [1], p. 152, we can also show that $q(f) \leq eK(f)$ and in fact q(f) = L(f).

4. The space W. As in [1] we let W denote the quotient space of Weak L^1 modulo the subspace of functions f satisfying q(f) = 0. This is a normed space (normed by q) whose dual coincides with the dual of Weak L^1 . We shall show here that W is not complete, thus correcting a false assertion in [1].

LEMMA. Let a, b, c, d be positive constants such that b < 1 and c < d. Let V(t) be a function assuming the constant value d/ab^k on the interval $\lceil ab^{k+1}, ab^k \rangle$ for each $k = 0, \pm 1, \pm 2, ...$

If
$$U(t) \ge \max(V(t) - c/t, 0)$$
, then $q(U) > 0$.

Proof. $U(t) \ge (d-\sqrt{cd})/ab^k$ on the interval $[\sqrt{c/d}\ ab^k,\ ab^k)$ for each integer k. It follows that for each $\alpha>0$ the set $\{t|\ U(t)>\alpha\}$ has measure exceeding D/α for some constant D>0. Therefore $q(U)\ge D$. \square

For each integer N we define a function V_N as in the preceding lemma by taking a=d=(2+N)/N and b=2/(2+N), i.e. $V_N=((2+N)/2)^k$ on the interval $I_k=\left[((2+N)/N)(2/(2+N))^{k+1},((2+N)/N)(2/(2+N))^k\right]$. Since $|I_k|=(2/(2+N))^k$ the calculation of Section 2 shows that $q(V_N) \leq 1/(\log(N/2)-1)$. Now let

 $(m_N)_{N=1}^{\infty}$ be an increasing sequence of integers such that $\log(m_N/2) - 1 \ge N^3$. Let $Y_N(t) = NV_{m_N}(t)$ so that $q(Y_N) \le 1/N^2$. The sequence $(\Phi_n)_{n=1}^{\infty}$ defined by $\Phi_n = \sum_{N=1}^{\infty} Y_N$ is thus a Cauchy sequence with respect to the seminorm q.

If W is complete, then there exists a function Φ in Weak L^1 such that $q(\Phi - \Phi_n) \to 0$. For each t > 0, $\Phi_n(t) = \Phi_n^*(t) \le (\Phi_n - \Phi)^*(t/2) + \Phi^*(t/2)$. (See e.g. [2], p. 253.)

Consequently $\max(\Phi_n(t) - \Phi^*(t/2), 0) \leq (\Phi_n - \Phi)^*(t/2)$ and since $\Phi^*(t/2) \leq c/t$ for some constant c we deduce that $q(\max(Y_N(t) - c/t, 0)) = 0$ for all N. However, for N sufficiently large, $N(2 + m_N)/m_N > c$ and, by the preceding lemma, $q(\max(Y_N(t) - c/t, 0)) > 0$. This contradiction shows that W cannot be complete.

References

- M. Cwikel and C. Fefferman, Maximal seminorms on Weak L¹, Studia Math. 69 (1980), 149-154.
- [2] R. A. Hunt, On L(p, q) spaces, Enseignement Math. (2) 12 (1966), 249-276.

DEPARTMENT OF MATHEMATICS
TECHNION, I. I. T., HAIFA 32000, ISRAEL
DEPARTMENT OF MATHEMATICS
PRINCETON UNIVERSITY, PRINCETON N. J. 08540, U.S.A.

Received August 17, 1982 (1791)

A further generalization of Ky Fan's minimax inequality and its applications

by

MAU-HSIANG SHIH* and KOK-KEONG TAN**

Abstract. The celebrated 1972 Ky Fan's minimax inequality is slightly generalized simultaneously to non-compact convex settings and to a pair of functions. This extension includes Brézis-Nirenberg-Stampacchia's minimax inequality. Applying the generalized minimax inequality, Dugundji-Granas' variational inequality in reflexive Banach spaces, which is an extension of Hartman-Stampacchia variational inequality, is generalized simultaneously to set-valued maps and to non-compact convex sets in topological vector spaces. The generalized variational inequality in the single-valued case is in turn used to obtain fixed point theorems for pseudocontractive and non-expansive maps on a non-weakly compact subset of a Hilbert space, generalizing the well-known Browder's fixed point theorem.

1980 Mathematical Subject Classifications. Primary 49A29, 49A40; Secondary 47H10, 52A07.

Key words and phrases, KKM-map, minimax inequality, variational inequality, pseudo-contractive map, non-expansive map, monotone operator, Hausdorff topological vector space, fixed point, set-valued maps.

1. Introduction. We begin with the celebrated 1972 Ky Fan's minimax inequality [117].

[KY FAN'S MINIMAX INEQUALITY]. Let X be a non-empty compact convex set in a Hausdorff topological vector space. Let φ be a real-valued function defined on $X \times X$ such that:

- (a) For each fixed $x \in X$, $\varphi(x, y)$ is a lower semicontinuous function of y on X.
- (b) For each fixed $y \in X$, $\varphi(x, y)$ is a quasi-concave function of x on X. Then the minimax inequality

$$\min_{y \in X} \sup_{x \in X} \varphi(x, y) \leqslant \sup_{x \in X} \varphi(x, x)$$

holds.

^{*} The work was done while the author was visiting at Dalhousie University, and was partially supported by NSERC of Canada.

^{**} The author was partially supported by NSERC of Canada under grant number A-8096.